
A Modern Introduction to Memetic
Algorithms

Pablo Moscato and Carlos Cotta

1 Introduction and historical notes

The generic denomination of ‘Memetic Algorithms’ (MAs) is used to encom-
pass a broad class of metaheuristics (i.e. general purpose methods aimed to
guide an underlying heuristic). The method is based on a population of agents
and proved to be of practical success in a variety of problem domains and in
particular for the approximate solution of NP-hard optimization problems.

Unlike traditional evolutionary computation (EC) methods, MAs are in-
trinsically concerned with exploiting all available knowledge about the prob-
lem under study. The incorporation of problem domain knowledge is not an
optional mechanism, but a fundamental feature that characterizes MAs. This
functioning philosophy is perfectly illustrated by the term “memetic”. Coined
by R. Dawkins [62], the word ‘meme’ denotes an analogous to the gene in
the context of cultural evolution [177]. In Dawkins’ words:

“Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of mak-
ing pots or of building arches. Just as genes propagate themselves in the gene pool
by leaping from body to body via sperms or eggs, so memes propagate themselves
in the meme pool by leaping from brain to brain via a process which, in the broad
sense, can be called imitation.”

This characterization of a meme suggest that in cultural evolution pro-
cesses, information is not simply transmitted unaltered between individuals.

Pablo Moscato
Centre for Bioinformatics, Biomarker Discovery and Information-based Medicine, The
University of Newcastle, University Drive, Callaghan NSW 2308, Australia, e-mail:
Pablo.Moscato@newcastle.edu.au

Carlos Cotta
Departamento de Lenguajes y Ciencias de la Computación, Escuela Técnica Superior de In-
genieŕıa Informática, Universidad de Málaga, Campus de Teatinos, 29071 - Málaga, Spain,
e-mail: ccottap@lcc.uma.es

1

2 Pablo Moscato and Carlos Cotta

In contrast, it is processed and enhanced by the communicating parts. This
enhancement is accomplished in MAs by incorporating heuristics, approxima-
tion algorithms, local search techniques, specialized recombination operators,
truncated exact methods, etc. In essence, most MAs can be interpreted as
a search strategy in which a population of optimizing agents cooperate and
compete [202]. The success of MAs can probably be explained as being a
direct consequence of the synergy of the different search approaches they
incorporate.

The most crucial and distinctive feature of MAs, the inclusion of problem
knowledge mentioned above, is also supported by strong theoretical results.
As Hart and Belew [108] initially stated and Wolpert and Macready [276]
later popularized in the so-called No-Free-Lunch Theorem, a search algorithm
strictly performs in accordance with the amount and quality of the problem
knowledge they incorporate. This fact clearly underpins the exploitation of
problem knowledge intrinsic to MAs. Given that the term hybridization is
often used to denote the process of incorporating problem knowledge [39], it
is not surprising that MAs are sometimes called ‘Hybrid Evolutionary Algo-
rithms’ [61] (hybrid EAs) as well. One of the first algorithms to which the MA
label was assigned dates from 1988 [202], and was regarded by many as a hy-
brid of traditional Genetic Algorithms (GAs) and Simulated Annealing (SA).
Part of the initial motivation was to find a way out of the limitations of both
techniques on a well-studied combinatorial optimization problem the Min
Euclidean Traveling Salesman problem (Min ETSP). According to
the authors, the original inspiration came from computer game tournaments
[111] used to study “the evolution of cooperation” [8, 190]. That approach
had several features which anticipated many current algorithms in practice
today. The competitive phase of the algorithm was based on the new allo-
cation of search points in configuration phase, a process involving a “battle”
for survival followed by the so-called “cloning”, which has a strong similarity
with ‘go with the winners’ algorithms [4, 213]. The cooperative phase fol-
lowed by local search may be better named “go-with-the-local-winners” since
the optimizing agents were arranged with a topology of a two dimensional
toroidal lattice. After initial computer experiments, an insight was derived on
the particular relevance that the “spatial” organization, when coupled with
an appropriate set of rules, had for the overall performance of population
search processes. A few months later, Moscato and Norman discovered that
they shared similar views with other researchers [100, 185] and other authors
proposing “island models” for GAs. Spacialization is now being recognized as
the “catalyzer” responsible of a variety of phenomena [189, 190]. This is an
important research issue, currently only understood in a rather heuristic way.
However, some proper undecidability results have been obtained for related
problems [102] giving some hope to a more formal treatment.

Less than a year later, in 1989, Moscato and Norman identified several
authors who were also pioneering the introduction of heuristics to improve
the solutions before recombining them [99, 186] (see other references and the

A Modern Introduction to Memetic Algorithms 3

discussion in [177]). Particularly coming from the GA field, several authors
were introducing problem-domain knowledge in a variety of ways. In [177] the
denomination of ‘memetic algorithms’ was introduced for the first time. It
was also suggested that cultural evolution can be a better working metaphor
for these metaheuristics to avoid “biologically constrained” thinking that was
restricting progress at that time.

Ten years later, albeit unfortunately under different names, MAs have be-
come an important optimization approach, with several successes in a variety
of classical NP-hard optimization problems. We aim to provide an updated
and self-contained introduction to MAs, focusing on their technical innards
and formal features, but without loosing the perspective of their practical
application and open research issues.

2 Memetic Algorithms

Before proceeding to the description of MAs, it is necessary to provide some
basic concepts and definitions. Several notions introduced in the first sub-
section are strongly related to the field of computational complexity. Never-
theless, they may be presented in a slightly different way and pace for the
sake of the subsequent development. These basic concepts will give rise to
the notions of local search and population-based search, upon which MAs are
founded. This latter class of search settles the scenario for recombination, a
crucial mechanism in the functioning of MAs that will be studied to some
depth. Finally, a basic algorithmic template and some guidelines for designing
MAs will be presented.

2.1 Basic Concepts

An algorithm is a detailed step-by-step procedure for solving a computational
problem. A computational problem P denotes a class of algoritmically-doable
tasks, and it has an input domain set of instances denoted IP . For each
instance x ∈ IP , there is an associated set solP (x) which denotes the feasible
solutions for problem P given instance x. The set solP (x) is also known as
the set of acceptable or valid solutions.

We are expected to deliver an algorithm that solves problem P ; this means
that our algorithm, given instance x ∈ IP , must return at least one element
y from a set of answers ansP (x) (also called given solutions) that satisfies
the requirements of the problem. This is the first design issue to face. To be
precise, depending on the kind of answers expected, computational problems
can be classified into different categories; for instance:

• finding all solutions in solP (x), i.e., enumeration problems.

4 Pablo Moscato and Carlos Cotta

• counting how many solutions exist in solP (x), i.e. counting problems.
• determining whether the set solP (x) is empty or not, i.e., decision prob-

lems.
• finding a solution in solP (x) maximizing or minimizing a given function,

i.e., optimization problems.

In this chapter, we will focus on the last possibility, that is, a problem will
be considered solved by finding a certain feasible solution, i.e. either finding
an optimal y ∈ solP (x) or giving an indication that no such feasible solution
exists. It is thus convenient in many situations to define a Boolean feasibility
function feasibleP (x, y) in order to identify whether a given solution y ∈
ansP (x) is acceptable for an instance x ∈ IP of a computational problem P ,
i.e., checking if y ∈ solP (x).

An algorithm is said to solve problem P if it can fulfill this condition
for any given instance x ∈ IP . This definition is certainly too broad, so a
more restrictive characterization for our problems of interest is necessary.
This characterization is provided by restricting ourselves to the so-called
combinatorial optimization problems . These constitute a special subclass of
computational problems in which for each instance x ∈ IP :

• the cardinality of solP (x) is finite.
• each solution y ∈ solP (x) has a goodness integer value mP (y, x), obtained

by means of an associated objective function mP .
• a partial order ≺P is defined over the set of goodness values returned by

the objective function, allowing determining which of two goodness values
is preferable.

An instance x ∈ IP of a combinatorial optimization problem P is solved
by finding the best solution y∗ ∈ solP (x), i.e., finding a solution y∗ such that
no other solution y ≺P y∗ exists if solP (x) is not empty. It is very common
to have ≺P defining a total order. In this case, the best solution is the one
that maximizes (or minimizes) the objective function.

As an example of a combinatorial optimization problem consider the 0-1
Multiple Knapsack Problem (0-1 MKP). Each instance x of this problem
is defined by a vector of profits V = {v0, · · · , vn−1}, a vector of capacities
C = {c0, · · · , cm−1}, and a matrix of capacity constraints M = {mij : 0 6
i < m, 0 6 j < n}. Intuitively, the problem consists in selecting a set of
objects so as to maximize the profit of this set without violating the capacity
constraints. If the objects are indexed with the elements of the set Nn =
{0, 1, · · · , n−1}, the answer set ansP (x) for an instance x is simply the power
set of Nn, that is, each subset of Nn is a possible answer. Furthermore, the
set of feasible answers solP (x) is composed of those subsets whose incidence
vector B verifies M · B 6 C. Finally, the objective function is defined as
mP (y, x) =

∑
i∈y vi, i.e., the sum of profits for all selected objects, the goal

being to maximize this value.
Notice that, associated with a combinatorial optimization problem, we can

define its decisional version. To formulate the decision problem, an integer

A Modern Introduction to Memetic Algorithms 5

goodness value K is considered, and instead of trying to find the best solution
of instance x, we ask whether x has a solution whose goodness is equal or
better than K. In the above example, we could ask whether a feasible solution
y exists such that its associated profit is equal or better than K.

2.2 Search Landscapes

As mentioned above, having defined the concept of combinatorial optimiza-
tion problem the goal is finding at least one of the optimal solutions for a
given instance. For this purpose, a search algorithm must be used. Before
discussing search algorithms, three entities must be discussed. These are the
search space, the neighborhood relation, and the guiding function. It is im-
portant to consider that, for any given computational problem, these three
entities can be instantiated in several ways, giving rise to different optimiza-
tion tasks.

Let us start by defining the concept of search space for a combinatorial
problem P . To do so, we consider a set SP (x), whose elements have the
following properties:

• Each element s ∈ SP (x) represents at least one answer in ansP (x).
• For decision problems: at least one element of solP (x) that stands for a

‘Yes’ answer must be represented by one element in SP (x).
• For optimization problems: at least one optimal element y∗ of solP (x) is

represented by one element in SP (x).

Each element of SP (x) will be termed a configuration, being related to an
answer in ansP (x) by a growth function g : SP (x) → ansP (x). Note that the
first requirement refers to ansP (x) and not to solP (x), i.e., some configura-
tions in the search space may correspond to infeasible solutions. Thus, the
search algorithm may need being prepared to deal with this fact. If these re-
quirements have been achieved, we say that we have a valid representation or
valid formulation of the problem. For simplicity, we will just write S to refer
to SP (x) when x and P are clear from the context. People using biologically-
inspired metaphors like to call SP (x) the genotype space and ansP (x) denotes
the phenotype space, so we appropriately refer to g as the growth function.

To illustrate this notion of search space, consider again the case of the
0-1 MKP. Since solutions in ansP (x) are subsets of Nn, we can define the
search space as the set of n-dimensional binary vectors. Each vector will
represent the incidence vector of a certain subset, i.e., the growth function
g is defined as g(s) = g(b0b1 · · · bn−1) = {i | bi = 1}. As mentioned above,
many binary vectors may correspond to infeasible sets of objects. Another
possibility is defining the search space as the set of permutations of elements
in Nn [101]. In this case, the growth function may consist of applying a
greedy construction algorithm, considering objects in the order provided by

6 Pablo Moscato and Carlos Cotta

the permutation. Unlike the binary search space previously mentioned, all
configurations represent feasible solutions in this case.

The role of the search space is to provide a “ground” where the search al-
gorithm will act. Important properties of the search space that affect the dy-
namics of the search algorithm are related with the accessibility relationships
between the configurations. These relationships are dependent of a neighbor-
hood function N : S → 2S . This function assigns to each element s ∈ S a
set N (s) ⊆ S of neighboring configurations of s. The set N (s) is called the
neighborhood of s and each member s′ ∈ N (s) is called a neighbor of s.

It must be noted that the neighborhood depends on the instance, so the
notation N (s) is a simplified form of NP (s, x) since it is clear from the con-
text. The elements of N (s) need not be listed explicitly. In fact, it is very
usual to define them implicitly by referring to a set of possible moves, which
define transitions between configurations. Moves are usually defined as “lo-
cal” modifications of some part of s, where “locality” refers to the fact that
the move is done on a single solution to obtain another single solution. This
“locality”, is one of the key ingredients of local search, and actually it has
also given the name to the whole search paradigm.

As examples of concrete neighborhood definitions, consider the two rep-
resentations of solutions for the 0-1 MKP presented above. In the first case
(binary representation), moves can be defined as changing the values of a
number of bits. If just one bit is modified at a time, the resulting neighbor-
hood structure is the n-dimensional binary hypercube. In the second case
(permutation representation), moves can be defined as the interchange of
two positions in the permutation. Thus, two configurations are neighboring
if, and only if, they differ in exactly two positions.

This definition of locality presented above is not necessarily related to
“closeness” under some kind of distance relationship between configurations
(except in the tautological situation in which the distance between two con-
figurations s and s′ is defined as the number of moves needed to reach s′

from s). As a matter of fact, it is possible to give common examples of very
complex neighborhood definitions unrelated to intuitive distance measures.

An important feature that must be considered when selecting the class
of moves to be used in the search algorithm is its “ergodicity”, that is the
ability, given any s ∈ S to find a sequence of moves that can reach all other
configurations s′ ∈ S. In many situations this property is self-evident and
no explicit demonstration is required. It is important since even if we have a
valid representation (recall the definition above), it is necessary to guarantee
a priori that at least one optimal solution is reachable from any given initial
solution. Again, consider the binary representation of solutions for a 0-1
MKP instance. If moves are defined as single bit-flips, it is easily seen that
any configuration s′ can be reached from another configuration s in exactly h
moves, where h is the Hamming distance between these configurations. This
is not always the case though.

A Modern Introduction to Memetic Algorithms 7

The last entity that must be defined is the guiding function. To do so,
we require a set F whose elements are termed fitness values (typically F ≡
R), and a partial order ≺F on F (typically, but not always, ≺F≡<). The
guiding function is defined as a function Fg : S → F that associates to each
configuration s ∈ S a value Fg(s) that assesses the quality of the solution.
The behavior of the search algorithm will be “controlled” by these fitness
values.

Notice that for optimization problems there is an obvious direct connection
between the guiding function Fg and the objective function mP (and hence
between partial orders ≺P and ≺F). As a matter of fact, it is very common to
enforce this relationship to the point that both terms are usually considered
equivalent. However, this equivalence is not necessary and, in many situations,
not even desirable. For decision problems, since a solution is a ‘Yes’ or ‘No’
answer, associated guiding functions usually take the form of distance to
satisfiability.

A typical example is the Boolean Satisfiability Problem, i.e., deter-
mining whether a Boolean expression in conjunctive normal form is satisfi-
able. In this case, solutions are assignments of Boolean values to variables,
and the objective function mP is a binary function returning 1 if the solution
satisfies the Boolean expression, and returning 0 otherwise. This objective
function could be used as guiding function. However, a much more typical
choice is to use the number of satisfied clauses in the current configuration
as guiding function, i.e., Fg(s) =

∑
i fi(s), the sum over clause indexes i of

fi(s), defined as fi(s) = 0 for a yet unsatisfied clause i, and fi(s) = 1 if the
clause i is satisfied. Hence, the goal is to maximize this number. Notice that
the guiding function in this case is the objective function of the associated
NP-hard optimization problem called Max SAT.

The above differentiation between objective function and guiding function
is also very important in the context of constrained optimization problems,
i.e., problems for which, in general, solP (x) is chosen to be a proper subset of
ansP (x). Since the growth function establishes a mapping from S to ansP (x),
the search algorithm might need processing both feasible solutions (whose
goodness values are well-defined) and infeasible solutions (whose goodness
values are ill-defined in general). In many implementations of MAs for these
problems, a guiding function is defined as a weighted sum of the value of
the objective function and the distance to feasibility (which accounts for the
constraints). Typically, a higher weight is assigned to the constraints, so as
to give preference to feasibility over optimality. Several other remedies to this
problem abound, including resorting to multi-objective techniques.

The combination of a certain problem instance and the three entities de-
fined above induces a so-called fitness landscape [127]. Essentially, a fitness
landscape can be defined as a weighted digraph, in which the vertices are
configurations of the search space S, and the arcs connect neighboring con-
figurations. The weights are the differences between the guiding function
values of the two endpoint configurations. The search can thus be seen as the

8 Pablo Moscato and Carlos Cotta

process of “navigating” the fitness landscape using the information provided
by the guiding function. This is a very powerful metaphor; it allows interpre-
tations in terms of well-known topographical objects such as peaks, valleys,
mesas, etc, of great utility to visualize the search progress, and to grasp fac-
tors affecting the performance of the process. In particular, the important
notion of local optimum is associated to this definition of fitness landscape.
To be precise, a local optimum is a vertex of the fitness landscape whose
guiding function value is better than the values of all its neighbors. Notice
that different moves define different neighborhoods and hence different fit-
ness landscapes, even when the same problem instance is considered. For this
reason, the notion of local optimum is not intrinsic to a problem instance as
it is, sometimes, erroneously considered.

