
PROCEDURAL MAP GENERATION FOR A RTS GAME

Raúl Lara-Cabrera, Carlos Cotta and Antonio J. Fernández-Leiva

Department “Lenguajes y Ciencias de la Computación”
University of Málaga

Louis Pasteur, 35, 29071, Málaga – Spain
{raul,ccottap,afdez}@lcc.uma.es

ABSTRACT

Procedural content generation (PCG) is the program-
matic generation of game content using a random or
pseudo-random process that results in an unpredictable
range of possible game play spaces. This methodology
brings many advantages to game developers, such as
reduced memory consumption. In this paper we intro-
duce a procedural map generator for a real-time strategy
(RTS) game. The main component of this generator is a
genetic algorithm devoted to create and evolve balanced
maps, i.e. maps where no player has any map related
advantage with respect to other players. The selected
RTS game is called Planet Wars and it was used in the
Google AI Challenge 2010. It is a space conquest game
whose objective is to take over all the planets on the
map.

INTRODUCTION

This paper introduces a map generation method for a
RTS game. This method can be classified as a pro-
cedural content generation method (PCG). PCG refers
to creating game content automatically, through algo-
rithmic means. This content refers to all aspects of
the game that affect game-play other than non-player
character (NPC), such as maps, levels, dialogues, char-
acters, rule-sets and weapons. PCG is interesting for
the game developing community due to several reasons,
such as reduced memory consumption and the saving
in the expense of manually creating game content. Our
map generation method can be categorized (using the
taxonomy proposed in Togelius, Yannakakis, Stanley &
Browne 2011) as an off-line method that generates nec-
essary content, using random seeds and deterministic
generation and following a generate-and-test schema.

Procedural content generation has been used in
many well-known video-games. Borderlands Gearbox
Software 2009 uses a PCG system to create weapons
and items, which can alter their firepower, rate of fire,
and accuracy, add in elemental effects such as a chance
to set foes on fire or cover them in burning acid, and
at rare times other special bonuses such as regenerating
the player’s ammo. PCG system is also used to cre-

ate the characteristic of random enemies that the player
may face. Another example of a game that uses PCG is
Minecraft Mojang 2011, a sandbox-building game with
an infinite map which is expanded dynamically. Spore
Maxis 2008 is a god game simulation that contains mul-
tiple levels of play, from starting as a multi-celled or-
ganism in a tide pool, up to exploring a dynamically
generated universe with advanced UFO technology. The
music of the game is also procedurally generated.

From an academic point of view, there are several pa-
pers related to procedural map generation. In Togelius,
De Nardi & Lucas 2007 the authors designed a system
for offline/online generation of tracks for a simple rac-
ing game. A racing track is created from a parame-
ter vector using a deterministic genotype-to-phenotype
mapping. A search-based procedural content gener-
ation (SBPCG) algorithm for strategy game maps is
proposed in Togelius, Preuss & Yannakakis 2010 from
a multi-objective perspective. A multi-objective evo-
lutionary algorithm is used for searching the space of
maps for candidates that satisfy pairs of these multi-
ple objectives. Another search-based method for gen-
erating maps is presented in Togelius, Preuss, Beume,
Wessing, Hagelback & Yannakakis 2010. In this case,
the maps are generated for the game Starcraft Blizzard
Entertainment 1998. Frade et al. have introduced the
idea of terrain programming, namely the use of genetic
programming to evolve playing maps for video-games,
using either subjective human-based feedback Frade,
de Vega & Cotta 2008, Frade, de Vega & Cotta 2009
or automated quality measures such as accessibility
Frade, de Vega & Cotta 2010a or edge-length Frade,
de Vega & Cotta 2010b. In Mahlmann, Togelius &
Yannakakis 2012 the authors describe a search-based
map generator for an abstract version of the real-time
strategy game Dune 2. Map genotypes are represented
as low-resolution matrices, which are then converted to
higher-resolution maps through a stochastic process in-
volving cellular automata.

In the next section we describe the RTS game that has
been used in the experiments. Then, we describe a pro-
cedural map generator and a genetic algorithm that cre-
ates and evolves balanced map. Right after this descrip-
tion, there is a section where we report the results we

1

Figure 1: A screenshot of Planet Wars

have obtained from the experiments. Finally, we present
our conclusions and future work.

