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Abstract

This paper deals with the construction of binary sequences with low autocorrela-
tion, a very hard problem with many practical applications. The paper analyzes
several metaheuristic approaches to tackle this kind of sequences. More specifically,
the paper provides an analysis of different local search strategies, used as stand-
alone techniques and embedded within memetic algorithms. One of our proposals,
namely a memetic algorithm endowed with a Tabu Search local searcher, performs
at the state-of-the-art, as it consistently finds optimal sequences in considerably less
time than previous approaches reported in the literature. Moreover, this algorithm
is also able to provide new best-known solutions for large instances of the problem.
In addition, a variant of this algorithm that explores only a promising subset of the
whole search space (known as skew-symmetric sequences) is also analyzed. Experi-
mental results show that this new algorithm provides new best-known solutions for
very large instances of the problem.

Key words: Low autocorrelation binary sequences, memetic algorithms, tabu
search, combinatorial optimization.

1 Introduction

The low autocorrelation binary sequence (LABS) problem is a very hard com-
binatorial optimization problem. It has been deeply studied since the 1960s
by both the communities of Physics and Artificial Intelligence. The reasons
behind this interest are twofold: on one hand, the problem has many appli-
cations in diverse areas such as telecommunications (e.g., synchronization,
pulse compression and, especially, radar), physics (e.g., ising spin glasses) and
chemistry [1-5]; on the other hand, it poses a formidable optimization task
of huge difficulty. In this sense, the application of many different techniques
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(ranging from complete deterministic approaches to stochastic methods) to
the resolution of the problem has been attempted (see Sect. 2.2).

Regarding stochastic methods, the general impression is that these techniques
are not adequate to tackle this problem. In fact, considering the results re-
ported in the literature this might be considered as a reality. In [6], we pro-
vided empirical evidence that this is the case for pure evolutionary algorithms
(EAs), as they cannot cope with the complexity of the problem. Nonetheless,
we also shown that evolutionary methods assisted by local-search operators
(i.e., memetic algorithms [7-10], MAs) provide optimal or near-optimal results
consistently for LABS instances whose optimal solutions are known to date.
To this end, a steepest descent local search procedure and another one based
on Tabu Search [11] (TS) were analyzed. Experimental results indicated that
embedding them within a steady state EA improves synergistically the search
capabilities of the algorithm and that these MAs (specifically the one em-
bedding Tabu Search) can successfully compete with, and often outperform,
current approaches for the LABS problem, as they provide optimal results in
considerable less time.

We extend here our previous research on this problem. As new contributions,
we firstly present a more extensive experimental analysis of the previously
mentioned MAs on up-to-date solved instances, doubling the number of runs
for each algorithm —thus enhancing the significance of results—, testing new
recombination operators, and describing in more detail the observed behavior
of the algorithms utilized. Secondly, in order to test the scalability of our
approach, the best performing MA has been run on large instances of the
LABS problem for which optimal solutions are currently unknown. Results
were very successful, as this MA was able to provide new best-known solutions
for many of these instances. Finally, we present an adaptation of this MA that
only explores a promising sieve of the whole search space. To be precise, we
considered so-called skew-symmetric sequences [12], that reduces the size of
the search space explored by the algorithm at the expense of not guaranteing
optimality for the general case of the problem. Experiments for this latter
heuristic on very large instances show that it performs at the state-of-the-art,
as it provides solutions better than or equal to those reported in the literature.

The rest of this paper is structured as follows: In Sect. 2, the LABS problem
is formalized and previous work on it is surveyed. In Sect. 3, a neighborhood
structure for the LABS problems is described, along with two local search
algorithms to explore it. In Sect. 4, an exhaustive experimental evaluation of
those local search algorithms and of memetic algorithms endowed with them
is presented. Results for these algorithms are compared to current state of
the art approaches for the LABS problem. In Sect. 5, one of the proposed
memetic algorithms is adapted to search only in the space of so called skew
symmetric sequences, a promising sieve of the whole search space for the LABS



problem. This algorithm is experimentally evaluated on very large instances
of the problem. Finally, Sect. 6 presents conclusions for this work.

2 Background

In this section, we will define the notion of autocorrelation on binary sequences,
as well as different measures that can be used to evaluate their quality. Subse-
quently, an overview of previous work on the LABS problem will be presented.

2.1 Low Autocorrelation Binary Sequences

In order to introduce the problem, let a binary sequence S of length L be
represented by sysy -+ sy with s; € {—1,1} for 1 <i < L, ie., S € {-1,1} .
The aperiodic autocorrelation of elements in sequence S with distance k is

defined as L
Ok<S) = Z SiSi+k- (1)
i=1

The energy function associated to sequence S is the quadratic sum of its
correlations:

E(S) = 3 CX(S) @

and the low autocorrelation problem for binary sequences with length L,
LABS(L), consists of finding a sequence of length L with associated minimum
energy. In this sense, notice one interesting property of the LABS problem: it
is highly symmetric. Clearly, the energy corresponding to a sequence remains
unchanged when the sequence is reversed or complemented (i.e., when every s;
is multiplied by —1). Note also that when alternate elements of a sequence get
complemented, only the sign of odd-indexed correlations change, and hence,
the corresponding energy is neither altered. Therefore, except for a small num-
ber of symmetric sequences, the 2¥ sequences of length L come in equivalence
classes of size 8.