2.3 Local vs. Population-Based Search

The definitions presented in the previous subsection naturally lead to the
notion of local search algorithm. A local search algorithm starts from a
configuration s0 ∈ S, generated at random or constructed by some other
algorithm. Subsequently, it iterates using at each step a transition based on
the neighborhood of the current configuration. Transitions leading to prefer-
able (according to the partial order ≺F) configurations are accepted, i.e.,
the newly generated configuration turns to be the current configuration in
the next step. Otherwise, the current configuration is kept. This process is
repeated until a certain termination criterion is met. Typical criteria are the
realization of a pre-specified number of iterations, not having found any im-
provement in the last m iterations, or even more complex mechanisms based
on estimating the probability of being at a local optimum [44]. Due to these
characteristics, the approach is metaphorically called “hill climbing”. The
whole process is sketched in Algorithm 1.

The selection of the particular type of moves (also known as mutation in
the context of GAs) to use does certainly depend on the specific characteris-
tics of the problem and the representation chosen. There is no general advice
for this, since it is a matter of the available computer time for the whole
process as well as other algorithmic decisions that include ease of coding, etc.
In some cases some moves are conspicuous, for example it can be the change
of the value of one single variable or the swap of the values of two different
variables. Sometimes the “step” may also be composed of a chain of transi-
tions. For instance, in relation with MAs, Radcliffe and Surry introduced the
concept of Binomial Minimal Mutation, where the number of mutations to
perform is selected according to a certain binomial distribution [229]. In the
context of fitness landscapes, this is equivalent to a redefinition of the neigh-
borhood relation, considering two configurations as neighbors when there
exists a chain of transitions connecting them.

A Modern Introduction to Memetic Algorithms 9

Algorithm 1: A Local Search Algorithm
Procedure Local-Search-Engine (current);1

begin2

repeat3

new ← GenerateNeighbor(current);4

if Fg(new) ≺F Fg(current) then5

current ← new;6

endif7

until TerminationCriterion() ;8

return current;9

end10

Local search algorithms are thus characterized by keeping a single con-
figuration at a time. The immediate generalization of this behavior is the
simultaneous maintenance of k, (k > 2) configurations. The term population-
based search algorithms has been coined to denote search techniques behaving
this way.

The availability of several configurations at a time allows the use of new
powerful mechanisms for traversing the fitness landscape in addition to the
standard mutation operator. The most popular of these mechanisms, the
recombination operator, will be studied in more depth in the next section.
In any case, notice that the general functioning of population-based search
techniques is very similar to the pseudocode depicted in Algorithm 1. As a
matter of fact, a population-based algorithm can be imagined as a procedure
in which we sequentially visit vertices of a hypergraph. Each vertex of the
hypergraph represents a set of configurations in SP (x), i.e., a population.
The next vertex to be visited, i.e., the new population, can be established
according to the composition of the neighborhoods of the different transition
mechanisms used in the population algorithm. Despite the analogy with local
search, it is widely accepted in the scientific literature to apply the denomi-
nation ‘local’ just to one-configuration-at-a-time search algorithms. For this
reason, the term ‘local’ will be used with this interpretation in the remainder
of the article.

2.4 Recombination

As mentioned in the previous section, local search is based on the application
of a mutation operator to a single configuration. Despite the apparent sim-
plicity of this mechanism, “mutation-based” local search has revealed itself a
very powerful mechanism for obtaining good quality solutions for NP−hard
problems. For this reason, some researchers have tried to provide a more
theoretically-solid background to this class of search. In this line, it is worth

10 Pablo Moscato and Carlos Cotta

mentioning the definition of the Polynomial Local Search class (PLS) by
Johnson et al. [126]. Basically, this complexity class comprises a problem and
an associated search landscape such that we can decide in polynomial time if
we can find a better solution in the neighborhood. Unfortunately, it is very
likely that no NP−hard problem is contained in class PLS, since that would
imply that NP=co-NP [279], a conjecture usually assumed to be false. This
fact has justified the quest for additional search mechanisms to be used as
stand-alone operators or as complements to standard mutation.

In this line, recall that population-based search allowed the definition of
generalized move operators termed recombination operators. In essence, re-
combination can be defined as a process in which a set Spar of n configu-
rations (informally referred to as “parents”) is manipulated to create a set
Sdesc ⊆ solP (x) of m new configurations (informally termed “descendants”).
The creation of these descendants involves the identification and combination
of features extracted from the parents.

At this point, it is possible to consider properties of interest that can be
exhibited by recombination operators [229]. The first property, respect, rep-
resents the exploitation side of recombination. A recombination operator is
said to be respectful, regarding a particular type of features of the configu-
rations, if, and only if, it generates descendants carrying all basic features
common to all parents. Notice that, if all parent configurations are identical,
a respectful recombination operator is forced to return the same configura-
tion as a descendant. This property is termed purity, and can be achieved
even when the recombination operator is not generally respectful.

On the other hand, assortment represents the exploratory side of recom-
bination. A recombination operator is said to be properly assorting if, and
only if, it can generate descendants carrying any combination of compatible
features taken from the parents. The assortment is said to be weak if it is
necessary to perform several recombinations within the offspring to achieve
this effect.

Finally, transmission is a very important property that captures the intu-
itive rôle of recombination. An operator is said to be transmitting if every fea-
ture exhibited by the offspring is present in at least one of the parents. Thus, a
transmitting recombination operator combines the information present in the
parents but does not introduce new information. This latter task is usually
left to the mutation operator. For this reason, a non-transmitting recombi-
nation operator is said to introduce implicit mutation.

The three properties above suffice to describe the abstract input/output
behavior of a recombination operator regarding some particular features. It
provides a characterization of the possible descendants that can be produced
by the operator. Nevertheless, there exist other aspects of the functioning of
recombination that must be studied. In particular, it is interesting to consider
how the construction of Sdesc is approached.

First of all, a recombination operator is said to be blind if it has no other
input than Spar, i.e., it does not use any information from the problem in-

A Modern Introduction to Memetic Algorithms 11

stance. This definition is certainly very restrictive, and hence is sometimes
relaxed as to allow the recombination operator to use information regarding
the problem constraints (so as to construct feasible descendants), and possi-
bly the fitness values of configurations y ∈ Spar (so as to bias the generation
of descendants toward the best parents). A typical example of a blind recom-
bination operator is the classical Uniform crossover [253]. This operator is
defined on search spaces S ≡ Σn, i.e., strings of n symbols taken from an
alphabet Σ. The construction of the descendant is done by randomly select-
ing at each position one of the symbols appearing in that position in any of
the parents. This random selection can be totally uniform or can be biased
according to the fitness values of the parents as mentioned before. Further-
more, the selection can be done so as to enforce feasibility (e.g., consider the
binary representation of solutions in the 0-1 MKP). Notice that, in this case,
the resulting operator is neither respectful nor transmitting in general.

The use of blind recombination operators has been usually justified on
the grounds of not introducing excessive bias in the search algorithm, thus
preventing extremely fast convergence to suboptimal solutions. This is ques-
tionable though. First, notice that the behavior of the algorithm is in fact
biased by the choice of representation and the mechanics of the particular
operators. Second, there exist widely known mechanisms (e.g., spatial isola-
tion) to hinder these problems. Finally, it can be better to quickly obtain
a suboptimal solution and restart the algorithm than using blind operators
for a long time in pursuit of an asymptotically optimal behavior (not even
guaranteed in most cases).

Recombination operators that use problem knowledge are commonly termed
heuristic or hybrid. In these operators, problem information is utilized to
guide the process of constructing the descendants. This can be done in a
plethora of ways for each problem, so it is difficult to provide a taxonomy of
heuristic recombination operators. Nevertheless, there exist two main aspects
into which problem knowledge can be injected: the selection of the parental
features that will be transmitted to the descendant, and the selection of non-
parental features that will be added to it. A heuristic recombination operator
can focus in one of these aspects, or in both of them simultaneously.

As an example of a heuristic recombination operator focusing on the first
aspect, Dynastically Optimal Recombination (DOR) [53] can be mentioned.
This operator explores the dynastic potential (i.e., the set of possible children)
of the configurations being recombined, so as to find the best member of this
set (notice that, since configurations in the dynastic potential are entirely
composed of features taken from any of the parents, this is a transmitting
operator). This exploration is done using a subordinate complete algorithm,
and its goal is thus to find the best combination of parental features giving
rise to a feasible child. Hence, this operator is monotonic in the sense that
any child generated is at least as good as the best parent.

Examples of heuristic recombination operators concentrating on the selec-
tion of non-parental features, one can cite the patching-by-forma-completion

12 Pablo Moscato and Carlos Cotta

operators proposed by Radcliffe and Surry [228]. These operators are based
on generating an incomplete child using a non-heuristic procedure (e.g., the
RARω operator [227]), and then completing the child either using a local hill
climbing procedure restricted to non-specified features (locally optimal forma
completion) or a global search procedure that finds the globally best solution
carrying the specified features (globally optimal forma completion). Notice
the similarity of this latter approach with DOR.

Finally, there exist some operators trying to exploit knowledge in both of
the above aspects. A distinguished example is the Edge Assembly Crossover
(EAX) [188]. EAX is a specialized operator for the TSP (both for symmetric
and asymmetric instances) in which the construction of the child comprises
two-phases: the first one involves the generation of an incomplete child via the
so-called E-sets (subtours composed of alternating edges from each parent);
subsequently, these subtours are merged into a single feasible subtours using
a greedy repair algorithm. The authors of this operator reported impressive
results in terms of accuracy and speed. It has some similarities with the
recombination operator proposed in [178].

A final comment must be made in relation to the computational com-
plexity of recombination. It is clear that combining the features of several
solutions is in general computationally more expensive than modifying a sin-
gle solution (i.e., a mutation). Furthermore, the recombination operation will
be usually invoked a large number of times. For this reason, it is convenient
(and in many situations mandatory) to keep it at a low computational cost.
A reasonable guideline is to consider an O(N log N) upper bound for its
complexity, where N is the size of the input (the set Spar and the problem
instance x). Such limit is easily affordable for blind recombination operators,
which are called crossover, a reasonable name to convey their low complexity
(yet not always used in this context). However, this limit can be relatively
astringent in the case of heuristic recombination, mainly when epistasis (non-
additive inter-feature influence on the fitness value) is involved. This admits
several solutions depending upon the particular heuristic used. For example,
DOR has exponential worst case behavior, but it can be made affordable by
picking larger pieces of information from each parent (the larger the size of
these pieces of information, the lower the number of them needed to complete
the child) [52]. In any case, consider that heuristic recombination operators
provide better solutions than blind recombination operators, and hence they
need not be invoked the same number of times.

2.5 A Memetic Algorithm Template

In light of the above considerations, it is possible to provide a general template
for a memetic algorithm. As mentioned in Subsection 2.3, this template is

A Modern Introduction to Memetic Algorithms 13

Algorithm 2: A Population-Based Search Algorithm
Procedure Population-Based-Search-Engine;1

begin2

Initialize pop using GenerateInitialPopulation();3

repeat4

newpop ← GenerateNewPopulation(pop);5

pop ← UpdatePopulation (pop, newpop);6

if pop has converged then7

pop ← RestartPopulation(pop);8

endif9

until TerminationCriterion() ;10

end11

Algorithm 3: Injecting high-quality solutions in the initial population.
Procedure GenerateInitialPopulation;1

begin2

Initialize pop using EmptyPopulation();3

for j ← 1 to popsize do4

i ← GenerateRandomConfiguration();5

i ← Local-Search-Engine (i);6

InsertInPopulation individual i to pop;7

endfor8

return pop;9

end10

very similar to that of a local search procedure acting on a set of |pop| > 2
configurations. This is shown in Algorithm 2.

This template requires some explanation. First of all, the GenerateIni-
tialPopulation procedure is responsible for creating the initial set of |pop|
configurations. This can be done by simply generating |pop| random config-
urations or by using a more sophisticated seeding mechanism (for instance,
some constructive heuristic), by means of which high-quality configurations
are injected in the initial population [252]. Another possibility is to use the
Local-Search-Engine presented in Subsection 2.3 as shown in Algorithm 3.

As for the TerminationCriterion function, it can be defined very similarly
to the case of Local Search, i.e., setting a limit on the total number of iter-
ations, reaching a maximum number of iterations without improvement, or
having performed a certain number of population restarts, etc.

The GenerateNewPopulation procedure is at the core of memetic algo-
rithms. Essentially, this procedure can be seen as a pipelined process compris-
ing nop stages. Each of these stages consists of taking arityj

in configurations
from the previous stage, generating arityj

out new configurations by applying
an operator opj . This pipeline is restricted to have arity1

in = popsize. The
whole process is sketched in Algorithm 4.

14 Pablo Moscato and Carlos Cotta

Algorithm 4: The pipelined GenerateNewPopulation procedure.
Procedure GenerateNewPopulation (pop);1

begin2

buffer0 ← pop;3

for j ← 1 to nop do4

Initialize bufferj using EmptyPopulation();5

endfor6

for j ← 1 to nop do7

Sj
par ← ExtractFromBuffer (bufferj−1, arityj

in);8

Sj
desc ← ApplyOperator (opj , Sj

par);9

for z ← 1 to arityj
out do10

InsertInPopulation individual Sj
desc[z] to bufferj ;11

endfor12

endfor13

return buffernop ;14

end15

This template for the GenerateNewPopulation procedure is usually instan-
tiated in GAs by letting nop = 3, using a selection, a recombination, and a
mutation operator. Traditionally, mutation is applied after recombination,
i.e., on each child generated by the recombination operator. However, if a
heuristic recombination operator is being used, it may be more convenient to
apply mutation before recombination. Since the purpose of mutation is sim-
ply to introduce new features in the configuration pool, using it in advance is
also possible. Furthermore, the smart feature combination performed by the
heuristic operator would not be disturbed this way.

This situation is slightly different in MAs. In this case, it is very com-
mon to let nop = 5, inserting a Local-Search-Engine right after applying op2

and op4 (respectively recombination and mutation). Due to the local opti-
mization performed after mutation, their combined effect (i.e., mutation +
local search) cannot be regarded as a simple disruption of a computationally-
demanding recombination. Note also that the interplay between mutation
and local search requires the former to be different than the neighborhood
structure used in the latter; otherwise mutations can be readily reverted by
local search, and their usefulness would be negligible.

The UpdatePopulation procedure is used to reconstruct the current pop-
ulation using the old population pop and the newly generated population
newpop. Borrowing the terminology from the evolution strategy [230, 238]
community, there exist two main possibilities to carry on this reconstruction:
the plus strategy and the comma strategy. In the former, the current popula-
tion is constructed taken the best popsize configurations from pop∪newpop.
As to the latter, the best popsize configurations are taken just from newpop.
In this case, it is required to have |newpop| > popsize, so as to put some
selective pressure on the process (the bigger the |newpop|/popsize ratio, the

A Modern Introduction to Memetic Algorithms 15

stronger the pressure). Otherwise, the search would reduce to a random wan-
dering through S.

There are a number of studies regarding appropriate choices for the Up-
datePopulation procedure (see e.g., [9]). As a general guideline, the comma
strategy is usually regarded as less prone to stagnation, with the ratio
|newpop|/popsize ' 6 being a common choice [10]. Nevertheless, this op-
tion can be somewhat computationally expensive if the guiding function is
complex and time-consuming. Another common alternative is using a plus
strategy with a low value of |newpop|, analogous to the so-called steady-state
replacement strategy in GAs [274]. This option usually provides a faster con-
vergence to high-quality solutions. However, care has to be taken with pre-
mature convergence to suboptimal regions of the search space, i.e., all config-
urations in the population being very similar to each other, hence hindering
the exploration of other regions of S.

The above consideration about premature convergence leads to the last
component of the template shown in Algorithm 2, the restarting procedure.
First of all, it must be decided whether the population has degraded or has
not. To do so, it is possible to use some measure of information diversity in
the population such as Shannon’s entropy [60]. If this measure falls below
a predefined threshold, the population is considered to be in a degenerate
state. This threshold depends upon the representation (number of values
per variable, constraints, etc.) and hence must be determined in an ad-hoc
fashion. A different possibility is using a probabilistic approach to determine
with a desired confidence that the population has converged. For example, in
[119] a Bayesian approach is presented for this purpose.

Once the population is considered to be at a degenerate state, the restart
procedure is invoked. Again, this can be implemented in a number of ways.
A very typical strategy is to keep a fraction of the current population (this
fraction can be as small as one solution, the current best), and substituting
the remaining configurations with newly generated (from scratch) solutions,
as shown in Algorithm 5.

The procedure shown in Algorithm 5 is also known as the random-
immigrant strategy [33]. Another possibility is to activate a strong or heavy
mutation operator in order to drive the population away from its current
location in the search space. Both options have their advantages and disad-
vantages. For example, when using the random-immigrant strategy, one has
to take some caution to prevent the preserved configurations to take over the
population (this can be achieved by putting a low selective pressure, at least
in the first iterations after a restart). As to the heavy mutation strategy, one
has to achieve a tradeoff between an excessively strong mutation that would
destroy any information contained in the current population, and a not so
strong mutation that would cause the population to converge again in a few
iterations.