GAME DESCRIPTION

Planet Wars is a real-time strategy (RTS) game based
on Galcon and used in the Google AI Challenge 2010
(a screenshot is shown in figure 1). It is set in outer
space and its objective is to take over all the planets
on the map, or alternatively eliminate all of your oppo-
nents ships. A game of Planet Wars takes place on a
map which contains several planets, each of which has
some number of ships on it. Each planet may have a
different number of ships. The planets may belong to
one of three different owners: you, your opponent, or
neutral. The game has a certain maximum number of
turns. The game may end earlier if one of the play-
ers loses all his ships, in which case the player that has
ships remaining wins instantly. If both players have the
same number of ships when the game ends, its a draw.
On each turn, the player may choose to send fleets of
ships from any planet he owns to any other planet on
the map. He may send as many fleets as he wishes on
a single turn as long as he has enough ships to sup-
ply them. After sending fleets, each planet owned by
a player (not owned by neutral) will increase the forces
there according to that planets growth rate. Different
planets have different growth rates. The fleets will then
take some number of turns to reach their destination
planets, where they will then fight any opposing forces
there and, if they win, take ownership of the planet.
Fleets cannot be redirected during travel. Players may
continue to send more fleets on later turns even while
older fleets are in transit. Despite players make their or-
ders on a turn-by-turn basis, they issue these orders at
the same time, so we can treat this game as a real-time

game.

Figure 2: Structure of the individual

Maps have no particular dimensions and are defined
completely in terms of the planets and fleets in them.
They are defined in plain text files, with each line repre-
senting a planet or a fleet. Planet positions are specified
relative to a common origin in Euclidean space. The co-
ordinates are given as floating point numbers. Planets
never move and are never added or removed as the game
progresses. Planets are not allowed to occupy the exact
same position on the map. The owner of a planet can
be neutral, player 1, or player 2. The number of ships is
given as an integer, and it may change throughout the
game. Finally, the growth rate of the planet is the num-
ber of ships added to the planet after each turn. If the
planet is currently owned by neutral, the growth rate
is not applied. Only players can get new ships through
growth. The growth rate of a planet will never change.
It is given as an integer.

PROCEDURAL MAP GENERATOR

In this section, we present a search-based procedural
map generator that is capable of generating balanced
maps for the real-time strategy game Planet Wars. It is
composed of two systems, a genetic algorithm responsi-
ble for generating and evolving maps and a system re-
sponsible for playing Planet Wars games and evaluating
the maps. The evaluator is a tool developed by Google
for the Google AI Challenge 2010. It has been developed
using Java and is a console application. It runs a cus-
tomizable game between various players and generates
a game trace. The game can be viewed with a visu-
alizer (included in these tools) which reads this game
trace. We have created a script that calls the evalua-
tor with a specified map and stores the game trace to
a file. Later, this file is processed to compute the fit-
ness of the generated map. We have used a Java-based
evolutionary computation research system, called ECJ1,
for constructing the genetic algorithm (a review of this
system can be found in White 2012). It supports multi-
thread evaluation and breeding, a master-slave archi-
tecture, island models, and even experimental support
for GPGPU through a third-party extension. It is eas-
ily configurable because of it simple text-based param-
eter files. Its implementation in Java makes ECJ very
portable. Unless ECJs graphical user interface (GUI)
is needed, ECJ is self contained. The integration of
networking and serialization support that Java provides
makes developing new parallel architectures and check-
pointing methods much easier than starting from scratch
or using a third-party library.

The genetic algorithm generates maps with 20 neutral
planets and two starting planets (one for each player),
i.e. maps with 22 planets. The proposed genetic al-
gorithm follows a generational scheme with elitism (the
best solution always survive). As described on the previ-
ous section, every planet has five properties: x-position,
y-position, owner, growth rate and number os ships. To
obtain a balanced map, we have fixed the growth rate of
the two starting planets. Planets’ owners have been also
fixed, so we got finally 84 parameters (4 for every neutral
planet, and 2 for every starting planet). Each individual
of our genetic algorithm is made of these 84 parameters,
grouped into a vector of floating point numbers in the
range between 1 and 5. The first two parameters are
the x and y position of the home planet for player 1,
while the next two parameters correspond to the posi-
tion of the home planet for player 2. Then, there are
20 groups of 4 parameters, one group for each neutral
planet, whose parameters are the x position, y position,
growth rate and number of ships respectively (see figure
2).

