
A procedural balanced map generator with
self-adaptive complexity for the real-time

strategy game Planet Wars

Raúl Lara-Cabrera, Carlos Cotta and Antonio J. Fernández-Leiva

Department “Lenguajes y Ciencias de la Computación”, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 Málaga – Spain

{raul,ccottap,afdez}@lcc.uma.es

Abstract. Procedural content generation (PCG) is the programmatic
generation of game content using a random or pseudo-random process
that results in an unpredictable range of possible gameplay spaces. This
methodology brings many advantages to game developers, such as re-
duced memory consumption. This works presents a procedural balanced
map generator for a real-time strategy game: Planet Wars. This gen-
erator uses an evolutionary strategy for generating and evolving maps
and a tournament system for evaluating the quality of these maps in
terms of their balance. We have run several experiments obtaining a set
of playable and balanced maps

1 Introduction

Procedural content generation (PCG) refers to creating game content automat-
ically, through algorithmic means. This content refers to all aspects of the game
that affect gameplay other than non-player characters (NPCs), such as maps,
levels, dialogues, characters, rule-sets and weapons. PCG is interesting for the
game developing community due to several reasons, such as reduced memory
consumption and the saving in the expense of manually creating game content.

Due to the benefits detailed previously, procedural content generation has
been used in many well-known videogames. Borderlands [10] uses a PCG system
to create weapons and items, which can alter their firepower, rate of fire, and
accuracy, add in elemental effects such as a chance to set foes on fire or cover them
in burning acid, and at rare times other special bonuses such as regenerating the
player’s ammo. PCG system is also used to create the characteristic of random
enemies that the player may face. Another example of a game that uses PCG is
Minecraft [15], a sandbox-building game with an infinite map which is expanded
dynamically. Spore [14] is a god game simulation that contains multiple levels
of play, from starting as a multi-celled organism in a tide pool, up to exploring
a dynamically generated universe with advanced UFO technology. The music of
the game is also procedurally generated.

From an academic point of view, there are several papers related to proce-
dural map generation. In [19] the authors designed a system for offline/online



generation of tracks for a simple racing game. A racing track is created from a pa-
rameter vector using a deterministic genotype-to-phenotype mapping. A search-
based procedural content generation (SBPCG) algorithm for strategy game maps
is proposed in [21] from a multi-objective perspective. A multi-objective evolu-
tionary algorithm is used for searching the space of maps for candidates that
satisfy pairs of these multiple objectives. Another search-based method for gen-
erating maps is presented in [20]. In this case, the maps are generated for the
game Starcraft [2]. Frade et al. have introduced the idea of terrain programming,
namely the use of genetic programming to evolve playing maps for videogames,
using either subjective human-based feedback [7], [8] or automated quality mea-
sures such as accessibility [6] or edge-length [9]. In [13] the authors describe
a search-based map generator for an abstract version of the real-time strategy
game Dune 2. Map genotypes are represented as low-resolution matrices, which
are then converted to higher-resolution maps through a stochastic process in-
volving cellular automata.

Real-time strategy (RTS) games are a genre of videogames which require
managing different kind of units and resources in real-time. In a RTS game the
participants position and maneuver units and structures under their control to
secure areas of the map and/or destroy their opponents’ assets. In a typical
RTS, it is possible to create additional units and structures during the course of
a game, but this is generally limited by the number of accumulated resources.
These resources are gathered by controlling special points on the map and/or
possessing certain types of units and structures devoted to this purpose. The
typical game of the RTS genre features resource gathering, base building, in-
game technological development and indirect control of units. They are usually
played by two or more players (human or not). These players have to deal with
incomplete information during the game (the map is covered by fog of war, the
technology developed by a player is unknown by every other player, ...). These
features make RTS games a great tool for computational intelligence research,
since a RTS game player needs to master many challenging problems such as
resource allocation [3,11], strategy planning [1,5,16] and opponent’s strategy pre-
diction [4,18]. In addition, procedural content generation can be used to create
maps, units and technologies for RTS games. Traditionally, academic game arti-
ficial intelligence (AI) was mainly linked to non player character (NPC) behavior
and pathfinding. However, there are new research areas that have recently pro-
vided innovative solutions for a number of game development challenges, like
player experience modeling (PEM), procedural content generation (PCG) and
large scale game data mining [23].