16 Pablo Moscato and Carlos Cotta

Algorithm 5: The RestartPopulation procedure.
Procedure RestartPopulation (pop);1

begin2

Initialize newpop using EmptyPopulation();3

#preserved ← popsize ·%preserve;4

for j ← 1 to #preserved do5

i ← ExtractBestFromPopulation(pop);6

InsertInPopulation individual i to newpop;7

endfor8

for j ← #preserved + 1 to popsize do9

i ← GenerateRandomConfiguration();10

i ← Local-Search-Engine (i);11

InsertInPopulation individual i to newpop;12

endfor13

return newpop;14

end15

2.6 Designing an Effective Memetic Algorithm

The general template of MAs depicted in the previous section must be in-
stantiated with precise components in order to be used for solving a specific
problem. This instantiation has to be done carefully so as to obtain an effec-
tive optimization tool. We will address some design issues in this section.

A first obvious remark is that there exist no general approach for the design
of effective MAs. This observation is based on different proofs depending on
the precise definition of effective in the previous statement. Such proofs may
involve classical complexity results and conjectures if ‘effective’ is understood
as ‘polynomial-time’, the NFL Theorem if we consider a more general set
of performance measures, and even Computability Theory if we relax the
definition to arbitrary decision problems. For these reasons, we can only define
several design heuristics that will likely result in good-performing MAs, but
without explicit guarantees for this.

This said, MAs are commonly implemented as evolutionary algorithms en-
dowed with a local search component (recall previous section), and as such
can benefit from the theoretical corpus available for EAs. This is particu-
larly applicable to some basic aspects such as the representation of solutions
in terms of meaningful information units [59, 228]. Focusing now on more
specific aspects of MAs, the first consideration that must be clearly taken
into account is the interplay among the local search component and the re-
maining operators, mostly with respect to the characteristics of the search
landscape. A good example of this issue can be found in the work of Merz and
Freisleben on the TSP [85]. They consider the use of a highly intensive local
search procedure –the Lin-Kernighan heuristic [157]– and note that the aver-
age distance between local optima is similar to the average distance between
a local optimum and the global optimum. For this reason, they introduce a

A Modern Introduction to Memetic Algorithms 17

distance-preserving crossover (DPX) operator that generate offspring whose
distance from the parents is the same as the distance between the parents
themselves. Such an operator is likely to be less effective if a not-so-powerful
local improvement method, e.g., 2-opt, was used, inducing a different distri-
bution of local optima.

In addition to the particular choice (or choices) of local search operator,
there remains the issue of determining an adequate parameterization for the
procedure, namely, how much effort must be spent on each local search, how
often the local search must be applied, and –were it not applied to every
new solution generated– how to select the solutions that will undergo local
improvement. Regarding the first two items, there exists theoretical evidence
[143, 251] that an inadequate parameter setting can turn the algorithmic so-
lution from easily solvable to non-polynomially solvable. Besides, there are
obvious practical limitations in situations where the local search and/or the
fitness function is computationally expensive. This fact admits different solu-
tions. On the one hand, the use of surrogates (i.e., fast approximate models
of the true function) to accelerate evolution is an increasingly popular option
in such highly demanding problems [104, 155, 272, 273, 283]. On the other
hand, partial lamarckism [42, 112, 212], where not every individual is subject
to local search, is commonly used as well. The precise value for the local
search application probability (or multiple values when more than one local
search procedure is available) largely depends on the problem under consid-
eration [123], and its determination is in many cases an art. For this reason,
adaptive and self-adaptive mechanisms have been defined in order to let the
algorithm learn what the most appropriate setting is (see Section 3.2).

As to the selection of individuals that will undergo local search, most
common options are random-selection, and fitness-based selection, where only
the best individuals are subject to local improvement. Nguyen et al. [197]
also consider a ‘stratified’ approach, in which the population is sorted and
divided into n levels (n being the number of local search applications), and
one individual per level is randomly selected. Their experimentation on some
continuous functions indicates that this strategy and improve-the-best (i.e.,
applying local search to the best n individuals) provide better results than
random selection. Such strategies can be readily deployed on a structured
MA as defined by Moscato et al. [15, 21, 83, 172, 169], where good solutions
flow upwards within a tree-structured population, and layers are explicitly
available. Other population management strategies are nevertheless possible,
see [19, 218, 219, 249].

3 Algorithmic Extensions of Memetic Algorithms

The algorithmic template and design guidelines described in the previous
section can characterize most basic incarnations of MAs, namely population-

18 Pablo Moscato and Carlos Cotta

based algorithms endowed with static local search for single-objective op-
timization. However, more sophisticated approaches can be conceived, and
certainly required, in certain applications. This section is aimed at providing
an overview of more advanced algorithmic extensions used in the MA realm.

3.1 Multiobjective Memetic Algorithms

Multiobjective problems are frequent in real-world applications. Rather than
having a single objective to be optimized, the solver is faced with multiple,
partially conflicting objectives. As a result, there is no a priori single opti-
mal solution ,but rather a collection of optimal solutions, providing different
trade-offs among the objectives considered. In this scenario, the notion of
Pareto-dominance is essential: given two solutions s, s′ ∈ solP (x), s is said
to dominate s′ if it is better than s′ in at least one of the objectives, and it
is no worse in the remaining ones. This clearly induces a partial order ≺P ,
since given two solutions it may be the case that none of them dominates
the other. This collection of optimal solutions is termed the optimal Pareto
front, or the optimal non-dominated front.

Population-based search techniques, in particular evolutionary algorithms
(EAs), are naturally fit to deal with multiobjective problems, due to the avail-
ability of a population of solutions which can approach the optimal Pareto
front from different directions. There is extensive literature on the deployment
of EAs in multiobjective settings, and the reader is referred to [36, 35, 63, 287],
among others, for more information on this topic. MAs can obviously benefit
from this corpus of knowledge. However, MAs typically incorporate a local
search mechanism, and it has to be adapted to the multiobjective setting as
well. This can be done in different ways [132], which can be roughly classified
into two major classes: scalarizing approaches, and Pareto-based approaches.
The scalarizing approaches are based on the use of some aggregation mech-
anism to combine the multiple objectives into a single scalar value. This is
usually done using a linear combination of the objective values, with weights
that are either fixed (at random or otherwise) for the whole execution of the
local search procedure [266], or adapted as the local search progresses [106].
As to Pareto-based approaches, they consider the notion of Pareto-dominance
for deciding transitions among neighboring solutions, typically coupled with
the use of some measure of crowding to spread the search, e.g, [133].

A full-fledged multiobjective MA (MOMA) is obtained by appropriately
combining population-based and local search-based components for multiob-
jective optimization. Again, the strategy used in the local search mechanism
can be used to classify most MOMAs. Thus, two proposals due to Ishibuchi
and Murata [121, 122] and to Jaszkiewicz [124, 125] are based on the use of
random scalarization each time a local search is to be used. Alternatively,
a single-objective local search could be used to optimize individual objec-

A Modern Introduction to Memetic Algorithms 19

tives [120]. Ad hoc mating strategies based on the particular weights chosen
at each local search invocation (whereby the solutions to be recombined are
picked according to these weights) are used as well. A related approach –
including the on-line adjustment of scalarizing weights– is followed by Guo
et al. [105, 106, 107]. On the other hand, a MA based on PAES (Pareto
Archived Evolution Strategy) was defined by Knowles and Corne [134, 135].
More recently, a MOMA based on particle swarm optimization (PSO) has
been defined by Liu et al. [152, 162]. In this algorithm, an archive of non-
dominated solutions is maintained and randomly sampled to obtain refer-
ence points for particles. A different approach is used by Schuetze et al. [237]
for numerical-optimization problems. The continuous nature of solution vari-
ables allows using their values for computing search directions. This fact is
exploited in their local search procedure (HCS for Hill Climber with Sidestep)
for directing the search toward specific regions (e.g., along the Pareto front)
when required.

3.2 Adaptive Memetic Algorithms

When some design guidelines were given in Section 2.6, the fact that these
were heuristics that ultimately relied on the problem-knowledge available was
stressed. This is not a particular feature of MAs, but affects the field of meta-
heuristics as a whole. Indeed, one of the keystones in practical metaheuristic
problem-solving is the necessity of customizing the solver for the problem at
hand [51]. Therefore, it is not surprising that attempts to transfer a part of
this tuning effort to the metaheuristic technique itself have been common.
Such attempts can take place at different levels, or can affect different compo-
nents of the algorithm. The first –and more intuitive one– is the parametric
level involving the numerical values of parameters, such as the operator appli-
cation rates. Examples of this can be found in early EAs, see for example [61].
A good up-to-date overview of these approaches (actually broader in scope,
covering more advanced topics than parameter adaptation) can be found in
[247]. Focusing specifically on MAs, this kind of adaptation has been applied
in [11, 164, 175, 176].

A slightly more general approach –termed ‘meta-lamarckian learning’ [204]
by Ong and Keane– takes place at the algorithmic level. They consider a set-
ting in which the MA has a collection of local search operators available,
and how the selection of the particular operator(s) to be applied to a spe-
cific solution can be done on the basis of past performance of the operator,
or on the basis of the similarity of the solution to previous successful cases
of operator application. Some analogies can also be drawn here with hyper-
heuristics [54], a high-level heuristic that controls the application of a set of
low-level heuristics to solutions, using strategies ranging from pure random

20 Pablo Moscato and Carlos Cotta

to performance-based rules. See [28] for a recent comprehensive overview of
hyperheuristics.

In general terms, the approaches mentioned before are based on static,
hard-wired mechanisms that the MA uses to react to the environment. Hence,
they can be regarded as adaptive, but not as self-adaptive [205]. In the latter
case, the actual definition of the search mechanisms can evolve during the
search. This is a goal that has been pursued for long in MAs. Back in the
early days of the field, it was already envisioned that future generations of
MAs would work in at least two levels and two time scales [179]. During
the short-time scale, a set of agents would be searching in the search space
associated to the problem. The long-time scale would adapt the algorithms
associated with the agents. Here we encompass individual search strategies,
recombination operators, etc. A simple example of this kind of self-adaptation
can be found in the so-called multi-memetic algorithms, in which each solu-
tion carries a gene that indicates which local search has to be applied on it.
This can be a simple pointer to an existing local search operator, or even the
parametrization of a general local search template, with items such as the
neighborhood to use, acceptance criterion, etc. [141]. Going beyond, a gram-
mar can be defined to specify a more complex local search operator [140, 142].
At an even higher level, this evolution of local search operators can be made
fully symbiotic, rather than merely endosymbiotic. For this purpose, two
co-evolving populations can be considered: a population of solutions, and a
population of local search operators. These two populations co-operate by
means of an appropriate pairing mechanism, that associates solutions with
operators. The latter receive fitness in response on their ability to improve so-
lutions, thus providing a fully self-adaptive strategy for exploring the search
landscape [244, 245, 246].

3.3 Complete Memetic Algorithms

The combination of exact techniques with metaheuristics is an increasingly
popular approach. Focusing on local search techniques, Dumitrescu and
Stüztle [73] have provided a classification of methods in which exact algo-
rithms are used to strengthen local search, i.e., to explore large neighbor-
hoods, to solve exactly some subproblems, to provide bounds and problem
relaxations to guide the search, etc. Some of these combinations can be also
found in the literature on population-based methods. For example, exact
techniques –such as branch-and-bound (BnB) [53] or dynamic programming
[90] among others– have been used to perform recombination (recall Section
2.4), and approaches in which exact techniques solved some subproblems pro-
vided by EAs date back to 1995 [45]. See also [76] for a large list of references
regarding local search/exact hybrids.

A Modern Introduction to Memetic Algorithms 21

Puchinger and Raidl [220] have provided a classification of this kind of
hybrid techniques in which algorithmic combinations are either collaborative
(sequential or intertwined execution of the combined algorithms) or integra-
tive (one technique works inside the other one, as a subordinate). Some of the
exact/metaheuristic hybrid approaches defined before are clearly integrative
–i.e., using an exact technique to explore neighborhoods. Further examples
are the use of BnB in the decoding process [221] of a genetic algorithm (i.e.,
exact method within a metaheuristic technique), or the use of evolutionary
techniques for the strategic guidance of BnB [139] (metaheuristic approach
within an exact method).

As to collaborative combinations, a sequential approach in which the exe-
cution of a MA is followed by a branch-and-cut method can be found in [131].
Intertwined approaches are also popular. For example, Denzinger and Offer-
man [66] combine genetic algorithms and BnB within a parallel multi-agent
system. These two algorithms also cooperate in [45, 88], the exact technique
providing partial promising solutions, and the metaheuristic returning im-
proved bound. A related approach involving beam search and full-fledged
MAs can be found in [89, 92, 93].

It must be noted that most hybrid algorithms defined so far that involve
exact techniques and metaheuristics are not complete, in the sense that they
do not guarantee an optimal solution (an exception is the proposal of French
et al. [86], combining an integer-programming BnB approach with GAs for
MAX-SAT). Thus, the term ‘complete MA’ may be not fully appropriate.
Nevertheless, many of these hybrids can be readily adapted for complete-
ness purposes, although obviously time and/or space requirements will grow
faster-than-polynomial in general.

4 Applications of Memetic Algorithms

This section will provide an overview of the numerous applications of MAs.
This overview is far from exhaustive since new applications are being de-
veloped continuously. However, it is intended to illustrate the practical im-
pact of these optimization techniques. We have focused on recent applica-
tions, namely in the last five years (that is, from 2004 onwards). Read-
ers interested in earlier applications (which are also manifold) can refer to
[109, 180, 181, 182]. We have organized references in five major areas: ma-
chine learning and knowledge discovery (Table 1), traditional combinato-
rial optimization (Table 2), planning, scheduling and timetabling (Table 3),
bioinformatics (Table 4), and electronics, engineering, and telecommunica-
tions (Table 4). As mentioned before, we have tried to be illustrative rather
than exhaustive, pointing out some selected references from these well-known
application areas.

22 Pablo Moscato and Carlos Cotta

Table 1 Applications in machine learning and knowledge discovery

Data Mining and Image analysis [37, 67, 68, 77, 211]
Knowledge Discovery Fuzzy clustering [70]

Feature selection [243, 286]
Pattern recognition [94]

Machine Learning Decision trees [144]
Inductive learning [69]
Neural networks [64, 65, 103, 110, 159, 168, 195, 262]

Table 2 Applications in combinatorial optimization

Binary & Set Problems Binary quadratic programming [173]
Knapsack problem [87, 88, 105, 107, 222]
Low autocorrelation sequences [91]
Max-SAT [18, 223]
Set covering [125]

Graph-based Problems Crossdock optimization [2, 154]
Graph coloring [38]
Graph matching [12]
Hamiltonian cycle [32]
Maximum cut [270]
Quadratic assignment [72, 255]
Routing problems [19, 20, 56, 57, 74]

[80, 145, 146, 147]
[218, 259, 263]

Spanning tree [79, 231]
Steiner tree [131]
TSP [21, 161, 163, 196, 271]

Constrained Optimization Golomb ruler [46, 48]
Social golfer [47]
Maximum density still life [89, 90]

Table 3 Applications in planning, scheduling, timetabling, and manufacturing. Check also
[49].

Manufacturing Assembly line [226, 257, 265]
Flexible manufacturing [5, 31, 187, 258]
Lot sizing [16]
Multi-tool milling [13]
Supply chain network [280]

Planning Temporal planning [235]

Scheduling Flowshop scheduling [82, 84, 152, 158, 160, 184, 209, 240, 241]
Job-shop [27, 96, 97, 98, 224, 267, 268, 278]
Parallel machine scheduling [184, 277]
Project scheduling [29]
Single machine scheduling [166, 184]

Timetabling Driver scheduling [153]
Examination timetabling [216]
Rostering [3, 22, 206]
Sport league [236]
Train timetabling [239]
University course [151, 215, 233]

A Modern Introduction to Memetic Algorithms 23

Table 4 Applications in bioinformatics

Phylogeny Phylogenetic inference [43, 93, 275]
Consensus tree [217]

Microarrays Biclustering [208]
Feature Selection [55, 284, 285]
Gene ordering [169, 183]

Sequence Analysis Shortest common supersequence [42, 92]
DNA sequencing [71]

Protein Science Sequence assignment [269]
Structure comparison [140]
Structure prediction [14, 40, 203, 234, 281]

Systems Biology Gene regulatory networks [200, 250]
Cell models [232]

Biomedicine Drug therapy design [194, 264]

Table 5 Applications in electronics, telecommunications and engineering

Electronics Analog circuit design [58, 170]
Circuit partitioning [34]
Electromagnetism [23, 104, 210]
Filter design [254]
VLSI design [7, 171, 256]

Engineering Chemical kinetics [136, 137]
Crystallography [212]
Drive design [24, 25]
Power systems [26]
Structural optimization [129]
System modelling [1, 260]

Computer Science Code optimization [207]
Information forensics [242]
Information theory [41]
Software engineering [6]

Telecommunications Antenna design [114, 115, 116, 117]
Mobile networks [128, 225]
P2P networks [174, 191, 192]
Wavelength Assignment [78]
Wireless networks [113, 118, 130, 138]

Although these fields encompass the vast majority of applications of MAs,
it must be noted that success stories are not restricted to these major fields.
To cite an example, there are several applications of MAs in economics, e.g., in
portfolio optimization [165], risk analysis [167], and labour-market delineation
[81]. For further information about MA applications we suggest querying bib-
liographical databases or web browsers for the keywords ‘memetic algorithms’
and ‘hybrid genetic algorithms’.