Golay [12,13] introduced a different measure in order to assess the quality of
sequences called its merit factor:
L2
F(S) = ——= 3
5)= 355 3)

that lends itself to better analytical manipulation. If we define F}, to be the
optimal value of the merit factor for sequences of length L, the LABS(L)



problem can be alternatively defined as finding F7, such that:

Fp = F(S). 4

D= g nax (5) (4)

Based on an assumption termed the ergodicity postulate, Golay estimated an
asymptotic value for Fy, namely Fj, — 12.32 for L — oo.

As a  combinatorial  problem, the search  space for  the
LABS(L) problem has size 2L, and the merit factor of a sequence can be
computed in time O(L?). One of the hardness sources of the LABS problem
is epistasis: different correlations C(S) for a sequence S are not independent,
and a change to one symbol s; leading to an improvement of a certain Cy(5)
will affect the values of remaining correlations too. Another difficulty lies in the
small number of global optima for most values of L, as it has been observed in
cases for which solutions have been completely enumerated. The correspond-
ing search landscape is dominated by a large number of local minima [5], and
although it has been conjectured that global minima are extremely isolated
deep and narrow holes [3, 14], no evidence for this was found in the study
performed in [15]. Presently, no analytical method exists for finding optimal
sequences with minimal aperiodic correlations. To date, the only procedure to
find the sequence with optimal F, consists of using an implicit enumerative
search among all 2% possible sequences.

2.2  Related Work

The LABS problem has been tackled in the literature using exact and heuris-
tic methods. Systematic search has been applied with limited success. For
instance, Golay published for the first time in [12] the optimal solutions for
L < 32 that Lindner had computed by performing an exhaustive search enu-
meration. Mertens used a parallel branch and bound with symmetry breaking
procedures in [16] to solve instances up to L = 48. Using a four-processor Sun
SPARCstation 20, it took a total 313 hours of CPU time to solve these in-
stances. Recently, this algorithm has been used by Mertens and Bauke [17] to
compute the optimal merit factors of sequences of length up to 60. Note that
it took several days of execution on a cluster of 160 CPUs to solve the L = 60
instance. However, even with these enhancements, systematic search is unable
to scale up to larger sequences. In general, these methods lack scalability, and
therefore large sequences cannot be solved in a limited-resource (i.e., time and
memory) scenario.

In addition to complete deterministic approaches, stochastic methods have
been also proposed to generate LABS, but in general they have performed
poorly. For decades, approaches using stochastic methods on the LABS prob-
lem such as simulated annealing [3] and evolutionary search [18-20] performed



poorly with respect to finding optimal sequences. Recently, several stochastic
algorithms have been reported to find optimal solutions though. The first one
was presented by Prestwich in [21], who was able to find global optima up to
L = 48 with a hybrid algorithm (named CLS) that used local search and con-
straint programming. The algorithm was estimated to run in time O(1.68%),
and the L = 45 instance was the one requiring more computing time to find
the optimum (a mean time of 52,920 seconds on a 300MHz DEC Alphaserver
1000A 5/300). Dotu and Van Hentenryck presented in [22] a Tabu Search al-
gorithm capable of solving L < 48 instances from 8 up to 55 times faster than
CLS. In this case, the L = 43 instance was the one requiring more comput-
ing time to find the optimum (a mean time of 1,600 seconds on a 3.01 GHz
PC). Finally, Brglez et al. [23] presented an Evolutionary Strategy (ES) and a
Kernighan-Lin (KL) algorithm, that finds optimal values up to L = 60. With
respect to computing time, KL, performs better and is able to find the optimal
solution in 68% of the runs for the L = 48 instance in 1,080 seconds (on a 266
MHz workstation). For L = 60, KL needed 20 hours for each run.

For very large instances, best results are obtained by Militzer et. al in [14]
using a (u, A\)-ES algorithm. One important characteristic of this evolutionary
algorithm is that no recombination is performed to generate the offspring.
As to the mutation operator, it is not blind and exploits problem knowledge
through a so-called preselection procedure, an heuristic that tries to diminish
aperiodic autocorrelations (C}) with large values. For this purpose, a subset of
t autocorrelations is first randomly selected, and from this subset, the largest
m autocorrelations are taken. Afterwards, n > 1 bits are flipped randomly,
and the new solution is accepted if all m autocorrelations in the latter subset
have been reduced. Otherwise, this procedure is iterated until a solution is
accepted or a maximum number of trials (s, =~ L) is reached.

3 Metaheuristics for the LABS Problem

The LABS problem fits nicely with evolutionary algorithms (EAs), at least re-
garding off-the-shelf application. Since the problem does not pose constraints
on the construction of solutions, sequences of length L can be naturally rep-
resented as binary strings in {—1,1}*, and blind operators for recombination
and mutation can be readily used. Furthermore, there exists a well-defined
objective function (to be minimized), i.e., the energy of a sequence as shown
in equation (2). This said, such a less-principled approach cannot deal appro-
priately with the complexity of the problem, as it will be empirically shown
in Sect. 4. For this reason, it is necessary to augment the EA with problem-
aware add-ons. This can be accomplished via the use of embedded local search
strategies, as described in the following.
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Fig. 1. Data structures to efficiently recompute fitness for a sequence of length 5,
S — (517525" : )85)'

3.1  Neighborhood Structure

function ValueFlip(S,i,7,C)
f=0
forp:=1to L —1do
v:=0C,
if p< L —1then v:=v—-27,, end if
if p < then v:=v—27,,_, end if
fi=f+?
end for
return f
end function

0 N S T W=

Fig. 2. Efficient recomputation of fitness for a move in local search.