This paper introduces a map generation method for a RTS game that can be
categorized (using the taxonomy proposed in [22]) as an off-line method that gen-
erates necessary content, using random seeds and deterministic generation and
following a generate-and-test schema. This method generates balanced maps, i.e.
maps where players do not have any advantage over their opponents regardless
of their ability or strategy type.



2 Game Description

Planet Wars is a real-time strategy (RTS) game based on Galcon and used in
the Google AI Challenge 2010. The game is set in outer space and its objective
is to take over all the planets on the map or eliminate all of your opponents
ships. A game of Planet Wars takes place on a map that contains several planets
with some number of ships on it. Each planet may have a different number of
ships. The planets may belong to some player or may be neutral. The game has
a certain maximum number of turns and it may end earlier if one of the players
loses all his ships, and in this case the player that has ships remaining wins
instantly. If both players have the same number of ships when the game ends, it
is considered a draw. On each turn, the player may choose to send fleets of ships
from any planet he owns to any other planet on the map. He may send as many
fleets as he wishes on a single turn as long as he has enough ships to supply them.
After sending fleets, each planet owned by a player (not owned by neutral) will
increase the forces there according to that planets growth rate. Different planets
have different growth rates. The fleets will then take some number of turns to
reach their destination planets, where they will then fight those opposing forces
there and, if they win, take ownership of the planet. Fleets cannot be redirected
during travel. Players may continue to send more fleets on later turns even while
older fleets are in transit. Despite players make their orders on a turn-by-turn
basis, they issue these orders at the same time, so we can treat this game as a
real-time game.

Maps have no particular dimensions and are defined completely in terms of
the planets and fleets in them. They are defined in plain text files, with each
line representing a planet or a fleet. Planet positions are specified relative to a
common origin in Euclidean space. The coordinates are given as floating point
numbers. Planets never move and are never added or removed as the game
progresses. Planets are not allowed to occupy the exact same position on the
map. A planet can be neutral or owned by some player. The number of ships is
given as an integer, and it may change throughout the game. Finally, the growth
rate of the planet is the number of ships added to the planet after each turn. It
is given as an integer and it also represents the size (i.e. radius) of the planet. If
the planet is currently owned by neutral, the growth rate is not applied. Only
players can get new ships through growth. The growth rate of a planet will never
change.

3 A Procedural Balanced Map Generator

A map is balanced if players do not have any advantage over their opponents
regardless of their ability or strategy type. Due to this feature, this kind of maps
are important for the evaluation of human or artificial players, since they do
not boost the performance of any player. In order to create balanced maps, we
have designed a procedural map generator that is composed of an evolutionary
strategy and a tournament system. The evolutionary strategy is responsible for



generating new random maps and evolving them, while the tournament system
evaluates the quality of the generated maps based on the results obtained from
several matches between non-player characters.

3.1 Evolutionary strategy

As mentioned before, the evolutionary strategy (ES) is devoted to generate maps
with an arbitrary number of neutral planets ranged between 15 and 30 following
the rules of the game. These maps are the individuals of the ES and they are
represented by a variable-length vector of planets. As described on the previous
section, every planet has five properties: x-position, y-position, owner, growth
rate and number of ships. We have fixed planet’s holders so that players own the
first and second planet of every map while the rest of the planets are neutral, so
individuals’ genes are groups of 4 parameters. In addition to these parameters
the algorithm needs 4 additional parameters since this is a self-adaptive evolu-
tionary strategy so the parameters of the mutation operator evolve along with
the planets’ parameters.

Regarding these planets’ parameters, two of them have real values (x and y
position) while the other two (growth rate and number of ships) have integer
values. In addition to this, x and y positions range between 0 and 15, while the
growth rate and the number of ships fluctuate between 1 and 5, and 100.