The algorithm (see table 1) uses a population of 40 in-
dividuals on each generation with a runtime of 100 gen-

1http://cs.gmu.edu/~eclab/projects/ecj/

Figure 3: Genetic algorithm’s breeding pipeline

Number of generations 100
Number of individuals 40
Crossover probability 0.75
Mutation probability 0.70
Replacement policy 1-elitism

Table 1: Genetic algorithm’s parameters

erations. It uses tournament selection (i.e. the algo-
rithm selects two individuals and selects the one with
the higher fitness) as the selection method, and crossover
and mutation as breeding operators (figure 3 shows a
detailed view of the breeding pipeline). The crossover
method selected for our algorithm performs a line re-
combination: The two individuals are treated as points
in space. A straight line is drawn through both points,
and two children are created along this line. If the in-
dividuals are −→x and −→y , we draw two random values
α and β, each between −p and 1 + p inclusive. Then
the two children are defined as α−→x + (1 − α)−→y and
β−→y + (1 − β)−→x respectively (with p = 0.75). We have
used gaussian mutation as mutation operator. It adds
Gaussian noise to the current value, this way, planets
may be displaced or its size may be changed. If the
result is outside the bounds of minimum and maximum
legal values, another Gaussian noise is tried instead, and
so on, until a legal value is found (or a certain number
of retries is reached).

0

200

400

600

800

●
●

●
● ● ● ●

● ● ● ● ● ● ● ●

● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

1 11 21 31 41 51 61 71 81 91
generation

fit
ne

ss

Figure 4: Evolution of the fitness.

To evaluate the fitness of every individual the algorithm
makes a genotype-to-phenotype transformation, scaling
the values of the individual. Positions are scaled be-
tween 10 and 50, the number of ships is rounded to an
integer and scaled between 10 and 50 while the growth
rate is just rounded to an integer. Once these parame-
ters has been normalized, the algorithm writes the map
to a file, using these parameters to generate the plan-
ets. Then, the algorithm runs a game that take place on
the recently generated map between two players. These
two players are instances of the same bot, this way the
player’s ability does not affect the measurement of how
balanced has been this game. Once the game has fin-

ished, the algorithm gathers the total number of ships
(S1 and S2 respectively) and planets (NP1 and NP2
respectively) owned by both players and compute the
fitness function (1) with these values.

f =
(NP1 ∗NP2)(S1 + S2)

|S1− S2|+ 1
(1)

We wanted to obtain balanced maps, that is, maps
where a player doesn’t get any advantage over the other
players. This is the reason why we have the difference
between the two players’ number of ships on the denom-
inator of the fitness function, because we wanted at least
score difference as possible between the two players (is
a balanced map). Keeping in mind the same objective,
we sum these number of ships on the numerator to pro-
mote maps where the players last enough to build big
fleets. This sum is multiplied by another multiplication
(number of planets of both players) to penalize those
maps where a player wins over another or both players
remain static until the end of turns.

RESULTS

We have run this algorithm several times, and we have
obtained many fully playable and balanced maps. After
making these experiments we have noticed that the evo-
lution of the fitness is not constantly growing, that is,
sometimes the fitness remains unchanged during a cer-
tain amount of generations. This fitness doesn’t change
because this genetic algorithm has elitism as the se-
lection method (the best individual survives and is in-
cluded in the next population). Another observation is
that the planets of the generated maps are much sepa-
rated from each other. Maps of this kind should have a
high fitness value because it takes a long time (number
of turns) to reach the enemy, so the number of ships
for each player increases without battles decreasing it.
These neutral planets have different sizes and these sizes
don’t appear to follow any trend or be restricted to any
range (besides the value range for the parameters of the
genetic algorithm’s individuals). Moreover, the position
of these neutral planets are different in every map and
they don’t follow any trend as well.