In order to perform local search, we consider the neighborhood of a solution S
with length L obtained by flipping exactly one symbol in the sequence. This
neighborhood can be expressed constructively as

N(S) = {flip(S,7) | i € {1,..,L}} (5)
where flip(sy-+-8;-+ Sp,0) =81+ —S;+*+SL.

The evaluation of the fitness function is O(L?), and hence a naive implementa-
tion that completely recomputes the value of a solution after flipping a single
symbol in a sequence S would be rather inefficient. A better implementation
can be obtained by storing all computed products in a (L — 1) x (L — 1)
table 7(5), such that 7(S);; = sjs,+; for j < L — 4, and saving the values
of the different correlations in a L — 1 dimensional vector C(.5), defined as
C(S) = Cr(S) for 1 < k < L — 1. Fig. 1 shows these data structures for a
L =5 instance.

By observing that flipping a single symbol s; multiplies by —1 the values of all
cells in T'(S) where s; is involved, the fitness of sequence flip(S, i) can be effi-
ciently recomputed in time O(L) as the result of the expression ValueFlip(S, 1,
7(S),C(S)), defined in Fig. 2.



function SDLS(S,7,C)

11 ST= S =l

2: repeat

3: f]L =00

4: for 7 := 1 to L do /* scarch best move */

5: S" = flip(S*,1)

6: f' = ValueFlip(S*,i,7T,C)

7: if (f' < f7) then f7:= ;ST := S end if
8: end for

9: if (fT < f*) then

10: S* = St f* .= f1 improvement := True
11: update 7 and C

12: else

13: improvement = False

14: end if

15: until not improvement

16: return S5*

end function

Fig. 3. Steepest descent local search (SDLS) procedure for the LABS problem.

3.2 Local Search Strategies

Using the efficient fitness recomputation mechanism described before, two lo-
cal search strategies have been defined. The first one we have considered is
a steepest descent local search (SDLS) procedure, that moves to the best se-
quence in the neighborhood until reaching a local optimum. The pseudocode
for this algorithm is depicted in Fig. 3

The second local search strategy considered uses Tabu Search as a mechanism
to scape from local optima. For this purpose, we have used a L-dimensional
vector M as an attributive recency-based memory, so that if M; = k, flipping
the i-th symbol in the current sequence is forbidden until the k-th iteration
of the search. The aspiration criteria for ignoring tabu moves is improving
the best solution found in the current run of the local search. The actual
pseudocode of this procedure is shown in Fig. 4. For each iteration, the search
moves to the best sequence in the current neighborhood that is not tabu,
and the corresponding flipped attribute is forbidden for a random number of
iterations proportional to the value of maxlters.



function TabuSearch(S,7T,C)

1: M; =0, for 1 < i < L /* iitialize tenure table */
2: minTabu := mazlters/10

3: extraTabu := mazxlters /50

T S ey

5: for k := 1 to mazlters do

6: =00

7 for i := 1 to L do /* search best move */

8: S’ = flip(S,1)

9: f = ValueFlip(S,i,7T,C)

10: if (k> M,;) or (f' < f*) then

11: if (f' < f1) then

12: fli=f8":= 8"l .=

13: end if

14: end if

15: end for

16: S = St /* make move */

17: update 7 and C

18: M =k + minTabu + URand|0, extraTabu)
19: if (fT < f*) then S* := ST; f* := fT end if
20: end for
21: return S5*

end function

Fig. 4. Tabu Search procedure for the LABS problem.

4 Experimental Results

All algorithms have been run for different instance sizes. Forty independent
executions have been performed for each algorithm and instance size. The
termination criteria for each execution has been either finding the optimal
solution or reaching a time limit. This limit has been set to 5 minutes for
L < 30, and has been gradually incremented in one minute for each size
increment for L > 30 (i.e. the greatest time limit was 35 minutes for L = 60).
All experiments have been performed on a 2.4 GHz P4 PC under Linux.

4.1 Instances with Known Optima

First of all, experiments have been carried out with a steady state EA
(popsize = 100, p,, = 1/L,px = 0.9, binary tournament selection, uniform
crossover) that did not perform local search (the pseudo code for this EA cor-
responds to the MA presented in Fig. 5, but without performing local search).



1: fori:=1 to popsize do

2: popli] := RANDOM BINARY SEQUENCE(L)
3: EVALUATE(popli])

4: end for

5:  while allowed runtime not exceeded do

6: for i := 1 to offsize do

7: if recombination is performed (px) then
8: parent; ;= SELECT(pop)

9: parent, := SELECT(pop)

10: offspring|i] := RECOMBINE(parenty, parents)
11: else

12: offspring[i] := SELECT(pop)

13: end if

14: if mutation is performed (p,,) then

15: offspring|i] := MUTATE(offspring|i])
16: end if

17: offspring[i] := LOCAL SEARCH offspring[i])
18: EVALUATE( offspringli])

19: end for
20: pop := REPLACE(pop, offspring)
21: end while

Fig. 5. Pseudo code of the memetic algorithm.