Due to the types of the parameters (real and integer), the evolutionary strat-
egy uses an hybrid mutation operator that uses different mutation methods for
real and integer parameters. The operator mutates x and y coordinates follow-
ing a Gaussian mutation scheme with self-adaptive step sizes. The problem with
applying Gaussian mutation to integer values is that this kind of mutation gen-
erates real-value perturbations which are rounded to an integer perturbation. To
prevent this, this mutation operator uses a method [12,17] that generates suit-
able integer mutations for the growth rate and number of ships. This method is
similar to the self-adaptive mutation of real values, with a set of step-size pa-
rameters controlling the strength of the mutation, but using the difference of two
geometrically distributed random variables to generate the perturbation instead
of the normal distributed random variables used by the real values method.

In the case of real-valued parameters ⟨x1, ..., xn⟩ they are extended with n
step sizes, one for each parameter, resulting in ⟨x1, ..., xn, σ1, ..., σn⟩. The muta-
tion mechanism is specified as follows:

σ′
i = σi · eτ

′·N(0,1)+τ ·Ni(0,1)

x′i = xi + σi ·Ni(0, 1)

where τ ′ ∝ 1/
√
2n, and τ ∝ 1/

√
2
√
n. A boundary rule is applied to step sizes

to prevent standard deviations very close to zero: σ′
i < ϵ0 ⇒ σ′

i = ϵ0 (in this
algorithm, σ0 represents 1% of the parameter’s range).

Regarding integer-valued parameters ⟨z1, ..., zm⟩ they are extended in a sim-
ilar way than real-valued parameters, resulting in ⟨z1, ..., zm, ς1, ..., ςm⟩. The mu-



tation mechanism is specified as follows:

ς ′i = max(1, ςi · eτ ·N(0,1)+τ ′·N(0,1))

ψi = 1− (ς ′i/m)

1 +

√
1 +

(
ς ′i
m

)2
−1

z′i = zi +

⌊
ln(1− U(0, 1))

ln(1− ψi)

⌋
−
⌊
ln(1− U(0, 1))

ln(1− ψi)

⌋
where τ = 1/

√
2m and τ ′ = 1/

√
2
√
m. As described before, the main difference

between the two methods is the distribution used to generate the perturbation.

Continuing with operators, this evolutionary strategy uses a “cut and splice”
operator that recombines two individuals by swapping cut pieces with different
sizes (this way, generated maps have different numbers of planets). We have
chosen this operator due to the arbitrary length of the individuals. Table 1
summarizes the algorithm’s parameters.

Representation Vector of planets

Recombination Cut and slice

Mutation Gaussian perturbation (real) and geometric difference (integers)

Parent selection Binary tournament

Survivor selection (µ+ λ) with µ = 10 and λ = 100

Speciality Self-adaption of mutation step sizes and genome length
Table 1. Algorithm’s parameters

To evaluate the quality of every individual the algorithm runs a tournament
that takes place on the generated map between several players. Once the tourna-
ment has finished, the algorithm gathers the individual’s fitness from the result
of the tournament. Equation (3) defines the fitness, with Nm being the number
of matches played during the tournament, ti being the number of turns of match
i, Ki being the added up percentage of occupied planets by both players at the

end of the game, P
(1)
ij , P

(2)
ij being the percentage of owned planets by player 1

and player 2 respectively, in match i and turn j and S
(1)
ij , S

(2)
ij being the per-

centage of the total ships owned by player 1 and player 2 respectively in match
i and turn j.

P̄i =

∑ti
j=1

∣∣∣P (1)
ij − P

(2)
ij

∣∣∣
ti

(1)

S̄i =

∑ti
j=1

∣∣∣S(1)
ij − S

(2)
ij

∣∣∣
ti

(2)



fitness =

(
1

Nm

Nm∑
i=1

Ki · ti
P̄i + S̄i + 1

)2

(3)

Fitness function (3) promotes balanced maps through its components: P̄i and
S̄i promotes maps where players have similar number of planets and ships (it
sums up 1 to avoid dividing by zero), while ti promotes long games because it
means that there have not been a winner or the winner is determined nearly
at the end of the game. Finally, Ki promotes maps where there have been high
activity, i.e. players have conquered many planets.

3.2 Tournament System

The tournament system is the component devoted to evaluate the quality of the
generated maps. This component runs a set of Planet Wars games between an
arbitrary number of non-player characters (NPC). Every NPC plays at least a
game against each other, although this parameter is customizable. The tour-
nament system evaluates every game analyzing the logs generated by a Java
console-style tool, which was developed by Google for the Google AI Challenge
2010. The evolutionary strategy provides the maps to the tournament system,
which evaluates the map and returns this evaluation to the former.