24 Pablo Moscato and Carlos Cotta

5 Challenges and Future Directions

The future seems promising for MAs. This is the combination of several fac-
tors. First, MAs (less frequently disguised under different names) are show-
ing a remarkable record of efficient implementations, providing very good
results in practical problems. Second, there are reasons to believe that some
new attempts to do theoretical analysis can be conducted. This includes the
worst-case and average-case computational complexity of recombination pro-
cedures. Third, the ubiquitous nature of distributed systems, like networks
of workstations for example, plus the inherent asynchronous parallelism of
MAs and the existence of web-conscious languages like Java, all together are
an excellent combination to develop highly portable and extendable object-
oriented frameworks allowing algorithmic reuse. These frameworks might
allow the users to solve subproblems using commercial codes or well-tested
software from other users who might be specialists in another area. Fourth,
an important and pioneering group of MAs, that of Scatter Search [95, 148],
is challenging the role of randomization in recombination. We expect that, as
a healthy reaction, we will soon see new types of powerful MAs that blend
in a more appropriate way both exhaustive (either truncated or not) and
systematic search methods.

5.1 Learning from Experience

In 1998, Applegate, Bixby, Cook, and Chvatal established new breakthrough
results for the Min TSP. They solved to optimality an instance of the TSP
of 13,509 cities corresponding to all U.S. cities with populations of more
than 500 people. The approach, according to Bixby: “...involves ideas from
polyhedral combinatorics and combinatorial optimization, integer and linear
programming, computer science data structures and algorithms, parallel com-
puting, software engineering, numerical analysis, graph theory, and more”.
The solution of this instance demanded the use of three Digital AlphaServer
4100s (with a total of 12 processors) and a cluster of 32 Pentium-II PCs. The
complete calculation took approximately three months of computer time. The
code has certainly more than 1,000 pages and is based on state-of-the-art
techniques from a wide variety of scientific fields.

The philosophy is the same in the case of MAs, that of a synergy of dif-
ferent approaches. Actually, their approach can possibly be classified as the
most complex MA ever built for a given combinatorial optimization problem.
One of the current challenges is to develop simpler algorithms that achieve
these impressive results. The approach of running a local search algorithm
(Chained Lin Kernighan) to produce a collection of tours, followed by the
dynastically optimal recombination method called tour merging , produced
a non-optimal tour only 0.0002 % above the proved optimal tour for the

A Modern Introduction to Memetic Algorithms 25

13,509 cities instance. We take this as a clear proof of the benefits of the
MA approach and that more work is needed in developing good strategies
for complete memetic algorithms, i.e. those that systematically and synergis-
tically use randomized and deterministic methods and can prove optimality.

An open line for the design of this kind of algorithms may be the exploita-
tion of FPT (fixed-parameter tractability) results, see Subsection 5.2. Related
to this, it must be noted that we still lack a formal framework for recombina-
tion, similar for instance to the one for Local Search [126, 279]. In this sense,
an interesting new direction for theoretical research arose after the introduc-
tion of two computational complexity classes, the PMA class (for Polynomial
Merger Algorithms problems) and its unconstrained analogue, the uPMA
class (see [180]). These classes are defined analogously to the class of Poly-
nomial Local Search (PLS). Conducting research to identify problems, and
their associated recombination procedures, such that membership, in either
PMA or uPMA, can be proved is a definitely important task. It is also hoped
that after some initial attempts on challenging problems, completeness and
reductions for these classes can be properly defined [50].

5.2 Exploiting FPT results

An interesting new avenue of research can be established by appropriately
linking results from the theory of fixed-parameter tractability (FPT) and the
development of recombination algorithms. A parameterized problem can be
generally viewed as a problem with two input components, i.e. a pair 〈x, k〉.
The former is generally an instance (i.e. x ∈ IP) of some other decision prob-
lem P and the latter is some numerical aspect of the former (generally a
positive integer assumed k ¿ |x|, where |x| is the size of instance x) that
constitutes a parameter, for example, the maximum node degree in a certain
graph-based problem, the maximum number of elements in the solution of a
subset-selection problem, etc. If there exists an algorithm solving the prob-
lem in time O(f(k)|x|α), where f(k) is an arbitrary function depending on k
only, and α a constant independent of k or n, the parameterized problem is
said to be fixed-parameter tractable and the decision problem belongs to the
computational complexity class FPT. Note that by following this parameter-
ized approach, the complexity analysis becomes multidimensional, in contrast
to the classical one-dimensional approach, in which only the instance size is
considered (thus failing to distinguish structural properties that may make a
particular problem instance hard or easy).

To illustrate this topic, consider one of the most emblematic FPT prob-
lems, namely Vertex Cover: given a graph G(V, E), find a subset S ⊆ V
of k vertices, such that for every edge (u, v) ∈ E, at least u or v is a mem-
ber of S. Here, the number k of vertices in S is taken as a parameter and
factored out from the problem input. In general, efficient FPT algorithms

26 Pablo Moscato and Carlos Cotta

are based on the techniques of reduction to a problem kernel and bounded
search trees. To understand the techniques, the reader may check a method
by Chen et al. [30]. This method can solve the parameterized version of ver-
tex cover in time O(1.271kk2 +kn). Furthermore, using this method together
with the speed-up method proposed by Neidermeier and Rossmanith [199],
the problem can be solved in O(1.271k + n), i.e. linear in n for fixed k. The
relevance of this result is more evident by noting that Vertex Cover is an
NP-hard problem. Thus, FPT results provide an efficient way for provably
solving NP-hard problems for fixed parameter values.

The combination of FPT results and recombination operators is an av-
enue that goes both ways. In one direction, efficient, (i.e. polynomial-time),
fixed-parameter algorithms can be used as “out of the box” tools to create
efficient recombination procedures, i.e., recall some of the procedures men-
tioned in Subsection 3.3. Conversely, since MAs are typically designed to
deal with large instances and scale pretty well with problem size, using both
techniques together can produce complete MAs, thus extending the benefits
of fixed-parameter tractability. From a software engineering perspective, the
combination is perfect both from code and algorithmic reuse.

5.3 Belief Search in Memetic Algorithms

As a logical consequence of the possible directions that MAs can take, it is
reasonable to affirm that more complex schemes evolving solutions, agents, as
well as representations, will soon be implemented. Some theoretical computer
science researchers dismiss heuristics and metaheuristics since they are not
scholarly structured as a formal paradigm. However, their achievements are
well-recognized. From [150]:

“Explaining and predicting the impressive empirical success of some of these algo-
rithms is one of the most challenging frontiers of the theory of computation today.”

This comment is even more relevant for MAs since they generally present
even better results than single-agent methods. Though metaheuristics are
extremely powerful in practice, we agree that one problem with the current
trend in applied research is that it allows the introduction of increasingly
more complex heuristics, unfortunately most of the time parameterized by
ad-hoc values. Moreover, some metaheuristics, like some ant-systems imple-
mentations, can basically be viewed as particular types of MAs. This is the
case if you allow the “ants” to use branch-and-bound or local search methods.
In addition, these methods for distributed recombination of information (or
beliefs) have some points in common with blackboard systems [75], as it has
been recognized in the past, yet it is hardly being mentioned in the current
metaheuristics literature [180].

A Modern Introduction to Memetic Algorithms 27

To illustrate how Belief Search can work in an MA setting, consider for
example PL⊗n , a multi-agent epistemic logic introduced by Boldrin and Saf-
fiotti [17]. According to this formalism, the opinions shared by a set of n
agents can be recombined in a distributed belief. Using it, we can deduce the
distributed belief about properties of solutions, and this can be stronger than
any individual belief about it (see [50] for detailed examples with numerical
values).

One interesting application of these new MAs is due to Lamma et al. [149]
for diagnosing digital circuits. In their approach, they differentiate between
genes and “memes”. The latter group codes for the agent beliefs and as-
sumptions. Using a logic-based technique, they modify the memes according
on how the present beliefs are contradicted by integrity constraints that ex-
press observations and laws. Each agent keeps a population of chromosomes
and finds a solution to the belief revision problem by means of a genetic
algorithm. A Lamarckian operator is used to modify a chromosome using
belief revision directed mutations, oriented by tracing logical derivations. As
a consequence, a chromosome will satisfy a larger number of constraints. The
evolution provided by the Darwinian operators, allow agents to improve the
chromosomes by gaining on the experience of other agents. Central to this
approach is the Lamarckian operator appropriately called Learn. It takes a
chromosome and produces a revised chromosome as output. To achieve that,
it eliminates some derivation paths that lead to contradictions.

Surprisingly enough (and here we remark the first possibility of using the
theory of fixed-parameter tractability), the learning is achieved by finding a
hitting set which is not necessarily minimal. The authors make this point
clear by saying that: “a hitting set generated from these support sets is not
necessarily a contradiction removal set and therefore is not a solution to the
belief revision problem.” The authors might not be aware of the O(2.311k+n)
exact algorithm for Min 3-Hitting Set [198]. They might be able to use it,
but that is anecdotal at the moment. What is important is that algorithms
like this one might be used out-of-the-box if a proper, world-wide based,
algorithmic framework was created.

On the other hand, we noted how results of logic programming and be-
lief revision might help improving the current status of metaheuristics. The
current situation where everybody comes with new names for the same basic
techniques, and where most contributions are just the addition of new pa-
rameters to guide the search, is a futile research direction. It is possible that
belief-search-guided MAs will prove to be a valid tool to help systematize the
construction of these guided metaheuristics. In particular, if the discussion is
based on which multi-agent logic performs better, rather than which param-
eters work better for specific problems or instances. To this end, we hope to
convince researchers in logic programming to address these issues and to face
the difficult task of guiding MAs for large-scale combinatorial optimization.

28 Pablo Moscato and Carlos Cotta

6 Conclusions

We believe that the future looks good for MAs. This belief is based on the
following. First of all, MAs are showing a great record of efficient implemen-
tations, providing very good results in practical problems, as the reader may
have noted in Section 4. We also have reasons to believe that we are close
to some major leaps forward in our theoretical understanding of these tech-
niques, including for example the worst-case and average-case computational
complexity of recombination procedures. On the other hand, the ubiquitous
nature of distributed systems is likely to boost the deployment of MAs on
large-scale, computationally demanding optimization problems.

We also see as a healthy sign the systematic development of other particu-
lar optimization strategies. If any of the simpler metaheuristics (SA, TS, VNS,
GRASP, etc.) performs the same as a more complex method (GAs, MAs, Ant
Colonies, etc.), an “elegance design” principle should prevail and we must ei-
ther resort to the simpler method, or to the one that has less free parameters,
or to the one that is easier to implement. Such a fact should defy us to adapt
the complex methodology to beat a simpler heuristic, or to check if that is
possible at all. An unhealthy sign of current research, however, are the at-
tempts to encapsulate metaheuristics on stretched confinements. Fortunately,
such attempts are becoming increasingly less frequent. Indeed, combinations
of MAs with other metaheuristics such as differential evolution [193, 201, 261],
particle swarm optimization [152, 158, 159, 161, 162, 209, 214, 248, 282], or
ant-colony optimization [156] are not unusual nowadays. As stated before,
the future looks promising for MAs.

Acknowledgements

This chapter is an updated second edition of [180], refurbished with new ref-
erences and the inclusion of sections on timely topics which were not fully
addressed in the first edition. Carlos Cotta acknowledges the support of Span-
ish Ministry of Science and Innovation, under project TIN2008-05941.

References

1. R. Ahmad, H. Jamaluddin, and M.A. Hussain. Application of memetic algorithm
in modelling discrete-time multivariable dynamics systems. Mechanical Systems and
Signal Processing, 22(7):1595–1609, 2008.

2. U. Aickelin and A. Adewunmi. Simulation optimization of the crossdock door as-
signment problem. In UK Operational Research Society Simulation Workshop 2006
(SW 2006), Leamington Spa, UK, March 11 2006.

A Modern Introduction to Memetic Algorithms 29

3. U. Aickelin and P. White. Building better nurse scheduling algorithms. Annals of
Operations Research, 128:159–177, 2004.

4. D. Aldous and U. Vazirani. “Go with the winners” algorithms. In Proceedings of the
35th Annual Symposium on Foundations of Computer Science, pages 492–501, Los
Alamitos, CA, 1994. IEEE Press.

5. J.E. Amaya, C. Cotta, and Fernández A.J. A memetic algorithm for the tool switch-
ing problem. In M.J. Blesa et al., editors, Hybrid Metaheuristics 2008, volume
5296 of Lecture Notes in Computer Science, pages 190–202, Berlin Heidelberg, 2008.
Springer-Verlag.

6. A. Arcuri and X. Yao. A memetic algorithm for test data generation of object-oriented
software. In D. Srinivasan and L. Wang, editors, 2007 IEEE Congress on Evolution-
ary Computation, pages 2048–2055, Singapore, 25-28 September 2007. IEEE Com-
putational Intelligence Society, IEEE Press.

7. S. Areibi and Z. Yang. Effective Memetic Algorithms for VLSI design = genetic
algorithms plus local search plus multi-level clustering. Evolutionary Computation,
12(3):327–353, 2004.

8. R. Axelrod and W.D. Hamilton. The evolution of cooperation. Science,
211(4489):1390–1396, 1981.

9. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press,
New York, 1996.

10. T. Bäck and F. Hoffmeister. Adaptive search by evolutionary algorithms. In W. Ebel-
ing, M. Peschel, and W. Weidlich, editors, Models of Self-organization in Complex
Systems, number 64 in Mathematical Research, pages 17–21. Akademie-Verlag, 1991.

11. N.K. Bambha, S.S. Bhattacharyya, J. Teich, and E. Zitzler. Systematic integration
of parameterized local search into evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 8(2):137–155, 2004.

12. T. Bärecke and M. Detyniecki. Memetic algorithms for inexact graph matching. In
D. Srinivasan and L. Wang, editors, 2007 IEEE Congress on Evolutionary Com-
putation, pages 4238–4245, Singapore, 25-28 September 2007. IEEE Computational
Intelligence Society, IEEE Press.

13. N. Baskar, P. Asokan, R. Saravanan, and G. Prabhaharan. Selection of optimal
machining parameters for multi-tool milling operations using a memetic algorithm.
Journal of Materials Processing Technology, 174(1-3):239–249, 2006.

14. A. Bazzoli and A.G.B. Tettamanzi. A memetic algorithm for protein structure pre-
diction in a 3D-Lattice HP model. In G.R. Raidl et al., editors, Applications of
Evolutionary Computing, volume 3005 of Lecture Notes in Computer Science, pages
1–10, Berlin, 2004. Springer Verlag.

15. R. Berretta, C. Cotta, and P. Moscato. Enhancing the performance of memetic algo-
rithms by using a matching-based recombination algorithm: Results on the number
partitioning problem. In M. Resende and J. Pinho de Sousa, editors, Metaheuristics:
Computer-Decision Making, pages 65–90. Kluwer Academic Publishers, Boston MA,
2003.

16. R. Berretta and L.F. Rodrigues. A memetic algorithm for a multistage capacitated
lot-sizing problem. International Journal of Production Economics, 87(1):67–81,
2004.

17. L. Boldrin and A. Saffiotti. A modal logic for merging partial belief of multiple
reasoners. Journal of Logic and Computation, 9(1):81–103, 1999.

18. M. Borschbach and A. Exeler. A tabu history driven crossover operator design for
memetic algorithm applied to max-2SAT-problems. In M. Keijzer et al., editors,
GECCO ’08: Proceedings of the 10th annual conference on Genetic and evolutionary
computation, pages 605–606, Atlanta, GA, USA, 12-16 July 2008. ACM Press.

19. M. Boudia, C. Prins, and M. Reghioui. An effective memetic algorithm with popula-
tion management for the split delivery vehicle routing problem. In T. Bartz-Beielstein
et al., editors, Hybrid Metaheuristics 2007, volume 4771 of Lecture Notes in Com-
puter Science, pages 16–30. Springer-Verlag, 2007.

30 Pablo Moscato and Carlos Cotta

20. H. Bouly, D.-C. Dang, and A. Moukrim. A memetic algorithm for the team orienteer-
ing problem. In M. Giacobini et al., editors, Applications of Evolutionary Computing,
volume 4974 of Lecture Notes in Computer Science, pages 649–658. Springer-Verlag,
2008.

21. L. Buriol, P.M. França, and P. Moscato. A new memetic algorithm for the asymmetric
traveling salesman problem. Journal of Heuristics, 10(5):483–506, 2004.