A full description of the distribution of results (as the relative distance to the
optimum) is shown in Fig. 6. For L < 25, the algorithm has been able to
find the optimal solution in almost all runs, but note how the performance
degrades when L is increased (for L > 38 the EA was only able to find two
optimal solutions and the relative distance to the optimum is large).

Next, experiments have been done to measure the performance of local search
procedures. Both TS and SDLS have been embedded into a random restart
driving procedure, that beginning from a random configuration performed in-
dependent repetitions of the local search procedures ! . Algorithms are restarted
until the time limit is reached, and the best solution found is returned. These
experiments aim to set the baseline for further comparison to MAs endowed
with both procedures. Fig. 7 and Fig. 8, and Table 1 show the results of these
experiments (distributions for L < 40 are omitted as both algorithms were
able to find optimal solutions in all runs in a few seconds). Observe that T'S

1 SDLS is run in each case until locating a local optima. In the case of TS, we have
used a value of mazlters drawn from [L/2,3L/2]. We also tested longer runs, coupled
with intensification strategies that returned to the incumbent of the run, but the
results did not improve those of the random restarting strategy. We hypothesize
that this is due to the rugged structure of the fitness landscape, that benefits in this
particular case restarting over intensification.
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and SDLS can find optimal solutions consistently for L < 50. For L > 50,
although SDLS is able to find the optimum in several runs for all instance
sizes, it is not robust in most cases. The performance of TS is clearly better,
finding optimal solutions in at least 50% of the runs for all instances, except

for L = 57.

In subsequent experiments, the performance of two memetic algorithms en-
dowed with SDLS and TS (denoted MAgprs and MA g respectively) has been
empirically analyzed. The underlaying algorithm is the same as the EA de-
scribed above but with an additional local search phase, and its pseudo code
is displayed in Fig. 5. Results are shown in Fig. 9 and Fig. 10, and in Table 2
(again for L > 40, since the remaining instances are easily solved). Although
MAgprs performs better than SDLS alone in most cases (showing the benefit
of embedding the local search operator within a MA), it still performs weakly

10
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Table 1
Numerical distribution of merit factors for SDLS and TS on different instance sizes.
Optimal solutions are shown in boldface.

SDLS TS
Instance Best Mean & o Median Best Mean & o Median
40 7.40 7.40 £0.00 7.40 7.40 7.40 £0.00 7.40
41 7.78 7.78 £0.00 T7.78 7.78 7.78 £0.00 T7.78
42 8.73 8.73 £0.00 8.73 8.73 8.73 £0.00 8.73
43 8.48 8.48 + 0.00 8.48 8.48 8.48 + 0.00 8.48
44 7.93 7.93 +£0.00 7.93 7.93 7.93 +£0.00 7.93
45 8.58 8.58 & 0.00 8.58 8.58 8.58 & 0.00 8.58
46 8.07 8.07 £ 0.00 8.07 8.07 8.07 £ 0.00 8.07
47 8.18 8.18 £ 0.00 8.18 8.18 8.18 £ 0.00 8.18
48 8.22 8.22 +0.00 8.22 8.22 8.22 + 0.00 8.22
49 8.82 8.82 +0.00 8.82 8.82 8.82 +0.00 8.82
50 8.16 8.16 + 0.00 8.16 8.16 8.16 + 0.00 8.16
51 8.50 824 4+0.24 8.07 8.50 837 +0.19 8.50
52 8.14 8.04 +£0.17 8.14 8.14 &8.10 +0.11 8.14
53 8.26 8.11 +0.18 8.26 8.26 8.20 +0.13 8.26
54 8.33 8.04 +0.31 7.96 8.33 830+ 0.12 8.33
55 8.84 811 +0.46 7.91 8.84 872+ 030 8.84
56 8.16 8.01 £0.15 8.00 8.16 8.12 £ 0.07 8.16
57 8.64 7934+ 0.38 7.96 8.64 8.01 +£0.25 7.96
58 8.53 7954035 7.89 8.53 834 +0.23 8.53
59 8.49 8.00 4+ 0.36  7.87 8.49 832+ 0.25 8.49
60 8.25 7.824+0.30 7.82 8.25 &8.11 +£0.19 8.25

for large instances.

In general, the best overall results are obtained by MArg. This algorithm
showed a high robustness and significantly improved the execution times of
the best approaches reported in the literature that tackled the LABS problem.
Regarding execution times, notice that these have been reported differently

11
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for the T'S algorithm presented in [22] and the KL algorithm described in [23],
and recall that execution platforms are different. In [22], Dot and Van Hen-
tenryck provided the mean time to find the optimum with respect all the runs,
whereas Brglez et al. reported in [23] the allowed execution time for each run.
Due to this difference, we compared the execution times of MArg with those
informed in [22] and [23] separately. Compared to the TS algorithm presented
in [22], Table 3 shows that, like the TS algorithm, MA g also finds optimal so-
lutions in all the runs for L < 48 but this is done in a mean time lower than 55
seconds in the worse case (i.e., L = 48); in fact, MArg is between 5 (for some
instances L < 40) and 95 times faster than Dotd and Van Hentenryck’s TS
without taking into account the smaller computation capacity of our platform,
(recall that our PC is about 20% slower than theirs). Compared to [23], the
KL algorithm finds the optimum for the L = 60 instance in 20 hours of execu-
tion time, whereas MArg needs a mean time of 916 seconds, which implies a
speed up of about one order of magnitude when the computation power of the
different platforms are adjusted (for this comparison, we have estimated that
our platform is 900% faster). Moreover, Table 4 shows the allowed execution
time (in seconds) for both KL and MArg algorithms when L > 48: observe
again the large differences in allowed execution times for both algorithms.