Fig. 1. An example of a balanced procedural generated map.

4 Experiments and Results

We have run two experiments (10 executions each) with different parameters,
obtaining a set of playable and balanced maps (one of these maps is shown in



Figure 1). The first experiment uses an evolutionary strategy with the parame-
ters described before (see Table 1), using a self-adapting strategy for mutation
steps and genome length (i.e. number of planets in the map), while the second
experiment uses the same parameters except for the fixed genome length (23
planets in every map since the number of planets ranges between 15 and 30).
We have evaluated the quality of the maps using the tournament system with
three NPCs who were participants of the Google AI Challenge 2010 (Manwe1,
Flagscapper’s bot2 and fglider’s bot3) , all of them ranked in the top 100 and
having their source code available (there were over 4600 participants). The maxi-
mum number of turns per game has been limited to 400 turns. We have observed
that the planets of many generated maps are much separated from each other.
Maps of this kind should be considered as balanced maps because it takes a
long time (number of turns) to reach the enemy and fight him, so players can
conquest new planets without troubles and their fleet grows with a similar rate
—the fitness of this kind of maps will be high because of the low difference
between the number of owned planets and ships.

Fig. 2. Evolution of the averaged fitness.

1 https://github.com/Manwe56/Manwe56-ai-contest-planet-wars
2 http://flagcapper.com/?c1
3 http://planetwars.aichallenge.org/profile.php?user_id=8490



Figure 2 shows the evolution of the averaged fitness for the two experiments
(solid line for self-adaption of the genome size and mutation steps and dashed
line for self-adaption of mutation steps only). Grey areas show the standard mean
error of the averaged fitness values. As we can see in the figure, both experiments
have a similar behavior over the first evaluations but the self-adaptive algorithm
(experiment 1) gets a better fitness over the subsequent evaluations. Figure 3
shows the evolution of the averaged number of planets in the best map (i.e.
the individual with the highest fitness). As we can observe in the figure, after
some evaluations, this number converges to the value 17, so we should think that
maps with 17 planets are more balanced than other maps with a higher number
of planets.

Fig. 3. Evolution of the averaged number of planets in the best map.

5 Conclusion and Future Work

In this paper we have introduced a procedural map generator for a RTS game
that is capable of generating balanced maps for a real-time strategy game: Planet
Wars. These maps do not give any advantage to the players regardless of their
ability or strategy type. This generator turns Planet Wars into an endless game



and makes the game more interesting to weak players (since they do not lose with
ease), raising the competitiveness of the stronger player with harder challenges.

Despite this algorithm generates fully playable maps, there are some im-
provements that could be made to this generator. The evolutionary strategy
uses only a mutation operator, so it could be interesting to improve the breeding
pipeline, adding additional or improved mutation and recombination operators.
Moreover, maps generated by this algorithm are not symmetrical and some plan-
ets should be overlapped, although the evolutionary strategy avoids overlapped
planets since this is an advantage to the player who has this overlapped planets
nearer. In addition to this, it is possible to obtain other characteristics of the
maps that make them more balanced, such as the averaged distance between the
planets, players’ initial positions or the distribution of the planets over the map.

In the near future, we are going to introduce interactivity and pro-activity
to this procedural map generator, in order to improve its performance and the
quality of generated maps.

Acknowledgements

This work is partially supported by Spanish MICINN under project ANYSELF
(TIN2011-28627-C04-01), and by Junta de Andalućıa under project P10-TIC-
6083 (DNEMESIS).