22. E. K. Burke, P. De Causmaecker, and G. van den Berghe. Novel metaheuristic
approaches to nurse rostering problems in belgian hospitals. In J. Leung, editor,
Handbook of Scheduling: Algorithms, Models, and Performance Analysis, chapter 44,
pages 44.1–44.18. Chapman Hall/CRC Press, 2004.

23. S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo. Detection of PEC elliptic
cylinders by a memetic algorithm using real data. Microwave and Optical Technology
Letters, 43(4):271–273, 2004.

24. A. Caponio, G. Leonardo Cascella, F. Neri, N. Salvatore, and M. Sumner. A fast
adaptive memetic algorithm for online and offline control design of pmsm drives.
IEEE Transactions on Systems, Man, and Cybernetics, Part B, 37(1):28–41, 2007.

25. A. Caponio, F. Neri, G.L. Cascella, and N. Salvatore. Application of memetic differ-
ential evolution frameworks to PMSM drive design. In J. Wang, editor, 2008 IEEE
World Congress on Computational Intelligence, pages 2113–2120, Hong Kong, 1-6
June 2008. IEEE Computational Intelligence Society, IEEE Press.

26. E.G. Carrano, B.B. Souza, and O.M. Neto. An immune inspired memetic algorithm
for power distribution system design under load evolution uncertainties. In J. Wang,
editor, 2008 IEEE World Congress on Computational Intelligence, pages 3251–3257,
Hong Kong, 1-6 June 2008. IEEE Computational Intelligence Society, IEEE Press.

27. A. Caumond, P. Lacomme, and N. Tchernev. A memetic algorithm for the job-shop
with time-lags. Computers & OR, 35(7):2331–2356, 2008.

28. K. Chakhlevitch and P. Cowling. Hyperheuristics: Recent developments. In C. Cotta,
M. Sevaux, and K. Sörensen, editors, Adaptive and Multilevel Metaheuristics, volume
136 of Studies in Computational Intelligence, pages 3–29. Springer-Verlag, Berlin
Heidelberg, 2008.

29. A.H.L. Chen and C.-C. Chyu. A memetic algorithm for maximizing net present value
in resource-constrained project scheduling problem. In J. Wang, editor, 2008 IEEE
World Congress on Computational Intelligence, pages 2401–2408, Hong Kong, 1-6
June 2008. IEEE Computational Intelligence Society, IEEE Press.

30. J. Chen, I.A. Kanj, and W. Jia. Vertex cover: further observations and further im-
provements. In Proc. 25th Int. Worksh. Graph-Theoretic Concepts in Computer Sci-
ence, number 1665 in Lecture Notes in Computer Science, pages 313–324. Springer-
Verlag, 1999.

31. J.-H. Chen and J.-H. Chen. Multi-objective memetic approach for flexible process se-
quencing problems. In M. Ebner et al., editors, GECCO-2008 Late-Breaking Papers,
pages 2123–2128, Atlanta, GA, USA, 12-16 July 2008. ACM Press.

32. X. S. Chen, M. H. Lim, and D. C. Wunsch II. A memetic algorithm configured via a
problem solving environment for the hamiltonian cycle problems. In D. Srinivasan and
L. Wang, editors, 2007 IEEE Congress on Evolutionary Computation, pages 2766–
2773, Singapore, 25-28 September 2007. IEEE Computational Intelligence Society,
IEEE Press.

33. H.G. Cobb and J.J. Grefenstette. Genetic algorithms for tracking changing environ-
ments. In S. Forrest, editor, Proceedings of the Fifth International Conference on
Genetic Algorithms, pages 529–530, San Mateo, CA, 1993. Morgan Kaufmann.

34. S. Coe, S. Areibi, and M. Moussa. A hardware memetic accelerator for VLSI circuit
partitioning. Computers & Electrical Engineering, 33(4):233–248, 2007.

35. C.A. Coello Coello and G.B. Lamont. Applications of Multi-Objective Evolutionary
Algorithms. World Scientific, New York, 2004.

A Modern Introduction to Memetic Algorithms 31

36. C.A. Coello Coello, D.A. Van Veldhuizen, and G.B. Lamont. Evolutionary Algo-
rithms for Solving Multi-Objective Problems, volume 5 of Genetic Algorithms and
Evolutionary Computation. Kluwer Academic Publishers, 2002.

37. O. Cordón, S. Damas, and J. Santamaria. A scatter search algorithm for the 3D
image registration problem. In X. Yao et al., editors, Parallel Problem Solving From
Nature VIII, volume 3242 of Lecture Notes in Computer Science, pages 471–480,
Berlin, 2004. Springer-Verlag.

38. D. Cosmin, J.-K. Hao, P. Kuntz. Diversity control and multi-parent recombination
for evolutionary graph coloring. In C. Cotta and P. Cowling, editors, Evolution-
ary Computation in Combinatorial Optimization, volume 5482 of Lecture Notes in
Computer Science, pages 121–132, Tübingen, 2009. Springer-Verlag.

39. C. Cotta. A study of hybridisation techniques and their application to the design of
evolutionary algorithms. AI Communications, 11(3-4):223–224, 1998.

40. C. Cotta. Hybrid evolutionary algorithms for protein structure prediction in the
HPNX model. In B. Reusch, editor, Computational intelligence, Theory and Ap-
plications, Advances in Soft Computing, pages 525–534, Berlin Heidelberg, 2004.
Springer-Verlag.

41. C. Cotta. Scatter search and memetic approaches to the error correcting code prob-
lem. In J. Gottlieb and G.R. Raidl, editors, Evolutionary Computation in Combi-
natorial Optimization, volume 3004 of Lecture Notes in Computer Science, pages
51–60, Berlin, 2004. Springer Verlag.

42. C. Cotta. Memetic algorithms with partial lamarckism for the shortest common
supersequence problem. In J. Mira and J.R. Álvarez, editors, Artificial Intelligence
and Knowledge Engineering Applications: a Bioinspired Approach, volume 3562 of
Lecture Notes in Computer Science, pages 84–91, Berlin Heidelberg, 2005. Springer-
Verlag.

43. C. Cotta. Scatter search with path relinking for phylogenetic inference. European
Journal of Operational Research, 169(2):520–532, 2005.

44. C. Cotta, E. Alba, and J.M. Troya. Stochastic reverse hillclimbing and iterated local
search. In Proceedings of the 1999 Congress on Evolutionary Computation, pages
1558–1565, Washington D.C., 1999. IEEE.

45. C. Cotta, J.F. Aldana, A.J. Nebro, and J.M. Troya. Hybridizing genetic algorithms
with branch and bound techniques for the resolution of the TSP. In D.W. Pearson,
N.C. Steele, and R.F. Albrecht, editors, Artificial Neural Nets and Genetic Algo-
rithms 2, pages 277–280, Wien New York, 1995. Springer-Verlag.

46. C. Cotta, I. Dotú, A.J. Fernández, and P. Van Hentenryck. A memetic approach to
Golomb rulers. In T.P. Runarsson et al., editors, Parallel Problem Solving from Na-
ture IX, volume 4193 of Lecture Notes inComputer Science, pages 252–261. Springer-
Verlag, Berlin Heidelberg, 2006.

47. C. Cotta, I. Dotú, A.J. Fernández, and P. Van Hentenryck. Scheduling social golfers
with memetic evolutionary programming. In Hybrid Metaheuristic 2006, volume 4030
of Lecture Notes in Computer Science, pages 150–161. Springer-Verlag, 2006.

48. C. Cotta and A. Fernández. A hybrid GRASP - evolutionary algorithm approach to
golomb ruler search. In X. Yao et al., editors, Parallel Problem Solving From Nature
VIII, volume 3242 of Lecture Notes in Computer Science, pages 481–490, Berlin,
2004. Springer-Verlag.

49. C. Cotta and A.J. Fernández. Memetic algorithms in planning, scheduling, and
timetabling. In K.P. Dahal, K.C. Tan, and P.I. Cowling, editors, Evolutionary
Scheduling, volume 49 of Studies in Computational Intelligence, pages 1–30. Springer-
Verlag, 2007.

50. C. Cotta and P. Moscato. Evolutionary computation: Challenges and duties. In
A. Menon, editor, Frontiers of Evolutionary Computation, pages 53–72. Kluwer Aca-
demic Publishers, Boston MA, 2004.

32 Pablo Moscato and Carlos Cotta

51. C. Cotta, M. Sevaux, and K. Sörensen. Adaptive and Multilevel Metaheuristics, vol-
ume 136 of Studies in Computational Intelligence. Springer-Verlag, Berlin Heidelberg,
2008.

52. C. Cotta and J.M. Troya. On the influence of the representation granularity in heuris-
tic forma recombination. In J. Carroll, E. Damiani, H. Haddad, and D. Oppenheim,
editors, ACM Symposium on Applied Computing 2000, pages 433–439. ACM Press,
2000.

53. C. Cotta and J.M. Troya. Embedding branch and bound within evolutionary algo-
rithms. Applied Intelligence, 18(2):137–153, 2003.

54. P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to schedule a
sales submit. In E. Burke and W. Erben, editors, PATAT 2000, volume 2079 of Lecture
Notes in Computer Science, pages 176–190, Berlin Heidelberg, 2008. Springer-Verlag.

55. M. Cox, N. Bowden, P. Moscato, R. Berretta, R. I. Scott, and J. S. Lechner-Scott.
Memetic algorithms as a new method to interpret gene expression profiles in multiple
sclerosis. Multiple Sclerosis, 13(Suppl. 2):S205, 2007.

56. J.-C. Créput and A. Koukam. The memetic self-organizing map approach to the
vehicle routing problem. Soft Computing, 12(11):1125–1141, 2008.

57. M.A. Cruz-Chavez, O. Dı́az-Parra, D. Juárez-Romero, and M. G. Mart́ınez-Rangel.
Memetic algorithm based on a constraint satisfaction technique for VRPTW. In
L. Rutkowski et al., editors, 9th Artificial Intelligence and Soft Computing Confer-
ence, volume 5097 of Lecture Notes in Computer Science, pages 376–387. Springer-
Verlag, 2008.

58. M.J. Dantas, L. da C. Brito, and P.H. de Carvalho. Multi-objective Memetic Algo-
rithm applied to the automated synthesis of analog circuits. In Advances in Artifi-
cial Intelligence, volume 4140 of Lecture Notes in computer Science, pages 258–267.
Springer-Verlag, 2006.

59. Y. Davidor. Epistasis Variance: Suitability of a Representation to Genetic Algorithms.
Complex Systems, 4(4):369–383, 1990.

60. Y. Davidor and O. Ben-Kiki. The interplay among the genetic algorithm operators:
Information theory tools used in a holistic way. In R. Männer and B. Manderick,
editors, Parallel Problem Solving From Nature II, pages 75–84, Amsterdam, 1992.
Elsevier Science Publishers B.V.

61. L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold Computer Li-
brary, New York, 1991.

62. R. Dawkins. The Selfish Gene. Clarendon Press, Oxford, 1976.
63. K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley

& Sons, Chichester, UK, 2001.
64. M. Delgado, M.P. Cuellar, and M.C. Pegalajar. Multiobjective hybrid optimization

and training of recurrent neural networks. IEEE Transactions on Systems, Man and
Cybernetics, Part B, 38(2):381–403, 2008.

65. M. Delgado, M.C. Pegalajar, and M.P. Cuellar. Memetic evolutionary training for
recurrent neural networks: an application to time-series prediction. Expert Systems,
23(2):99–115, 2006.

66. J. Denzinger and T. Offermann. On cooperation between evolutionary algorithms
and other search paradigms. In 6th International Conference on Evolutionaey Com-
putation, pages 2317–2324. IEEE Press, 1999.

67. V. di Gesù, G. Lo Bosco, F. Millonzi, and C. Valenti. Discrete tomography reconstruc-
tion through a new memetic algorithm. In M. Giacobini et al., editors, Applications of
Evolutionary Computing, volume 4974 of Lecture Notes in Computer Science, pages
347–352. Springer-Verlag, 2008.

68. V. di Gesù, G. Lo Bosco, F. Millonzi, and C. Valenti. A memetic algorithm for binary
image reconstruction. In Combinatorial Image Analysis, pages 384–395, 2008.

69. F. Divina. Hybrid Genetic Relational Search for Inductive Learning. PhD thesis,
Department of Computer Science, Vrije Universiteit, Amsterdam, the Netherlands,
2004.

A Modern Introduction to Memetic Algorithms 33

70. A.-D. Do and S.Y. Cho. Memetic algorithm based fuzzy clustering. In D. Srinivasan
and L. Wang, editors, 2007 IEEE Congress on Evolutionary Computation, pages
2398–2404, Singapore, 25-28 September 2007. IEEE Computational Intelligence So-
ciety, IEEE Press.

71. B. Dorronsoro, E. Alba, G. Luque, and P. Bouvry. A self-adaptive cellular memetic
algorithm for the DNA fragment assembly problem. In J. Wang, editor, 2008 IEEE
World Congress on Computational Intelligence, pages 2656–2663, Hong Kong, 1-6
June 2008. IEEE Computational Intelligence Society, IEEE Press.

72. Z. Drezner. Extensive experiments with hybrid genetic algorithms for the solution
of the quadratic assignment problem. Computers & Operations Research, 35(3):717–
736, MAR 2008.

73. I. Dumitrescu and T. Stützle. Combinations of local search and exact algorithms. In
Günther R. Raidl et al., editors, Applications of Evolutionary Computing: EvoWork-
shops 2003, volume 2611 of LNCS, pages 212–224. Springer, 2003.

74. A. El-Fallahi, C. Prins, and R. Wolfler Calvo. A memetic algorithm and a tabu search
for the multi-compartment vehicle routing problem. Computers & OR, 35(5):1725–
1741, 2008.

75. R. Englemore and T. Morgan (eds.). Blackboard Systems. Addison-Wesley, 1988.
76. S. Fernandes and H. Lourenço. Hybrids combining local search heurisitcs with exact

algorithms. In F. Almeida et al., editors, V Congreso Español sobre Metaheuŕısticas,
Algoritmos Evolutivos y Bioinspirados, pages 269–274, Las Palmas, Spain, 2007.

77. E. Fernández, M. Graña, and J. Ruiz-Cabello. An instantaneous memetic algorithm
for illumination correction. In Proceedings of the 2004 IEEE Congress on Evolu-
tionary Computation, pages 1105–1110, Portland, Oregon, 20-23 June 2004. IEEE
Press.

78. T. Fischer, K. Bauer, and P. Merz. Distributed memetic algorithm for the routing
and wavelength problem. In G. Rudolph et al., editors, Parallel Problem Solving
from Nature X, volume 5199 of Lecture Notes in Computer Science, pages 879–888,
Berlin Heidelberg, 2008. Springer-Verlag.

79. T. Fischer and P. Merz. A memetic algorithm for the optimum communication
spanning tree problem. In T. Bartz-Beielstein et al., editors, Hybrid Metaheuristics
2007, volume 4771 of Lecture Notes in Computer Science, pages 170–184. Springer-
Verlag, 2007.

80. G. Fleury, P. Lacomme, and C. Prins. Evolutionary algorithms for stochastic arc
routing problems. In G.R. Raidl et al., editors, Applications of Evolutionary Com-
puting, volume 3005 of Lecture Notes in Computer Science, pages 501–512, Berlin,
2004. Springer Verlag.

81. F. Flórez-Revuelta, J.M. Casado-Dı́az, L. Mart́ınez-Bernabeu, and R. Gómez-
Hernández. A memetic algorithm for the delineation of local labour markets. In
G. Rudolph et al., editors, Parallel Problem Solving from Nature X, volume 5199
of Lecture Notes in Computer Science, pages 1011–1020, Berlin Heidelberg, 2008.
Springer-Verlag.

82. P. M. França, J. N. D. Gupta, A. S. Mendes, P. Moscato, and K. J. Veltnik. Evolution-
ary algorithms for scheduling a flowshop manufacturing cell with sequence dependent
family setups. Computers and Industrial Engineering, 48:491–506, 2005.

83. P. M. França, A. S. Mendes, and P. Moscato. A memetic algorithm for the total tardi-
ness single machine scheduling problem. European Journal of Operational Research,
132:224–242, 2001.

84. P.M. França, G. Tin, and L.S. Buriol. Genetic algorithms for the no-wait flowshop
sequencing problem with time restrictions. International Journal of Production Re-
search, 44(5):939–957, 2006.

85. B. Freisleben and P. Merz. A genetic local search algorithm for solving symmetric
and asymmetric traveling salesman problems. In Proceedings of the 1996 IEEE Inter-
national Conference on Evolutionary Computation, Nagoya, Japan, pages 616–621.
IEEE Press, 1996.

34 Pablo Moscato and Carlos Cotta

86. A.P. French, A.C. Robinson, and J.M. Wilson. Using a hybrid genetic-
algorithm/branch and bound approach to solve feasibility and optimization integer
programming problems. Journal of Heuristics, 7(6):551–564, 2001.

87. J. E. Gallardo, C. Cotta, and A. J. Fernández. A hybrid model of evolutionary
algorithms and branch-and-bound for combinatorial optimization problems. In 2005
Congress on Evolutionary Computation, pages 2248–2254, Edinburgh, UK, 2005.
IEEE Press.