Also, as shown in Tables 3 and 4, the MArg algorithm is very robust, find-
ing optimal solutions in all runs for L < 48 and clearly outperforming KL in
the instances 48 < L < 55, (obtaining again the optimum in almost all the
runs). In addition, for the larger instances (L > 56), MArg achieves optimal
solutions in most executions (i.e., topping 80%), except for L € {57,58}, for
which the success ratios are 48% and 60% (in these cases, the mean distances
to the optimum are 4.34% and 1.78%). Observe however that in these higher
instances the relation success/time is clearly favorable to MArg. For exam-
ple, assuming a number of independent runs of MArg summing up the same
computational time (adjusted for platform differences) than one run of KL,
we can compute the equivalent success ratios of MArg for sizes from 57 to 60

12
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Table 2

Numerical distribution of merit factors for MAgpr,s and MArg on different instance
sizes. Optimal solutions are shown in boldface.

MAspLs MAs
Instance Best Mean & o Median Best Mean & o Median
40 7.40 7.40 £0.00 7.40 7.40 7.40 £0.00 7.40
41 7.78 T7.78 £0.00 7.78 7.78 7.78 £0.00 T7.78
42 8.73 8.73 £0.00 8.73 8.73 8.73 £0.00 8.73
43 8.48 8.39 +£0.20 8.48 8.48 8.48 + 0.00 8.48
44 7.93 7.93 +£0.00 7.93 7.93 7.93 £0.00 7.93
45 8.58 8.58 & 0.00 8.58 8.58 8.58 & 0.00 8.58
46 8.07 8.07 £ 0.00 8.07 8.07 8.07 £ 0.00 8.07
47 8.18 8.18 £ 0.00 8.18 8.18 8.18 £ 0.00 8.18
48 8.22 821 +£0.06 8.22 8.22 8.22 + 0.00 8.22
49 8.82 8.82 +0.00 8.82 8.82 8.82 +0.00 8.82
50 8.16 8.16 + 0.00 8.16 8.16 8.16 + 0.00 8.16
51 8.50 837 +0.25 8.50 8.50 8.48 +0.06 8.50
52 8.14 795+ 0.21 8.14 8.14 8.14 + 0.00 8.14
53 8.26 821 +£0.12 8.26 8.26 825+ 0.05 8.26
54 8.33 7.96 & 0.40 7.96 8.33 8.33 £0.00 8.33
55 8.84 841+ 0.53 8.84 8.84 8.84 + 0.00 8.84
56 8.16 8.04 +£0.12 8.00 8.16 8.15+0.04 8.16
57 8.64 796 4+ 0.33 7.96 8.64 828 4+0.33 7.96
58 8.53 8.024+0.32 7.89 8.53 838 £0.19 8.53
59 8.49 8.17 +0.44 8.49 8.49 846 + 0.07 8.49
60 8.25 7924+ 0.22 7.96 8.25 820 +0.11 8.25

as 83%, 84%, 99.8% and 99.8% respectively. This way, MArg can be shown to
perform at the state-of-the-art level for the LABS problem.

Fig. 11 shows the average evolution along time of the best solution found by

the different algorithms (as its relative distance to the optimum) for LABS(55)
and LABS(60) instances. As we can observe, MArg dominates the remaining

13



Table 3
Comparison of MATg and Tabu Search algorithm in [22]. Table shows mean time
in seconds to find the optimum and percentage of success for both algorithms.

TS [22] MArTg
Instance Time (secs.) % Success Time (secs.) % Success
40 260.11 100 5.65 100
41 460.26 100 20.02 100
42 466.73 100 10.10 100
43 1600.63 100 53.32 100
44 764.66 100 21.23 100
45 1103.48 100 21.26 100
46 703.32 100 7.34 100
47 1005.03 100 13.28 100
48 964.13 100 54.51 100

Table 4
Comparison of MArg and KL algorithm in [23]. Table shows allowed execution time
in seconds and percentage of success for both algorithms.

KL [23] MATs
Instance Time (secs.) % Success Time (secs.) % Success
48 1080 68 1380 100
49 1440 75 1440 100
50 2160 93 1500 100
o1 2880 31 1560 97
52 4320 75 1620 100
53 6120 75 1680 97
54 8640 62 1740 100
55 12600 87 1800 100
56 18000 100 1860 90
57 47520 68 1920 48
58 35280 81 1980 60
59 50040 100 2040 90
60 72000 100 2100 80
50% T T T T T T T 50%