CONCLUSION AND FUTURE WORK

In this paper we have introduced a simple procedural
map generator for a RTS game that is capable of gen-
erating balanced maps for two player games in an ac-
ceptable execution time. An example of a map gener-
ated by this algorithm is shown in figure 5. Despite
this algorithm generates fully playable maps, there are
several improvements that could be made to this gen-
erator. For example, the generator uses a simple ge-
netic algorithm which can be tuned more exhaustively
to obtain a better performance (changing the breeding

Figure 5: Balanced maps for Planet Wars.

pipeline or/and researching more optimal breeding op-
erators). The maps generated by this algorithm are not
symmetrical and some planets should be overlapped, so
the map generation function could be improved avoid-
ing overlapped planets and forcing these to be symmet-
rical. When evolving the maps, the fitness function is
obtained from only one game (execution) with the same
two players. A better fitness function should obtain its
data from several games with different players playing
each of these games. This way the map would not been
balanced only for a kind of player, but a group of them.
Although this is a simple map generator for a simple
RTS game, it can be easily scaled to work with more
complex games and situations.

ACKNOWLEDGEMENTS

This work is partially supported by Spanish MICINN
under project ANYSELF (TIN2011-28627-C04-01), and
by Junta de Andalućıa under project P10-TIC-6083
(DNEMESIS).

REFERENCES

Blizzard Entertainment 1998, Starcraft, Blizzard Enter-
tainment.

Frade, M., de Vega, F. & Cotta, C. 2010a, Evolution
of artificial terrains for video games based on ac-
cessibility, in C. Di Chio, S. Cagnoni, C. Cotta,
M. Ebner, A. Ekrt, A. Esparcia-Alcazar, C.-K.
Goh, J. Merelo, F. Neri, M. Preu, J. Togelius &
G. Yannakakis, eds, ‘Applications of Evolutionary
Computation’, Vol. 6024 of Lecture Notes in Com-

puter Science, Springer Berlin / Heidelberg, pp. 90–
99.

Frade, M., de Vega, F. F. & Cotta, C. 2008, Modelling
video games’ landscapes by means of genetic ter-
rain programming - a new approach for improving
users’ experience, in M. Giacobini et al., eds, ‘Ap-
plications of Evolutionary Computing’, Vol. 4974
of Lecture Notes in Computer Science, Springer,
pp. 485–490.

Frade, M., de Vega, F. F. & Cotta, C. 2009, ‘Breed-
ing terrains with genetic terrain programming: The
evolution of terrain generators’, International Jour-
nal of Computer Games Technology 2009.

Frade, M., de Vega, F. F. & Cotta, C. 2010b, Evolu-
tion of artificial terrains for video games based on
obstacles edge length, in ‘IEEE Congress on Evo-
lutionary Computation’, IEEE, pp. 1–8.

Gearbox Software 2009, Borderlands, 2K Games.

Mahlmann, T., Togelius, J. & Yannakakis, G. N. 2012,
Spicing up map generation, in C. D. Chio et al.,
eds, ‘EvoApplications’, Vol. 7248 of Lecture Notes
in Computer Science, Springer, pp. 224–233.

Maxis 2008, Spore, Electronic Arts.

Mojang 2011, Minecraft, Mojang.

Togelius, J., De Nardi, R. & Lucas, S. 2007, Towards
automatic personalised content creation for racing
games, in ‘Computational Intelligence and Games,
2007. CIG 2007. IEEE Symposium on’, pp. 252–
259.

Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagel-
back, J. & Yannakakis, G. 2010, Multiobjective ex-
ploration of the starcraft map space, in ‘Compu-
tational Intelligence and Games (CIG), 2010 IEEE
Symposium on’, pp. 265 –272.

Togelius, J., Preuss, M. & Yannakakis, G. N. 2010, To-
wards multiobjective procedural map generation,
in ‘Proceedings of the 2010 Workshop on Procedu-
ral Content Generation in Games’, pp. 3:1–3:8.

Togelius, J., Yannakakis, G. N., Stanley, K. O. &
Browne, C. 2011, ‘Search-based procedural content
generation: A taxonomy and survey’, IEEE Trans-
actions on Computational Intelligence and AI in
Games 3(3), 172–186.

White, D. 2012, ‘Software review: the ecj toolkit’,
Genetic Programming and Evolvable Machines
13, 65–67. 10.1007/s10710-011-9148-z.