References

1. Aha, D.W., Molineaux, M., Ponsen, M.J.V.: Learning to win: Case-based plan
selection in a real-time strategy game. In: Muñoz-Avila, H., Ricci, F. (eds.) Inter-
national Conference on Case-Based Reasoning. Lecture Notes in Computer Science,
vol. 3620, pp. 5–20. Springer (2005)

2. Blizzard Entertainment: Starcraft. Blizzard Entertainment (1998)
3. Chan, H., Fern, A., Ray, S., Wilson, N., Ventura, C.: Online planning for resource

production in real-time strategy games. In: Boddy, M.S., et al. (eds.) International
Conference on Automated Planning and Scheduling. pp. 65–72. The AAAI Press
(2007)

4. Cheng, D., Thawonmas, R.: Case-based plan recognition for real-time strategy
games. In: El-Rhalibi, A., van Welden, D. (eds.) GameOn Conference. pp. 36–40.
EUROSIS (2004)

5. Chung, M., Buro, M., Schaeffer, J.: Monte Carlo Planning in RTS Games. In: IEEE
Symposium on Computational Intelligence and Games. IEEE (2005)

6. Frade, M., de Vega, F., Cotta, C.: Evolution of artificial terrains for video games
based on accessibility. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekrt,
A., Esparcia-Alcazar, A., Goh, C.K., Merelo, J., Neri, F., Preu, M., Togelius, J.,
Yannakakis, G. (eds.) Applications of Evolutionary Computation, Lecture Notes
in Computer Science, vol. 6024, pp. 90–99. Springer Berlin / Heidelberg (2010)

7. Frade, M., de Vega, F.F., Cotta, C.: Modelling video games’ landscapes by means
of genetic terrain programming - a new approach for improving users’ experience.
In: Giacobini, M., et al. (eds.) Applications of Evolutionary Computing. Lecture
Notes in Computer Science, vol. 4974, pp. 485–490. Springer (2008)



8. Frade, M., de Vega, F.F., Cotta, C.: Breeding terrains with genetic terrain pro-
gramming: The evolution of terrain generators. International Journal of Computer
Games Technology 2009 (2009)

9. Frade, M., de Vega, F.F., Cotta, C.: Evolution of artificial terrains for video games
based on obstacles edge length. In: IEEE Congress on Evolutionary Computation.
pp. 1–8. IEEE (2010)

10. Gearbox Software: Borderlands. 2K Games (2009)
11. Kovarsky, A., Buro, M.: A First Look at Build-Order Optimization in Real-Time

Strategy Games. In: Wolf, L., Magnor, M. (eds.) GameOn Conference. pp. 18–22.
EUROSIS (2006)

12. Li, R.: Mixed-integer evolution strategies for parameter optimization and their
applications to medical image analysis. Ph.D. thesis (2009)

13. Mahlmann, T., Togelius, J., Yannakakis, G.N.: Spicing up map generation. In:
Chio, C.D., et al. (eds.) EvoApplications. Lecture Notes in Computer Science, vol.
7248, pp. 224–233. Springer (2012)

14. Maxis: Spore. Electronic Arts (2008)
15. Mojang: Minecraft. Mojang (2011)
16. Ng, P.H.F., Li, Y.J., Shiu, S.C.K.: Unit formation planning in RTS game by using

potential field and fuzzy integral. In: Fuzzy Systems. pp. 178–184. IEEE (2011)
17. Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor, Y.,

Schwefel, H.P., Mnner, R. (eds.) Parallel Problem Solving from Nature PPSN
III, Lecture Notes in Computer Science, vol. 866, pp. 139–148. Springer Berlin
Heidelberg (1994)

18. Synnaeve, G., Bessiere, P.: A bayesian model for opening prediction in RTS games
with application to StarCraft. In: Computational Intelligence and Games. pp. 281
–288. IEEE (2011)

19. Togelius, J., De Nardi, R., Lucas, S.: Towards automatic personalised content cre-
ation for racing games. In: Computational Intelligence and Games, 2007. CIG 2007.
IEEE Symposium on. pp. 252–259 (2007)

20. Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelback, J., Yannakakis, G.:
Multiobjective exploration of the starcraft map space. In: Computational Intelli-
gence and Games (CIG), 2010 IEEE Symposium on. pp. 265 –272 (2010)

21. Togelius, J., Preuss, M., Yannakakis, G.N.: Towards multiobjective procedural map
generation. In: Proceedings of the 2010 Workshop on Procedural Content Gener-
ation in Games. pp. 3:1–3:8 (2010)

22. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural
content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3), 172–186 (2011)

23. Yannakakis, G.N.: Game ai revisited. In: Proceedings of the 9th conference on
Computing Frontiers. pp. 285–292. CF ’12, ACM, New York, NY, USA (2012)