.
)
R

1

H
8
T

Relative distance to optimum
Relative distance to optimum

— MA — MA
--Ts -- TS
. MASDLS : MASDLS
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Fig. 11. Evolution along time of the best solution for the different algorithms for
LABS(55) (left) and LABS(60) (right). All curves are averaged for 40 runs.
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algorithms, as its average solution is consistently better during the whole
execution time, followed by TS. This is also the case for all instances in 50 <
L < 60. We can also observe that MAgprs performs regularly better for these
instances than SDLS alone, a result that holds for all instances in 55 < L < 60,
showing the benefit of embedding the local search operator within a MA. In
this sense, a Wilcoxon rank sum test [24] —also known as Mann-Whitney U
test— at the standard 5% significance level confirms that differences of MAgprs
with respect to SDLS are significant for L € {51,52,53,55,59}. The same test
indicates that differences of MArg with respect to TS are always significant
for L > 50 except for L € {54, 56, 58}.
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Fig. 12. Qualified run—time distributions for the different algorithms and LABS(60)
instance. Figures represent the cumulative probability along time of finding a solu-
tion within the specified relative distance to the optimum.

Another graphical representation of the temporal behavior of the different
algorithms is provided by Fig. 12, that shows qualified run—time distributions
(QRTDs) [25] for the LABS(60) instance. Each figure shows the cumulative
probability along time of finding a solution within different relative distances
to the optimum for a respective algorithm. As it can be seen, TS and MArg
behave in a desirable way, as the probability of finding an optimal solution
increases consistently with time. This indicates that these algorithms are not
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Fig. 13. Relative distance to the optimum (left) and time to find the optimum in
seconds (right) for MApg gpx and different instance sizes.
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Fig. 14. Relative distance to the optimum (left) and time to find the optimum in
seconds (right) for MArg ppx and different instance sizes.

stagnated. Both algorithms start producing optimal solutions at about the
same time, but the optimal solution curve for MA g is steeper than the one for
TS alone, indicating a faster progress of the former algorithm. Note also that
QRTDs for tighter quality bounds are shifted to the right as expected, and that
the run time required for finding optimal solutions is lower for MArg. On the
other hand, SDLS and MAgpys start producing solutions latter and the pattern
of the corresponding curves for optimal solutions can not be determined within
the allowed execution time.

4.2 Other Recombination Operators

MA~Tg utilizes an uniform crossover operator. In this section, we present the
results of experiments carried out in order to asses the performance of two
different standard operators, namely single point crossover (MArg spx) and
double point crossover (MArs ppx). Figs. 13 and 14, and Table 5 show the
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distributions for these experiments. The performance of these operators in this
problem is generally worse than the one obtained by uniform crossover (e.g.,
check the success rates for large values of L). This may be due to the high
epistasis of the LABS problem. These new operators try to exploit building
blocks in solutions, but for the LABS problem all bits in a solution are corre-
lated. In this case, combining elements of the solutions in a uniform manner
works better, since this tends to diversify the search, providing new promising
starting points for the local searcher.

Table 5

Numerical distribution of merit factors for MArg spx and MArs ppx on different
instance sizes. Optimal solutions are shown in boldface.

MArs spx MATs ppx
Instance Best Mean & o Median Best Mean & o Median
40 7.40 7.40 £0.00 7.40 7.40 7.40 £0.00 7.40
41 7.78 T7.78 £0.00 7.78 7.78 T.78 £0.00 7.78
42 8.73 8.73 £0.00 8.73 8.73 8.73 £0.00 8.73
43 8.48 8.48 £0.00 8.48 8.48 8.48 £0.00 8.48
44 7.93 7.93 £0.00 7.93 7.93 7.93 £0.00 7.93
45 8.58 8.58 £0.00 8.58 8.58 8.58 £0.00 8.58
46 8.07 8.07 + 0.00 8.07 8.07 8.07 &+ 0.00 8.07
47 8.18 8.18 £ 0.00 8.18 8.18 8.18 £ 0.00 8.18
48 8.22 8.22 + 0.00 8.22 8.22 8.22 + 0.00 8.22
49 8.82 8.82 +0.00 8.82 8.82 8.82 + 0.00 8.82
90 8.16 8.16 + 0.00 8.16 8.16 8.16 + 0.00 8.16
51 8.50 8.36 +0.19 8.50 8.50 845 +0.12 8.50
52 8.14 8.10£0.11 8.14 8.14 &8.11 £0.09 8.14
53 8.26 8.25 +0.05 8.26 8.26 8.26 + 0.00 8.26
54 8.33 8.31 £0.07 8.33 8.33 828 +£0.14 8.33
55 8.84 8744+ 0.30 8.84 8.84 8794+ 0.20 8.84
56 8.16 &8.11 £0.09 8.16 8.16 &8.13£0.06 8.16
57 8.64 8.16 +0.33 7.96 8.64 8.114+0.28 7.96
58 8.53 8324+ 0.16 8.20 8.53 8294+ 0.19 820
99 8.49 840 £0.12 8.49 8.49 842 +£0.11 8.49
60 8.25 8.10 £ 0.17 8.10 8.25 &8.11 £ 0.18 8.18

4.8 Large Instances

We run MArg for large instances (odd instance sizes in 73 < L < 85), in
order to compare it to best-known heuristics for the LABS problem. For each
instance size, 40 independent executions were run. Execution times were set
as before, so that limits were in the range of 2,880 seconds (for L = 73) to
3,600 seconds (for L = 85). Table 6 shows the results of these experiments.