88. J.E. Gallardo, C. Cotta, and A.J. Fernández. Solving the multidimensional knapsack
problem using an evolutionary algorithm hybridized with branch and bound. In
J. Mira and J.R. Álvarez, editors, Artificial Intelligence and Knowledge Engineering
Applications: a Bioinspired Approach, volume 3562 of Lecture Notes in Computer
Science, pages 21–30, Berlin Heidelberg, 2005. Springer-Verlag.

89. J.E. Gallardo, C. Cotta, and A.J. Fernández. A multi-level memetic/exact hybrid
algorithm for the still life problem. In T.P. Runarsson et al., editors, Parallel Problem
Solving from Nature IX, volume 4193 of Lecture Notes inComputer Science, pages
212–221. Springer-Verlag, Berlin Heidelberg, 2006.

90. J.E. Gallardo, C. Cotta, and A.J. Fernández. A memetic algorithm with bucket
elimination for the still life problem. In J. Gottlieb and G.R. Raidl, editors, Evolu-
tionary Computation in Combinatorial Optimization, volume 3906 of Lecture Notes
in Computer Science, pages 73–84, Budapest, 10-12 April 2006. Springer-Verlag.

91. J.E. Gallardo, C. Cotta, and A.J. Fernández. A memetic algorithm for the low auto-
correlation binary sequence problem. In H. Lipson, editor, GECCO ’07: Proceedings
of the 9th annual conference on Genetic and Evolutionary Computation Conference,
pages 1226–1233. ACM Press, 2007.

92. J.E. Gallardo, C. Cotta, and A.J. Fernández. On the hybridization of memetic al-
gorithms with branch-and-bound techniques. IEEE Transactions on Systems, Man,
and Cybernetics, Part B, 37(1):77–83, 2007.

93. J.E. Gallardo, C. Cotta, and A.J. Fernández. Reconstructing phylogenies with
memetic algorithms and branch-and-bound. In S. Bandyopadhyay, U. Maulik, and
J. Tsong-Li Wang, editors, Analysis of Biological Data: A Soft Computing Approach,
pages 59–84. World Scientific, 2007.

94. S. Garćıa, J. R. Cano, and F. Herrera. A memetic algorithm for evolutionary proto-
type selection: A scaling up approach. Pattern Recognition, 41(8):2693–2709, August
2008.

95. F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path re-
linking. Control and Cybernetics, 39(3):653–684, 2000.

96. M.A. González, C.R. Vela, M.R. Sierra, I. González Rodŕıguez, and R. Varela. Com-
paring schedule generation schemes in memetic algorithms for the job shop schedul-
ing problem with sequence dependent setup times. In A.F. Gelbukh and C.A. Reyes
Garćıa, editors, 5th Mexican International Conference on Artificial Intelligence, vol-
ume 4293 of Lecture Notes in Computer Science, pages 472–482. Springer-Verlag,
2006.

97. M.A. González, C.R. Vela, and R. Varela. Scheduling with memetic algorithms over
the spaces of semi-active and active schedules. In Artificial Intelligence and Soft Com-
puting, volume 4029 of Lecture Notes in computer Science, pages 370–379. Springer-
Verlag, Berlin Heidelberg, 2006.

98. I. González-Rodŕıguez, C.R. Vela, and J. Puente. A memetic approach to fuzzy job
shop based on expectation model. In 2007 IEEE International Conference on Fuzzy
Systems, pages 1–6, 2007.

99. M. Gorges-Schleuter. ASPARAGOS: An asynchronous parallel genetic optimization
strategy. In J. David Schaffer, editor, Proceedings of the 3rd International Conference
on Genetic Algorithms, pages 422–427. Morgan Kaufmann Publishers, 1989.

100. M. Gorges-Schleuter. Explicit Parallelism of Genetic Algorithms through Population
Structures. In H.-P. Schwefel and R. Männer, editors, Parallel Problem Solving from
Nature, pages 150–159. Springer-Verlag, 1991.

A Modern Introduction to Memetic Algorithms 35

101. J. Gottlieb. Permutation-based evolutionary algorithms for multidimensional knap-
sack problems. In J. Carroll, E. Damiani, H. Haddad, and D. Oppenheim, editors,
ACM Symposium on Applied Computing 2000, pages 408–414. ACM Press, 2000.

102. P. Grim. The undecidability of the spatialized prisoner’s dilemma. Theory and
Decision, 42(1):53–80, 1997.

103. A. Guillén, H. Pomares, J. González, I. Rojas, L.J. Herrera, and A. Prieto. Parallel
multi-objective memetic RBFNNs design and feature selection for function approx-
imation problems. In F. Sandoval, A. Prieto, J. Cabestany, and M. Graña, editors,
9th International Work-Conference on Artificial Neural Networks, volume 4507 of
Lecture Notes in Computer Science, pages 341–350. Springer-Verlag, 2007.

104. F.G. Guimarães, F. Campelo, H. Igarashi, D.A. Lowther, and J.A. Ramı́rez. Opti-
mization of cost functions using evolutionary algorithms with local learning and local
search. IEEE Transactions on Magnetics, 43(4):1641–1644, 2007.

105. X.P. Guo, Z.M. Wu, and G.K. Yang. A hybrid adaptive multi-objective memetic
algorithm for 0/1 knapsack problem. In AI 2005: Advances in Artificial Intelligence,
volume 3809 of Lecture Notes in Artificial Intelligence, pages 176–185. Springer-
Verlag, Berlin Heidelberg, 2005.

106. X.P. Guo, G.K. Yang, and Z.M. Wu. A hybrid self-adjusted memetic algorithm for
multi-objective optimization. In 4th Mexican International Conference on Artificial
Intelligence, volume 3789 of Lecture Notes in Computer Science, pages 663–672,
Berlin Heidelberg, 2005. Springer-Verlag.

107. X.P. Guo, G.K. Yang, Z.M. Wu, and Z.H. Huang. A hybrid fine-timed multi-objective
memetic algorithm. IEICE Transactions on Fundamentals of Electronics Communi-
cation and Computer Sciences, E89A(3):790–797, 2006.

108. W.E. Hart and R.K. Belew. Optimizing an arbitrary function is hard for the genetic
algorithm. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth In-
ternational Conference on Genetic Algorithms, pages 190–195, San Mateo CA, 1991.
Morgan Kaufmann.

109. W.E. Hart, N. Krasnogor, and J.E. Smith. Recent advances in memetic algorithms,
volume 166 of Studies in Fuzziness and Soft Computing. Springer-Verlag, 2005.

110. C. Hervás and M. Silva. Memetic algorithms-based artificial multiplicative neural
models selection for resolving multi-component mixtures based on dynamic responses.
Chemometrics and Intelligent Laboratory Systems, 85(2):232–242, 2007.

111. D.R. Hofstadter. Computer tournaments of the prisoners-dilemma suggest how co-
operation evolves. Scientific American, 248(5):16–23, 1983.

112. C. Houck, J.A. Joines, M.G. Kay, and J.R. Wilson. Empirical investigation of the
benefits of partial lamarckianism. Evolutionary Computation, 5(1):31–60, 1997.

113. C.-H. Hsu. Uplink MIMO-SDMA optimisation of smart antennas by phase-amplitude
perturbations based on memetic algorithms for wireless and mobile communication
systems. IET Communications, 1(3):520–525, 2007.

114. C.-H. Hsu, P.-H. Chou, W.-J. Shyr, and Y.-N. Chung. Optimal radiation pattern
design of adaptive linear array antenna by phase and amplitude perturbations using
memetic algorithms. International Journal of Innovative Computing, Information
and Control, 3(5):1273–1287, 2007.

115. C.-H. Hsu and W.-J. Shyr. Memetic algorithms for optimizing adaptive linear array
patterns by phase-position perturbations. Circuits Systems and Signal Processing,
24(4):327–341, 2005.

116. C.-H. Hsu and W.-J. Shyr. Optimizing linear adaptive broadside array antenna
by amplitude-position perturbations using memetic algorithms. In R. Khosla, R.J.
Howlett, and L.C. Jain, editors, 9th International Conference on Knowledge-Based
Intelligent Information and Engineering Systems, volume 3681 of Lecture Notes in
Computer Science, pages 568–574. Springer-Verlag, 2005.

117. C.-H. Hsu, W.-J. Shyr, and C.-H. Chen. Adaptive pattern nulling design of linear
array antenna by phase-only perturbations using memetic algorithms. In First In-

36 Pablo Moscato and Carlos Cotta

ternational Conference on Innovative Computing, Information and Control, pages
308–311, Beijing, China, 2006. IEEE Computer Society.

118. D. Huang, C. Leung, and C. Miao. Memetic algorithm for dynamic resource allocation
in multiuser OFDM based cognitive radio systems. In J. Wang, editor, 2008 IEEE
World Congress on Computational Intelligence, pages 3861–3866, Hong Kong, 1-6
June 2008. IEEE Computational Intelligence Society, IEEE Press.

119. M. Hulin. An optimal stop criterion for genetic algorithms: A bayesian approach.
In T. Bäck, editor, Proceedings of the Seventh International Conference on Genetic
Algorithms, pages 135–143, San Mateo, CA, 1997. Morgan Kaufmann.

120. H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and Y. Nojima. Use of heuristic lo-
cal search for single-objective optimization in multiobjective memetic algorithms.
In G. Rudolph et al., editors, Parallel Problem Solving from Nature X, volume
5199 of Lecture Notes in Computer Science, pages 743–752, Berlin Heidelberg, 2008.
Springer-Verlag.

121. H. Ishibuchi and T. Murata. Multi-objective genetic local search algorithm. In
T. Fukuda and T. Furuhashi, editors, 1996 International Conference on Evolutionary
Computation, pages 119–124, Nagoya, Japan, 1996. IEEE Press.

122. H. Ishibuchi and T. Murata. Multi-objective genetic local search algorithm and
its application to flowshop scheduling. IEEE Transactions on Systems, Man, and
Cybernetics, 28(3):392–403, 1998.

123. H. Ishibuchi, T. Yoshida, and T. Murata. Balance between genetic search and local
search in memetic algorithms for multiobjective permutation flowshop scheduling.
IEEE Transactions on Evolutionary Computation, 7(2):204–223, 2003.

124. A. Jaszkiewicz. Genetic local search for multiple objective combinatorial optimiza-
tion. European Journal of Operational Research, 137(1):50–71, 2002.

125. A. Jaszkiewicz. A comparative study of multiple-objective metaheuristics on the
bi-objective set covering problem and the Pareto memetic algorithm. Annals of
Operations Research, 131(1-4):135–158, 2004.

126. D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. How easy is local search ?
Journal of Computers and System Sciences, 37:79–100, 1988.

127. T.C. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,
University of New Mexico, 1995.

128. B. Karaoğlu, H. Topçuoğlu, and F. Gürgen. Evolutionary algorithms for location area
management. In F. Rothlauf et al., editors, Applications of Evolutionary Computing,
volume 3449 of LNCS, pages 175–184, Lausanne, Switzerland, 30 March-1 April 2005.
Springer Verlag.

129. A. Kaveh and M. Shahrouzi. Graph theoretical implementation of memetic algorithms
in structural optimization of frame bracing layouts. Engineering Computatins, 25(1-
2):55–85, 2008.

130. S.-S. Kim, A.E. Smith, and J.-H. Lee. A memetic algorithm for channel assignment
in wireless FDMA systems. Computers & OR, 34(6):1842–1856, 2007.

131. G.W. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G.R. Raidl, and
R. Weiskircher. Combining a memetic algorithm with integer programming to solve
the prize-collecting Steiner tree problem. GECCO 04: Genetic and Evolutionary
Computation Conference, 3102(Part 1):1304–1315, 2004.

132. J. Knowles and D. Corne. Memetic Algorithms for Multiobjective Optimization:
Issues, Methods and Prospects. In W.E. Hart, N. Krasnogor, and J. E. Smith, editors,
Recent Advances in Memetic Algorithms, volume 166 of Studies in Fuzziness and Soft
Computing, pages 313–352. Springer-Verlag, 2005.

133. J. Knowles and D.W. Corne. Approximating the non-dominated front using the
pareto archived evolution strategy. Evolutionary Computation, 8(2):149–172, 2000.

134. J.D. Knowles and D. W. Corne. M-PAES: A Memetic Algorithm for Multiobjective
Optimization. In Proceedings of the 2000 Congress on Evolutionary Computation
(CEC00), pages 325–332, Piscataway, NJ, 2000. IEEE Press.

A Modern Introduction to Memetic Algorithms 37

135. J.D. Knowles and D.W. Corne. A Comparison of Diverse Aproaches to Memetic
Multiobjective Combinatorial Optimization. In Annie S. Wu, editor, Proceedings of
the 2000 Genetic and Evolutionary Computation Conference Workshop Program,
pages 103–108, 2000.

136. A.V. Kononova, K.J. Hughes, M. Pourkashanian, and D.B. Ingham. Fitness diversity
based adaptive memetic algorithm for solving inverse problems of chemical kinetics.
In D. Srinivasan and L. Wang, editors, 2007 IEEE Congress on Evolutionary Com-
putation, pages 2366–2373, Singapore, 25-28 September 2007. IEEE Computational
Intelligence Society, IEEE Press.

137. A.V. Kononova, D.B. Ingham, and M. Pourkashanian. Simple scheduled memetic
algorithm for inverse problems in higher dimensions: Application to chemical kinetics.
In J. Wang, editor, 2008 IEEE World Congress on Computational Intelligence, pages
3906–3913, Hong Kong, 1-6 June 2008. IEEE Computational Intelligence Society,
IEEE Press.

138. A. Konstantinidis, K. Yang, H.-H. Chen, and Q. Zhang. Energy-aware topology
control for wireless sensor networks using memetic algorithms. Computer Communi-
cations, 30(14-15):2753–2764, 2007.

139. K. Kostikas and C. Fragakis. Genetic programming applied to mixed integer pro-
gramming. In M. Keijzer et al., editors, 7th European Conference on Genetic Pro-
gramming, volume 3003 of Lecture Notes in Computer Science, pages 113–124, Berlin
Heidelberg, 2004. Springer-Verlag.

140. N. Krasnogor. Self generating metaheuristics in bioinformatics: The proteins structure
comparison case. Genetic Programming and Evolvable Machines, 5(2):181–201, June
2004.

141. N. Krasnogor, B.P. Blackburne, E.K. Burke, and J.D. Hirst. Multimeme algorithms
for protein structure prediction. In J.J. Merelo et al., editors, Parallel Problem Solving
From Nature VII, volume 2439 of Lecture Notes in Computer Science, pages 769–778.
Springer-Verlag, Berlin, 2002.

142. N. Krasnogor and S.M. Gustafson. A study on the use of “self-generation” in memetic
algorithms. Natural Computing, 3(1):53–76, 2004.

143. N. Krasnogor and J. Smith. Memetic algorithms: The polynomial local search com-
plexity theory perspective. Journal of Mathematical Modelling and Algorithms,
7(1):3–24, 2008.

144. M. Kretowski. A memetic algorithm for global induction of decision trees. In V. Gef-
fert et al., editors, 34th Conference on Current Trends in Theory and Practice of
Computer Science, volume 4910 of Lecture Notes in Computer Science, pages 531–
540. Springer-Verlag, 2008.

145. M. Kubiak and P. Wesolek. Accelerating local search in a memetic algorithm for
the capacitated vehicle routing problem. In C. Cotta and J.I. van Hemert, editors,
Evolutionary Computation in Combinatorial Optimization, volume 4446 of Lecture
Notes in Computer Science, pages 96–107. Springer-Verlag, 2007.

146. P. Lacomme, C. Prins, and W. Ramdane-Cherif. Competitive memetic algorithms
for arc routing problems. Annals of Operations Research, 131(1-4):159–185, 2004.

147. P. Lacomme, C. Prins, and W. Ramdane-Cherif. Evolutionary algorithms for periodic
arc routing problems. European Journal of Operational Research, 165(2):535–553,
2005.

148. M. Laguna and R. Mart́ı. Scatter Search. Methodology and Implementations in C.
Kluwer Academic Publishers, Boston MA, 2003.

149. E. Lamma, L. M. Pereira, and F. Riguzzi. Multi-agent logic aided lamarckian learn-
ing. Technical Report DEIS-LIA-00-004, Dipartimento di Elettronica, Informatica e
Sistemistica, University of Bologna (Italy), 2000.

150. H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1998.

151. R. Lewis and B. Paechter. Finding feasible timetables using group-based operators.
IEEE Transactions on Evolutionary Computation, 11(3):397–413, 2007.

38 Pablo Moscato and Carlos Cotta

152. B.-B. Li, L. Wang, and B. Liu. An effective PSO-based hybrid algorithm for mul-
tiobjective permutation flow shop scheduling. IEEE Transactions on Systems, Man
and Cybernetics Part B, 38(4):818–831, 2008.

153. J. Li and R. S. K. Kwan. A self adjusting algorithm for driver scheduling. Journal
of Heuristics, 11(4):351–367, 2005.