Table 7 compares solutions provided by MArg with best-known merit factors
in the literature for large instances. In order to better compare different algo-
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Table 6
Merit factors for MAg and large instance sizes.
Instance Best Mean £+ o Median

73 8.65 7.56 + 0.44 7.48
75 8.45 7.41 + 0.35 7.23
77 7.84 7.30 £ 0.23 7.23
79 8.60 7.21 £ 0.32 7.14
81 7.81 7.17 £ 0.22 7.16
83 8.10 7.14 £ 0.34 7.04
85 7.56 6.98 4+ 0.20 6.95

Table 7
Comparison of best-known merit factors in the literature, MApg and MATs giew for

large instance sizes. Best-known solutions are shown in boldface.
Instance [26] [27] [28] MAts MATs™ MATs geew

73 749 766 T7.66 8.65 8.65 7.66
75 8.25 8.25 825 845 8.55 8.25
7 8.10 8.28 8.28 7.84 8.28 8.28
79 734 7.67 7.67 8.60 8.60 7.67
81 732 8.20 8.20 7381 8.04 8.20
83 7.81 9.14 9.14 8.10 8.10 9.14
85 7.03 817 817 7.56 8.73 8.17

rithms, best results are shown in boldface. Note that for these large instances,
other approaches search only skew symmetric sequences (as the general case is
not affordable for those algorithms) whereas MArg performs a non restricted
search. It can be seen that MArg provides better solutions for L € {73,75, 79},
demonstrating that exploring the whole set of sequences for these instances,
instead of restricting the search to a promising subset, is profitable for this
heuristic. Note also that the performance of the algorithm degrades when
L > 81. In next section, algorithm MArg gew that considers only skew sym-
metrical sequences, will be described in depth, and it will be demonstrated
that for those instances better results can be achieved by this latter algorithm.
With the aim of observing the performance of MA g for larger execution times,
the algorithm was run on these same instances with a time limit of 10 hours.
Results are shown in column MA1g!®" of Table 7. As it can be seen, MAg
was able to improve further its results in most of the instances, providing a
total of four new best-known solutions (all new best-known solutions provided
by this work are reproduced in Table 10). In any case, note that the solutions
for L € {81,83} are worse than the ones provided by MATg gkew, although the
execution time for this latter algorithm was more than an order of magnitude
lower (see Sect. 5).
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Table 8
Merit factors for MATs skew and very large instance sizes.
Instance Best Mean £+ o Median
81 8.20 8.20 £+ 0.00 8.20
83 9.14 9.14 + 0.00 9.14
85 8.17 8.17 £ 0.00 8.17
87 8.39 8.39 4+ 0.00 8.39
89 8.18 8.18 £+ 0.00 8.18
91 8.68 8.68 4+ 0.00 8.68
93 8.61 8.61 £+ 0.00 8.61
95 9.42 9.42 + 0.00 9.42
97 8.78 8.66 + 0.21 8.78
99 8.49 8.45 £+ 0.12 8.49
101 8.82 8.70 £ 0.21 8.82
103 9.56 9.28 4+ 0.56 9.56
105 8.89 8.83 £ 0.14 8.89
107 8.46 8.37 + 0.09 8.36
109 8.97 8.64 + 0.37 8.46
111 8.97 8.43 + 0.40 8.34
113 8.49 8.28 + 0.24 8.31
115 8.88 8.41 + 0.28 8.26
117 8.71 8.20 £+ 0.30 8.13
119 8.48 7.90 £+ 0.28 7.81
121 8.67 8.20 + 0.31 8.06
141 8.83 7.62 £+ 0.33 7.52
161 8.57 7.53 + 0.32 7.45
181 7.72 7.14 £+ 0.22 7.10
201 7.66 6.93 £+ 0.26 6.84

5 Skew Symmetric Sequences

One subset of sequences that has gained much attention in the search of LABS
are so called skew-symmetric sequences. These are sequences with odd length
L tulfilling

Snvi=(—1)'s,;, n=(L+1)/2, for1<i<n-1, (6)

from which it follows that C(S) = 0 for odd values of k. Working with skew-
symmetric sequences, reduces by 2”71 the size of the search space that has to
be explored (at the expense of not guaranteing optimality for the general case).
Although Golay derived the same asymptotic value of F, for these sequences
that for the general case, true global optimum are not skew-symmetric for
several values of L (see [17]). Anyway, many heuristics approaches to the LABS
problem have restricted search to the subspace of skew symmetric sequences,
with the aim of being effective for very large instances of the problem.

In this section, we experiment on adapting MArg to search in the space of
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Table 9

Comparison of best-known merit factors in the literature and MATg gew for very

large instance sizes. Best-known solutions are shown in boldface.

Instance [26] [27]  [20] [28] [14] MATS skew

101 6.06 8.36 8.36 8.36 8.82 8.82
103 590 9.56 9.56 9.56 9.56 9.56
105 6.07 8.89 8.25 8.89 8.78 8.89
107 6.53 8.46 8.46 8.36 8.46 8.46
109 6.15 8.97 8.97 7.84 8.97 8.97
111 6.02 8.97 8.97 7.95 8.97 8.97
113 6.33 8.49 8.49 831 8.49 8.49
115 6.40 8.88 8.60 7.79 8.88 8.88
117 6.42 8.71 8.12 8.71 8.71 8.71

119 6.01 7.67 7.54 8.02 8.48
121 6.61 8.67 8.67 8.67
141 6.01 7.45 8.83 8.83
161 6.02 6.89 8.39 8.57
181 5.70 6.77 7.75 7.72
201 6.29 7.46 7.66

skew symmetric sequences. To this end, a solution for a LABS(L) instance
consists of the first (L + 1)/2 bits of the sequence. The remaining bits are
calculated using Eq. (6) in order to obtain a skew symmetric sequence. Re-
call that Cx(S) = 0 for odd values of k, and hence, these correlations do
not have to be computed when calculating the fitness of a skew symmetric
sequence. Accordingly, the probability of mutation have been redefined as
pm = 1/((L +1)/2). The MA so obtained will be named MArg geyw. This al-
gorithm was run on very large instances (odd instance sizes in 81 < L < 121)
and (L € {141,161, 181,201}). 40 independent executions were carried out for
each instance size. Regarding time limits, we followed the same methodology
taken for MA g, but considering that solving the skew symmetrical case for L
is approximately as hard as solving the general case for L/2, and, for the first
group of instances, a time limit of 900 seconds was imposed for L = 81. This
limit was increased by 30 seconds with each increment in instance size (i.e. the
greatest time limit was 35 minutes for L = 121). Clearly, the complexity of the
problem does not grow linearly, and hence larger execution times were given
to the second group of instances. To be precise, the time limit for L = 141
was of one our, and this time limit was incremented in 10 minutes for each
size increment. Table 8 shows the results of these experiments. Going back to
Table 7, we see that MA g sew performs better than MArg for L € {81, 83},
although for these instances the allowed time is more than one order of mag-
nitude lower. This shows that for these instances, it is more profitable to used
MATS skew than MATS-

On Table 9, MArs gew is compared against best-known methods in the lit-
erature. Only the best solutions are compared, as this is the only informa-
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Table 10
New best-known solutions provided by different MAs studied in this paper. Solutions
are shown in run length encoded notation.
Instance  Solution
73 4732231714112121113112211321132111111
75 323332132221312116212121121161115111111
79 113111131121313215213211823121121123442
79 1111111311123112121434181121127412222221
85 131312212131311113121121121411112133211143634
85 11121211112121152121361134431613133231312
119 113311113113323212115613115123111413111121114321221214161213
161 141112411111161331111124111213222314332112134212121131222213
511271213111181125112
201 114171412111312111232311112311121121414614225223221222111222
11311112113113451261221253153113111113113

tion provided in the literature for other approaches. MATg gew always (ex-
cept for L = 181) provides the best solution. Note that for three instances
(L € {119,161,201}) it produces new best-known solutions.

Regarding execution times, it is difficult to compare MArg gew to other ap-
proaches, as the available information is limited. For instance, in [28], the only
information provided is that their algorithm was tested on skew symmetrical
sequences with 73 < L < 119, and that it “was allowed one run of 10° steps
per problem, each run taking several hours, with a small number of additional
runs when results were poor.” These experiments were carried out on a 733
MHz Pentium III PC. In any case, note that the number of individuals gen-
erated by MA1g gew Was less than 10° for the same range of instances, with
a maximum execution time of 34 minutes on a 2.4 GHz Pentium IV PC for
L = 119. With respect to the (u, \)-ES of [14], it is reported that their results
were obtained by running the algorithm for 2 x 10® generations, with u = 10
and A\ ~ L, which implies a total of 2 x L x 10° generated individuals. It
is also remarked that, “due to the nondeterministic character of the ES, the
size of the search space and the roughness of the fitness function, the results
strongly depend on the initial conditions, making it unlikely to reobtain the
best values in every run”. In order to compare this ES to MATs gew, Note
that the complexity of their mutation operator is bounded by L?/2, whereas
the complexity of the local search operator used in MATg gew 18 bounded by
2(L/2)3/3. As the number of generations in each execution for MATg geewis
less than 10® when 81 < L < 121, the total number of operations performed
for this latter algorithm is more than an order of magnitude lower than the
ones performed by the ES for these instances. For L > 121, the number of
generations in each execution for MATg gewis less than 3 x 10°, and hence the
comparison is again favorable to this algorithm.
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6 Conclusions

We have shown that evolutionary methods can successfully compete with
(and often outperform) most approaches existing to date for the LABS prob-
lem. Particularly, we have provided empirical evidence that —despite EAs can
be straightforwardly deployed on the LABS problem— pure evolutionary ap-
proaches cannot cope with the complexity of the problem. They require the
assistance of local-search operators to provide optimal or near-optimal re-
sults consistently. To this end, we have considered two local search strategies,
namely steepest descent local search and Tabu Search. The results indicate
that embedding them within the EA improves synergistically the search ca-
pabilities of the algorithm. Furthermore, the computational time required for
finding optimal solutions in previous state-of-the-art heuristic approaches is
substantially improved.

We have also applied the MArg algorithm to larger LABS instances for which
the optimal is unknown, in order to test the scalability of the approach in
the long term. Results show that the algorithm is capable of systematically
recovering best know solutions and is even able to provide some new best-
known solutions. Additionally, we have adapted the algorithm to explore only
skew-symmetric solutions. This allows testing the algorithm on even larger
instances. Results show that this variant of the algorithm produces new best-
known results for very large instances.
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