154. A. Lim, B. Rodrigues, and Y. Zhu. Airport gate scheduling with time windows.
Artificial Intelligence Review, 24(1):5–31, 2005.

155. D. Lim, Y.-S. Ong, Y. Jin, and B. Sendhoff. A study on metamodeling techniques,
ensembles, and multi-surrogates in evolutionary computation. In D. Thierens et al.,
editors, GECCO ’07: Proceedings of the 9th annual conference on Genetic and evo-
lutionary computation, volume 2, pages 1288–1295, London, 7-11 July 2007. ACM
Press.

156. K.K. Lim, Y.-S. Ong, M.H. Lim, X. Chen, and A. Agarwal. Hybrid ant colony
algorithms for path planning in sparse graphs. soft Computing, 12(10):981–994, 2008.

157. S. Lin and B. Kernighan. An Effective Heuristic Algorithm for the Traveling Salesman
Problem. Operations Research, 21:498–516, 1973.

158. B. Liu, L. Wang, and Y. Jin. An effective PSO-based memetic algorithm for flow
shop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, Part B,
37(1):18–27, 2007.

159. B. Liu, L. Wang, Y. Jin, and D. Huang. Designing neural networks using PSO-based
memetic algorithm. In D. Liu, S. Fei, Z.-G. Hou, H. Zhang, and C. Sun, editors,
4th International Symposium on Neural Networks, volume 4493 of Lecture Notes in
Computer Science, pages 219–224. Springer-Verlag, 2007.

160. B. Liu, L. Wang, and Y.-H. Jin. An effective hybrid particle swarm optimization
for no-wait flow shop scheduling. International Journal of Advances Manufacturing
Technology, 31(9-10):1001–1011, 2007.

161. B. Liu, L. Wang, Y.-H. Jin, and D.-X. Huang. An effective PSO-based memetic al-
gorithm for TSP. In Intelligent Computing in Signal Processing and Pattern Recog-
nition, volume 345 of Lecture Notes in Control and Information Sciences, pages
1151–1156. Springer-Verlag, 2006.

162. D. Liu, K. C. Tan, C. K. Goh, and W. K. Ho. A multiobjective memetic algorithm
based on particle swarm optimization. IEEE Transactions on Systems, Man, and
Cybernetics, Part B, 37(1):42–50, 2007.

163. Y.-H. Liu. A memetic algorithm for the probabilistic traveling salesman problem. In
J. Wang, editor, 2008 IEEE World Congress on Computational Intelligence, pages
146–152, Hong Kong, 1-6 June 2008. IEEE Computational Intelligence Society, IEEE
Press.

164. M. Lozano, F. Herrera, N. Krasnogor, and D. Molina. Real-coded memetic algorithms
with crossover hill-climbing. Evolutionary Computation, 12(3):273–302, 2004.

165. E. Lumanpauw, M. Pasquier, and C. Quek. MNFS-FPM: A novel memetic neuro-
fuzzy system based financial portfolio management. In D. Srinivasan and L. Wang,
editors, 2007 IEEE Congress on Evolutionary Computation, pages 2554–2561, Singa-
pore, 25-28 September 2007. IEEE Computational Intelligence Society, IEEE Press.

166. R. Maheswaran, S.G. Ponnambalam, and C. Aravindan. A meta-heuristic approach
to single machine scheduling problems. International Journal of Advanced Manufac-
turing Technology, 25(7-8):772–776, 2005.

167. D.G. Maringer. Finding the relevant risk factors for asset pricing. Computational
Statistics & Data Analysis, 47(2):339–352, 2004.

168. F. J. Mart́ınez-Estudillo, C. Hervás-Mart́ınez, A.C. Mart́ınez-Estudillo, and D. Ortiz-
Boyer. Memetic algorithms to product-unit neural networks for regression. In
J. Cabestany, A.Prieto, and F. Sandoval Hernández, editors, 8th International Work-
Conference on Artificial Neural Networks, volume 3512 of Lecture Notes in Computer
Science, pages 83–90. Springer-Verlag, 2005.

169. A. Mendes, C. Cotta, V. Garcia, P.M. França, and P. Moscato. Gene ordering in
microarray data using parallel memetic algorithms. In T. Skie and C.-S. Yang, editors,

A Modern Introduction to Memetic Algorithms 39

Proceedings of the 2005 International Conference on Parallel Processing Workshops,
pages 604–611, Oslo, Norway, 2005. IEEE Press.

170. A. Mendes, P.M. França, C. Lyra, C. Pissarra, and C. Cavellucci. Capacitor placement
in large-sized radial distribution networks. IEE Proceedings, 152(4):496–502, 2005.

171. A. Mendes and A. Linhares. A multiple-population evolutionary approach to gate
matrix layout. International Journal of Systems Science, 35(1):13–23, 2004.

172. A. S. Mendes, P. M. França, and P. Moscato. Fitness landscapes for the total tardiness
single machine scheduling problem. Neural Network World, 2(2):165–180, 2002.

173. P. Merz and K. Katayama. Memetic algorithms for the unconstrained binary
quadratic programming problem. Biosystems, 78(1-3):99–118, 2004.

174. P. Merz and S. Wolf. Evolutionary local search for designing peer-to-peer overlay
topologies based on minimum routing cost spanning trees. In T.P. Runarsson et al.,
editors, Parallel Problem Solving from Nature IX, volume 4193 of Lecture Notes in
Computer Science, pages 272–281. Springer-Verlag, Berlin Heidelberg, 2006.

175. D. Molina, F. Herrera, and M. Lozano. Adaptive local search parameters for real-
coded memetic algorithms. In D. Corne et al., editors, Proceedings of the 2005 IEEE
Congress on Evolutionary Computation, volume 1, pages 888–895, Edinburgh, Scot-
land, UK, 2-5 September 2005. IEEE Press.

176. D. Molina, M. Lozano, and F. Herrera. Memetic algorithms for intense continuous
local search methods. In M.J. Blesa et al., editors, Hybrid Metaheuristics 2008,
volume 5296 of Lecture Notes in Computer Science, pages 58–71, Berlin Heidelberg,
2008. Springer-Verlag.

177. P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. Technical Report Caltech Concurrent Computa-
tion Program, Report. 826, California Institute of Technology, Pasadena, California,
USA, 1989.

178. P. Moscato. An Introduction to Population Approaches for Optimization and Hierar-
chical Objective Functions: The Role of Tabu Search. Annals of Operations Research,
41(1-4):85–121, 1993.

179. P. Moscato. Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, and
F. Glover, editors, New Ideas in Optimization, pages 219–234. McGraw-Hill, 1999.

180. P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. In F. Glover
and G. Kochenberger, editors, Handbook of Metaheuristics, pages 105–144. Kluwer
Academic Publishers, Boston MA, 2003.

181. P. Moscato and C. Cotta. Memetic algorithms. In T. González, editor, Handbook of
Approximation Algorithms and Metaheuristics, chapter 22. Taylor & Francis, 2006.

182. P. Moscato, C. Cotta, and A. Mendes. Memetic algorithms. In G.C. Onwubolu
and B.V. Babu, editors, New Optimization Techniques in Engineering, pages 53–85.
Springer-Verlag, Berlin Heidelberg, 2004.

183. P. Moscato, A. Mendes, and R. Berretta. Benchmarking a memetic algorithm for
ordering microarray data. Biosystems, 88(1-2):56–75, 2007.

184. P. Moscato, A. Mendes, and C. Cotta. Scheduling and production & control. In G. C.
Onwubolu and B. V. Babu, editors, New Optimization Techniques in Engineering,
pages 655–680. Springer-Verlag, Berlin Heidelberg, 2004.

185. H. Mühlenbein. Evolution in Time and Space – The Parallel Genetic Algorithm.
In Gregory J.E. Rawlins, editor, Foundations of Genetic Algorithms, pages 316–337.
Morgan Kaufmann Publishers, 1991.

186. H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer. Evolution Algorithms in Com-
binatorial Optimization. Parallel Computing, 7:65–88, 1988.

187. A. Muruganandam, G. Prabhaharan, P. Asokan, and V. Baskaran. A memetic al-
gorithm approach to the cell formation problem. International Journal of Advanced
Manufacturing Technology, 25(9-10):988–997, 2005.

188. Y. Nagata and Sh. Kobayashi. Edge assembly crossover: A high-power genetic al-
gorithm for the traveling salesman problem. In T. Bäck, editor, Proceedings of the

40 Pablo Moscato and Carlos Cotta

Seventh International Conference on Genetic Algorithms, pages 450–457, San Mateo,
CA, 1997. Morgan Kaufmann.

189. M. Nakamaru, H. Matsuda, and Y. Iwasa. The evolution of social interaction in
lattice models. Sociological Theory and Methods, 12(2):149–162, 1998.

190. M. Nakamaru, H. Nogami, and Y. Iwasa. Score-dependent fertility model for the
evolution of cooperation in a lattice. Journal of Theoretical Biology, 194(1):101–124,
1998.

191. F. Neri, N. Kotilainen, and M. Vapa. An adaptive global-local memetic algorithm to
discover resources in P2P networks. In M. Giacobini et al., editors, Applications of
Evolutionary Computing, volume 4448 of Lecture Notes in Computer Science, pages
61–70. Springer-Verlag, 2007.

192. F. Neri, N. Kotilainen, and M. Vapa. A memetic-neural approach to discover re-
sources in P2P networks. In C. Cotta and J. van Hemert, editors, Recent Advances
in Evolutionary Computation for Combinatorial Optimization, volume 153 of Stud-
ies in Computational Intelligence, pages 113–129. Springer-Verlag, Berlin Heidelberg,
2008.

193. F. Neri and V. Tirronen. On memetic differential evolution frameworks: A study of
advantages and limitations in hybridization. In J. Wang, editor, 2008 IEEE World
Congress on Computational Intelligence, pages 2135–2142, Hong Kong, 1-6 June
2008. IEEE Computational Intelligence Society, IEEE Press.

194. F. Neri, J. Toivanen, G. L. Cascella, and Y.-S. Ong. An adaptive multimeme algo-
rithm for designing HIV multidrug therapies. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, 4(2):264–278, April 2007.

195. R. Neruda and S. Slusny. Variants of memetic and hybrid learning of perceptron
networks. In 18th International Workshop on Database and Expert Systems Appli-
cations, pages 158–162. IEEE Computer Society, 2007.

196. H.D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga. Implementation of an
effective hybrid GA for large-scale traveling salesman problems. IEEE Transactions
on systems, Man and Cybernetics Part B, 37(1):92–99, 2007.

197. Q. H. Nguyen, Y.-S. Ong, and N. Krasnogor. A study on the design issues of memetic
algorithm. In D. Srinivasan and L. Wang, editors, 2007 IEEE Congress on Evo-
lutionary Computation, pages 2390–2397, Singapore, 25-28 September 2007. IEEE
Computational Intelligence Society, IEEE Press.

198. R. Niedermeier and P. Rossmanith. An efficient fixed parameter algorithm for 3-
hitting set. Technical Report WSI-99-18, Universität Tübingen, Wilhelm-Schickard-
Institut für Informatik, 1999. Technical Report, Revised version accepted in Journal
of Discrete Algorithms, August 2000.

199. R. Niedermeier and P. Rossmanith. A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters, 73:125–129, 2000.

200. N. Noman and H. Iba. Inferring gene regulatory networks using differential evolution
with local search heuristics. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 4(4):634–647, October 2007.

201. N. Noman and H. Iba. Accelerating differential evolution using an adaptive local
search. IEEE Transactions on Evolutionary Computation, 12(1):107–125, 2008.

202. M.G. Norman and P. Moscato. A competitive and cooperative approach to complex
combinatorial search. In Proceedings of the 20th Informatics and Operations Research
Meeting, pages 3.15–3.29, Buenos Aires, 1989.

203. M.T. Oakley, D. Barthel, Y. Bykov, J.M. Garibaldi, E.K. Burke, N. Krasnogor, and
J.D. Hirst. Search strategies in structural bioinformatics. Current Protein & Peptide
Science, 9(3):260–274, 2008.

204. Y.-S. Ong and A.J. Keane. Meta-lamarckian learning in memetic algorithms. IEEE
Transactions on Evolutionary Computation, 8(2):99–110, 2004.

205. Y.-S. Ong, M.-H. Lim, N. Zhu, and K.W. Wong. Classification of adaptive memetic
algorithms: a comparative study. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B, 36(1):141–152, 2006.

A Modern Introduction to Memetic Algorithms 41

206. E. Özcan. Memetic algorithms for nurse rostering. In Pinar Yolum et al., editors,
Computer and Information Sciences - ISCIS 2005, 20th International Symposium
(ISCIS), volume 3733 of Lecture Notes in Computer Science, pages 482–492, Berlin
Heidelberg, October 2005. Springer-Verlag.

207. E. Özcan and E. Onbasioglu. Memetic algorithms for parallel code optimization.
International Journal of Parallel Programming, 35(1):33–61, 2007.

208. P. Palacios, D. Pelta, and A. Blanco. Obtaining biclusters in microarrays with
population-based heuristics. In F. Rothlauf et al., editors, Applications of Evolution-
ary Computing, volume 3907 of Lecture Notes in Computer Science, pages 115–126.
Springer-Verlag, Berlin Heidelberg, 2006.

209. Q-K Pan, L. Wang, and B. Qian. A novel multi-objective particle swarm optimiza-
tion algorithm for no-wait flow shop scheduling problems. Journal of Engineering
Manufacture, 222(4):519–539, 2008.

210. M. Pastorino. Stochastic optimization methods applied to microwave imaging: A
review. IEEE Transactions on Antennas and Propagation, 55(3, Part 1):538–548,
2007.

211. M. Pastorino, S. Caorsi, A. Massa, and A. Randazzo. Reconstruction algorithms for
electromagnetic imaging. IEEE Transactions of Instrumentation and Measurement,
53(3):692–699, 2004.

212. W Paszkowicz. Properties of a genetic algorithm extended by a random self-learning
operator and asymmetric mutations: A convergence study for a task of powder-
pattern indexing. Analytica Chimica Acta, 566(1):81–98, 2006.

213. M. Peinado and T. Lengauer. Parallel “go with the winners algorithms” in the LogP
Model. In Proceedings of the 11th International Parallel Processing Symposium,
pages 656–664, Los Alamitos, California, 1997. IEEE Computer Society Press.

214. Y. G. Petalas, K. E. Parsopoulos, and M. N. Vrahatis. Memetic particle swarm
optimization. Annals of Operations Research, 156(1):99–127, 2007.

215. S. Petrovic and E. K. Burke. University timetabling. In J. Leung, editor, Handbook
of Scheduling: Algorithms, Models, and Performance Analysis, chapter 45. Chapman
Hall/CRC Press, 2004.

216. S. Petrovic, V. Patel, and Y. Yang. Examination timetabling with fuzzy constraints.
In Practice and Theory of Automated Timetabling V, volume 3616 of Lecture Notes
in Computer Science, pages 313–333. Springer-Verlag, Berlin Heidelberg, 2005.

217. S. Pirkwieser and G.R. Raidl. Finding consensus trees by evolutionary, variable neigh-
borhood search, and hybrid algorithms. In M. Keijzer et al., editors, GECCO ’08:
Proceedings of the 10th annual conference on Genetic and evolutionary computation,
pages 323–330, Atlanta, GA, USA, 12-16 July 2008. ACM Press.

218. C. Prins, C. Prodhon, and R.W. Calvo. A memetic algorithm with population man-
agement (MA | PM) for the capacitated location-routing problem. In J. Gottlieb
and G.R. Raidl, editors, Evolutionary Computation in Combinatorial Optimization,
volume 3906 of Lecture Notes in Computer Science, pages 183–194. Springer-Verlag,
Budapest, 10-12 April 2006.

219. C. Prodhom and C. Prins. A memetic algorithm with population management
(MA|PM) for the periodic location-routing problem. In M.J. Blesa et al., editors,
Hybrid Metaheuristics 2008, volume 5296 of Lecture Notes in Computer Science,
pages 43–57, Berlin Heidelberg, 2008. Springer-Verlag.

220. J. Puchinger and G.R. Raidl. Combining metaheuristics and exact algorithms in
combinatorial optimization: A survey and classification. In J. Mira and J.R. Álvarez,
editors, Artificial Intelligence and Knowledge Engineering Applications: a Bioin-
spired Approach, volume 3562 of Lecture Notes in Computer Science, pages 41–53.
Springer-Verlag, 2005.

221. J. Puchinger, G.R. Raidl, and G. Koller. Solving a real-world glass cutting problem.
In J. Gottlieb and G.R. Raidl, editors, 4th European Conference on Evolutionary
Computation in Combinatorial Optimization, volume 3004 of Lecture Notes in Com-
puter Science, pages 165–176, Berlin Heidelberg, 2004. Springer-Verlag.

42 Pablo Moscato and Carlos Cotta

222. J. Puchinger, G.R. Raidl, and U. Pferschy. The core concept for the Multidimensional
Knapsack Problem. In J. Gottlieb and G.R. Raidl, editors, Evolutionary Computation
in Combinatorial Optimization, volume 3906 of Lecture Notes in Computer Science,
pages 195–208. Springer-Verlag, Budapest, 10-12 April 2006.

223. M. Qasem and A. Prugel-Bennett. Complexity of Max-SAT using stochastic algo-
rithms. In M. Keijzer et al., editors, GECCO ’08: Proceedings of the 10th annual
conference on Genetic and evolutionary computation, pages 615–616, Atlanta, GA,
USA, 12-16 July 2008. ACM Press.

224. B. Qian, L. Wang, D.-X. Huang, and X. Wang. Scheduling multi-objective job shops
using a memetic algorithm based on differential evolution. International Journal of
Advanced Manufacturing Technology, 35(9–10):1014–1027, January 2008.

225. A. Quintero and S. Pierre. On the design of large-scale cellular mobile networks using
multi-population memetic algorithms. In A. Abraham et al., editors, Engineering
Evolutionary Intelligent Systems, volume 82 of Studies in Computational Intelligence,
pages 353–377. Springer-Verlag, 2008.

226. M. Rabbani, A. Rahimi-Vahed, and S.A. Torabi. Real options approach for a mixed-
model assembly line sequencing problem. International Journal of Advanced Manu-
facturing Technology, 37(11-12):1209–1219, 2008.

227. N.J. Radcliffe. The algebra of genetic algorithms. Annals of Mathematics and Arti-
ficial Intelligence, 10:339–384, 1994.

228. N.J. Radcliffe and P.D. Surry. Fitness Variance of Formae and Performance Pre-
diction. In L.D. Whitley and M.D. Vose, editors, Proceedings of the 3rd Workshop
on Foundations of Genetic Algorithms, pages 51–72, San Francisco, 1994. Morgan
Kaufmann.

229. N.J. Radcliffe and P.D. Surry. Formal Memetic Algorithms. In T. Fogarty, editor,
Evolutionary Computing: AISB Workshop, volume 865 of Lecture Notes in Computer
Science, pages 1–16. Springer-Verlag, Berlin, 1994.

230. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart, 1973.

231. D.A.M. Rocha, E.F.G. Goldbarg, and M.C. Goldbarg. A memetic algorithm for the
biobjective minimum spanning tree problem. In J. Gottlieb and G.R. Raidl, editors,
Evolutionary Computation in Combinatorial Optimization, volume 3906 of Lecture
Notes in Computer Science, pages 222–233. Springer-Verlag, 2006.

232. F.J. Romero-Campero, H. Cao, M. Camara, and N. Krasnogor. Structure and param-
eter estimation for cell systems biology models. In M. Keijzer et al., editors, GECCO
’08: Proceedings of the 10th annual conference on Genetic and evolutionary compu-
tation, pages 331–338, Atlanta, GA, USA, 12-16 July 2008. ACM Press.

233. O. Rossi-Doria and B. Paechter. A memetic algorithm for university course
timetabling. In Combinatorial Optimisation 2004 Book of Abstracts, page 56, Lan-
caster, UK, 2004. Lancaster University.

234. E.E. Santos and E. Santos, Jr. Effective computational reuse for energy evaluations in
protein folding. International Journal of Artificial Intelligence Tools, 15(5):725–739,
2006.

235. M Schoenauer, P Saveant, and V Vidal. Divide-and-evolve: A new memetic scheme
for domain-independent temporal planning. In J. Gottlieb and G.R. Raidl, editors,
Evolutionary Computation in Combinatorial Optimization, volume 3906 of Lecture
Notes in Computer Science, pages 247–260. Springer-Verlag, Budapest, 10-12 April
2006.

236. J. Schönberger, D. C. Mattfeld, and H. Kopfer. Memetic algorithm timetabling for
non-commercial sport leagues. European Journal of Operational Research, 153:102–
116, 2004.

237. O. Schuetze, G. Sanchez, and C.A. Coello Coello. A new memetic strategy for the
numerical treatment of multi-objective optimization problems. In M. Keijzer et al.,
editors, GECCO ’08: Proceedings of the 10th annual conference on Genetic and

A Modern Introduction to Memetic Algorithms 43

evolutionary computation, pages 705–712, Atlanta, GA, USA, 12-16 July 2008. ACM
Press.

238. H.-P. Schwefel. Evolution strategies: A family of non-linear optimization techniques
based on imitating some principles of natural evolution. Annals of Operations Re-
search, 1:165–167, 1984.

239. Y. Semet and M. Schoenauer. An efficient memetic, permutation-based evolutionary
algorithm for real-world train timetabling. In Proceedings of the 2005 Congress on
Evolutionary Computation, pages 2752–2759, Edinburgh, UK, 2005. IEEE Press.

240. M. Sevaux, A. Jouglet, and C. Oğuz. Combining constraint programming and
memetic algorithm for the hybrid flowshop scheduling problem. In ORBEL 19th

annual conference of the SOGESCI-BVWB, Louvain-la-Neuve, Belgium, 2005.
241. M. Sevaux, A. Jouglet, and C. Oğuz. MLS+CP for the hybrid flowshop scheduling

problem. In Workshop on the Combination of metaheuristic and local search with
Constraint Programming techniques, Nantes, France, 2005.

242. W. Sheng, G. Howells, M. Fairhurst, and F. Deravi. A memetic fingerprint matching
algorithm. IEEE Transactions on Information Forensics and Security, 2(3, Part
1):402–412, 2007.

243. W. Sheng, X. Liu, and M. Fairhurst. A niching memetic algorithm for simultane-
ous clustering and feature selection. IEEE Transactions on Knowledge and Data
Engineering, 20(7):868–879, 2008.

244. J. E. Smith. Credit assignment in adaptive memetic algorithms. In H. Lipson, editor,
GECCO ’07: Proceedings of the 9th annual conference on Genetic and Evolutionary
Computation Conference, pages 1412–1419. ACM Press, 2007.

245. J.E. Smith. Co-evolution of memetic algorithms: Initial investigations. In J.J. Merelo
et al., editors, Parallel Problem Solving From Nature VII, volume 2439 of Lecture
Notes in Computer Science, pages 537–548. Springer-Verlag, Berlin, 2002.

246. J.E. Smith. Coevolving memetic algorithms: A review and progress report. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 37(1):6–17, 2007.

247. J.E. Smith. Self-adaptation in evolutionary algorithms for combinatorial optimiza-
tion. In C. Cotta, M. Sevaux, and K. Sörensen, editors, Adaptive and Multilevel
Metaheuristics, volume 136 of Studies in Computational Intelligence, pages 31–57.
Springer-Verlag, Berlin Heidelberg, 2008.

248. S.-M. Soak, S.-W. Lee, N.P. Mahalik, and B.-H. Ahn. A new memetic algorithm using
particle swarm optimization and genetic algorithm. In Knowledge-based Intelligent
Information and Engineering Systems, volume 4251 of Lecture Notes in Artificial
Intelligence, pages 122–129. Springer-Verlag, 2006.

249. K. Sörensen and M. Sevaux. MA | PM: memetic algorithms with population man-
agement. Computers & OR, 33:1214–1225, 2006.

250. C. Spieth, F. Streichert, J. Supper, N. Speer, and A. Zell. Feedback memetic algo-
rithms for modeling gene regulatory networks. In Proceedings of the IEEE Sympo-
sium on Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB 2005), pages 61–67, La Jolla, CA, 2005. IEEE Press.

251. D. Sudholt. Memetic algorithms with variable-depth search to overcome local optima.
In M. Keijzer et al., editors, GECCO ’08: Proceedings of the 10th annual conference
on Genetic and evolutionary computation, pages 787–794, Atlanta, GA, USA, 12-16
July 2008. ACM Press.

252. P.D. Surry and N.J. Radcliffe. Inoculation to initialise evolutionary search. In T.C.
Fogarty, editor, Evolutionary Computing: AISB Workshop, number 1143 in Lecture
Notes in Computer Science, pages 269–285. Springer-Verlag, 1996.

253. G. Syswerda. Uniform crossover in genetic algorithms. In J.D. Schaffer, editor,
Proceedings of the 3rd International Conference on Genetic Algorithms, pages 2–9,
San Mateo, CA, 1989. Morgan Kaufmann.

254. K. Tagawa and M. Matsuoka. Optimum design of surface acoustic wave filters based
on the Taguchi’s quality engineering with a memetic algorithm. In T.P. Runarsson

44 Pablo Moscato and Carlos Cotta

et al., editors, Parallel Problem Solving from Nature IX, volume 4193 of Lecture
Notes inComputer Science, pages 292–301. Springer-Verlag, Berlin Heidelberg, 2006.

255. J. Tang, M. H. Lim, Y.-S. Ong, and M.J. Er. Parallel memetic algorithm with selective
local search for large scale quadratic assignment problems. International Journal of
Innovative Computing, Information and Control, 2(6):1399–1416, 2006.

256. M. Tang and X. Yao. A memetic algorithm for VLSI floorplanning. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B, 37(1):62–69, 2007.

257. R. Tavakkoli-Moghaddam and A. R. Rahimi-Vahed. A Memetic Algorithm for Multi-
Criteria Sequencing Problem for a Mixed-Model Assembly Line in a JIT Production
System. In 2006 IEEE Congress on Evolutionary Computation (CEC’2006), pages
10350–10355, Vancouver, BC, Canada, July 2006. IEEE.

258. R. Tavakkoli-Moghaddam, N. Safaei, and M. Babakhani. Solving a dynamic cell
formation problem with machine cost and alternative process plan by memetic al-
gorithms. In International Symposium on Stochastic Algorithms: Foundations and
Applications, LNCS, volume 3, 2005.

259. R. Tavakkoli-Moghaddam, A. R. Saremi, and M. S. Ziaee. A memetic algorithm for
a vehicle routing problem with backhauls. Applied mathematics and Computation,
181(2):1049–1060, 2006.

260. Y. Tenne and S.W. Armfield. A memetic algorithm using a trust-region derivative-free
optimization with quadratic modelling for optimization of expensive and noisy black-
box functions. In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary Computation
in Dynamic and Uncertain Environments, volume 51 of Studies in Computational
Intelligence, pages 389–415. Springer-Verlag, 2007.

261. V. Tirronen, F. Neri, T. Kärkkäinen, K. Majava, and T. Rossi. A memetic differential
evolution in filter design for defect detection in paper production. In M. Giacobini
et al., editors, Applications of Evolutionary Computing, volume 4448 of Lecture Notes
in Computer Science, pages 320–329. Springer-Verlag, 2007.

262. J. Togelius, T. Schaul, J. Schmidhuber, and F. Gómez. Countering poisonous inputs
with memetic neuroevolution. In G. Rudolph et al., editors, Parallel Problem Solving
from Nature X, volume 5199 of Lecture Notes in Computer Science, pages 610–619,
Berlin Heidelberg, 2008. Springer-Verlag.

263. F. Tricoire. Vehicle and personnel routing optimization in the service sector: appli-
cation to water distribution and treatment. 4OR-A Quarterly Journal of Operations
Research, 5(2):165–168, 2007.

264. S.-M. Tse, Y. Liang, K.-S. Leung, K.-H. Lee, and T.S.K. Mok. A memetic algorithm
for multiple-drug cancer chemotherapy schedule optimization. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 37(1):84–91, 2007.

265. H.E. Tseng, W.P. Wang, and H.Y. Shih. Using memetic algorithms with guided
local search to solve assembly sequence planning. Expert Systems With Applications,
33(2):451–467, 2007.

266. E.L. Ulungu, J. Teghem, P. Fortemps, and D. Tuyttens. MOSA method: A tool
for solving multiobjective combinatorial optimization problems. Journal of Multi-
Criteria Decision Analysis, 8(4):221–236, 1999.

267. R. Varela, J. Puente, and C. R. Vela. Some issues in chromosome codification for
scheduling with genetic algorithms. In L. Castillo, D. Borrajo, M. A. Salido, and
A. Oddi, editors, Planning, Scheduling and Constraint Satisfaction: From Theory to
Practice, volume 117 of Frontiers in Artificial Intelligence and Applications, pages
1–10. IOS Press, 2005.

268. R. Varela, D. Serrano, and M. Sierra. New codification schemas for scheduling with
genetic algorithms. In J. Mira and J. R. Álvarez, editors, Artificial Intelligence
and Knowledge Engineering Applications: a Bioinspired Approach, volume 3562 of
Lecture Notes in Computer Science, pages 11–20, Berlin Heidelberg, 2005. Springer-
Verlag.

A Modern Introduction to Memetic Algorithms 45

269. J. Volk, T. Herrmann, and K. Wuethrich. Automated sequence-specific protein NMR
assignment using the memetic algorithm match. Journal of Biomolecular NMR,
41(3):127–138, 2008.

270. J. Wang. A memetic algorithm with genetic particle swarm optimization and neural
network for maximum cut problems. In K. Li, M. Fei, G.W. Irwin, and S. Ma, editors,
International Conference on Life System Modeling and Simulation, volume 4688 of
Lecture Notes in Computer Science, pages 297–306. Springer-Verlag, 2007.

271. Y. Wang and J. Qin. A memetic-clustering-based evolution strategy for traveling
salesman problems. In J. Yao et al., editors, 2nd International Conference on Rough
Sets and Knowledge Technology, volume 4481 of Lecture Notes in Computer Science,
pages 260–266. Springer-Verlag, 2007.

272. E.F. Wanner, F.G. Guimarães, R.H.C. Takahashi, and P.J. Fleming. Local search
with quadratic approximations into memetic algorithms for optimization with multi-
ple criteria. Evolutionary Computation, 16(2):185–224, 2008.

273. E.F. Wanner, F.G. Guimarães, R.H.C. Takahashi, D.A. Lowther, and J.A. Ramı́rez.
Multiobjective memetic algorithms with quadratic approximation-based local search
for expensive optimization in electromagnetics. IEEE Transactions on Magnetics,
44(6):1126–1129, 2008.

274. D. Whitley. Using reproductive evaluation to improve genetic search and heuristic
discovery. In J.J. Grefenstette, editor, Proceedings of the 2nd International Confer-
ence on Genetic Algorithms and their Applications, pages 108–115, Cambridge, MA,
July 1987. Lawrence Erlbaum Associates.

275. T.L. Williams and M.L. Smith. The role of diverse populations in phylogenetic anal-
ysis. In M. Keijzer et al., editors, GECCO 2006: Proceedings of the 8th annual con-
ference on Genetic and evolutionary computation, volume 1, pages 287–294, Seattle,
Washington, USA, 8-12 July 2006. ACM Press.

276. D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

277. F. Xhafa and B. Duran. Parallel memetic algorithms for independent job scheduling
in computational grids. In C. Cotta and J. van Hemert, editors, Recent Advances in
Evolutionary Computation for Combinatorial Optimization, volume 153 of Studies in
Computational Intelligence, pages 219–239. Springer-Verlag, Berlin Heidelberg, 2008.

278. J.-H. Yang, L. Sun, H.P. Lee, Y. Qian, and Y.-C. Liang. Clonal selection based
memetic algorithm for job shop scheduling problems. Journal of Bionic Engineering,
5(2):111–119, 2008.

279. M. Yannakakis. Computational complexity. In E.H.L. Aarts and J.K. Lenstra, editors,
Local Search in Combinatorial Optimization, pages 19–55. Wiley, Chichester, 1997.

280. W.-C. Yeh. An efficient memetic algorithm for the multi-stage supply chain network
problem. International Journal of Advanced Manufacturing Technology, 29(7-8):803–
813, 2006.

281. X. Zhao. Advances on protein folding simulations based on the lattice HP models
with natural computing. Applied Soft Computing, 8(2):1029–1040, 2008.

282. Z. Zhen, Z. Wang, Z. Gu, and Y. Liu. A novel memetic algorithm for global op-
timization based on PSO and SFLA. In L. Kang, Y. Liu, and S. Y. Zeng, editors,
2nd International Symposium on Advances in Computation and Intelligence, volume
4683 of Lecture Notes in Computer Science, pages 127–136. Springer-Verlag, 2007.

283. Z. Zhou, Y.-S. Ong, M.-H. Lim, and B.-S. Lee. Memetic algorithm using multi-
surrogates for computationally expensive optimization problems. Soft Computing,
11(10):957–971, 2007.

284. Z. Zhu and Y.-S. Ong. Memetic algorithms for feature selection on microarray data.
In D. Liu et al., editors, 4th International Symposium on Neural Networks, volume
4491 of Lecture Notes in Computer Science, pages 1327–1335. Springer-Verlag, 2007.

285. Z. Zhu, Y.-S. Ong, and M. Dash. Markov blanket-embedded genetic algorithm for
gene selection. Pattern Recognition, 40(11):3236–3248, 2007.

46 Pablo Moscato and Carlos Cotta

286. Z. Zhu, Y.-S. Ong, and M. Dash. Wrapper-filter feature selection algorithm using a
memetic framework. IEEE Transactions on Systems, Man, and Cybernetics, Part
B, 37(1):70–76, 2007.

287. E. Zitzler, M. Laumanns, and S. Bleuler. A Tutorial on Evolutionary Multiobjective
Optimization. In X. Gandibleux et al., editors, Metaheuristics for Multiobjective
Optimisation, volume 535 of Lecture Notes in Economics and Mathematical Systems.
Springer-Verlag, 2004.

