A review of computational intelligence in RTS games

Raul Lara-Cabrera, Carlos Cotta and Antonio J. Fernandez-Leiva

Abstract—Real-time strategy games offer a wide variety of
fundamental AI research challenges. Most of these challenges
have applications outside the game domain. This paper provides
a review on computational intelligence in real-time strategy
games (RTS). It starts with challenges in real-time strategy
games, then it reviews different tasks to overcome this chal-
lenges. Later, it describes the techniques used to solve this
challenges and it makes a relationship between techniques and
tasks. Finally, it presents a set of different frameworks used as
test-beds for the techniques employed. This paper is intended
to be a starting point for future researchers on this topic.

Index Terms—Computational intelligence, real-time strategy
games, review.

I. INTRODUCTION

Commercial video-games are a rising value in the en-
tertainment industry. The total spent in the video-game
industry in 2010 was 25.1 billion dollars [15]. Video-game
budgets are high and their development teams are composed
of many people. Traditionally, game developers have over-
looked their non-player characters’ artificial intelligence, fo-
cusing to other aspects of the game, such as graphic engines
and 3-D modeling. This situation leads to a poor gaming
experience, since human players are able to win the game
without much effort. Computational intelligence is growing
in importance and video-game players are demanding good
artificial intelligence (AI) which makes these games more
interesting and harder to beat.

RTS games are a genre of video-games which require
managing different kind of units and resources in real-time.
In a RTS game the participants position and maneuver units
and structures under their control to secure areas of the map
and/or destroy their opponents’ assets. In a typical RTS, it is
possible to create additional units and structures during the
course of a game, but this is generally limited by the number
of accumulated resources, which are gathered by controlling
special points on the map and/or possessing certain types of
units and structures devoted to this purpose. The typical game
of the RTS genre features resource gathering, base building,
in-game technological development and indirect control of
units. They are usually played by two or more players
(human or not) that have to deal with incomplete information
during the game (the map is covered by fog of war, the
technology developed by a player is unknown by every other
player, ...). These features make RTS games a great tool
for computational intelligence research, since a RTS game
player needs to master many challenging problems such
as resource allocation, spatial reasoning, strategy planning
and opponent’s strategy prediction. In addition, procedural

The three authors are with Department “Lenguajes y Ciencias de la
Computacién”, ETSI Informdtica, University of Madlaga, Spain (emails:
{raul, ccottap,afdez}@lcc.uma.es)

content generation can be used to create maps, units and
technologies for RTS games. Traditionally, academic game
Al was mainly linked to non player character (NPC) behavior
and pathfinding. However, there are new research areas that
have recently provided innovative solutions for a number
of game development challenges, like player experience
modeling (PEM), procedural content generation (PCG) and
large scale game data mining [86].

Real-time strategy and turn-based games (RTS and TBS
respectively) are sub-genres of strategy games. They have a
lot of aspects in common. Many of the proposed challenges
and tasks could be applicable to RTS and TBS without
distinction. However, aspects related to real-time (i.e. adver-
sarial real-time planning) are only applicable to RTS.

Computational intelligence in RTS video games is quite a
new field of research (although there are old papers on the use
of evolutionary algorithms for real time adversarial gaming
[6], [19]), as opposed to the computational intelligence in
TBS and board games like Chess and Go. Since this is a
recent topic, there are no previous reviews. This is the main
motivation behind this paper.

II. CHALLENGES IN REAL-TIME STRATEGY GAMES

As we briefly noted before, RTS games offer a large vari-
ety of fundamental Al research problems [7]. In this section,
we describe these research challenges and its relationships
with RTS games.

A. Adversarial real-time planning

As its name suggests, RTS game’s actions are made in real-
time, so players have to make their decisions under severe
time constraints and they need to be able to execute multiple
orders simultaneously. In addition to this, games take place in
dynamic and hostile environments that contains adversaries
who modify the game state asynchronously. These charac-
teristics denote the need to investigate adversarial real-time
planning approaches. Turn-based games’ (like Chess) agents
have to deal with dynamic and hostile environments as well,
but the fact of the game not happening in real time makes this
challenge less difficult to overcome than the same challenge
in a real-time environment.

B. Decision making under uncertainty

In most commercial RTS games, NPCs have all the in-
formation on the game state, including the location of the
human player units and buildings. This situation should be
considered as cheating, because players lack this information.
To prevent this unbalanced situation, it is necessary to impose
partial observability onto RTS games, ensuring that all play-
ers play the game on equal terms. This partial observability,

usually named “fog of war”, represents another challenge to
the design of game agents, because players are not aware
of the enemies base locations and intentions. This challenge
is not present when designing an agent for a turn-based or
board game like Chess and Go, whose player usually have
all the information on the game state, including the location
of other players units (there are, however, turn-based games
whose state is partially known by the players).

C. Opponent modeling

Human players have an ability to analyze the enemy’s
actions and spot their weaknesses, exploiting them in future
games. Artificial players need to be qualified to analyze their
opponents’ actions and predict their behaviors in basis of
previous observations. This challenge is not exclusive of RTS
games, because in any other game, modeling your opponent
will be always useful.

D. Spatial and temporal reasoning

Maps in RTS games are elements with high influence
during the course of the game (i.e. different types of terrain
produce different types of resources, elevated positions give
advantages to a unit’s attack, ...), so it becomes necessary to
make good terrain analysis. This way, agents can develop bet-
ter offensive and defensive plans and more efficient resources
gathering as well. Another advantage (which can be seen as
another challenge) of human players against artificial ones is
their ability to understand temporal relations of actions.

E. Resource management

RTS games usually include resources which are used to
create or upgrade units and buildings, and develop new
technologies as well. These resources can be distributed
through the map and then gathered by units or they can
be obtained from buildings placed on certain places on the
map. A proper resource management strategy is therefore an
essential part of any successful strategy.

F. Collaboration

During a RTS game, each player generate many units for
her army. This army can be considered as a multi-agent
system, so it is necessary to develop coordination methods
that lead to good team tactics and strategies. There is not
only collaboration at unit level, in team matches there are
two or more teams of players (human or artificial) which
fight each against other. This kind of collaboration between
players has to be taken in account to be successful at team
matches.

G. Pathfinding

Finding suitable paths on a quick manner between two
locations on a map is of great importance in RTS games.
Since the game environment is dynamic, it contains many
moving objects that have to be taken in account when
calculating paths. In addition to these moving objets, there
are more aspects to deal with, like keeping unit formations,
taking terrain properties or enemy influence, among other.

All these aspects greatly complicates the problem of finding
suitable paths.

H. Content Generation

Game content refers to all aspects of the game that affect
game-play other than non-player character (NPC) behavior
and the game engine itself. When it comes to RTS games,
there is assorted content such as maps, units, buildings and
weapons that can be generated in a procedural manner. If new
content can be generated with enough variety then it may
become possible to create endless games, with new maps,
units and buildings on every new game. In addition to this,
the generated content can adapt itself to specific criteria, such
as the playing style of a particular player [76].

III. TASKS IN REAL-TIME STRATEGY GAMES

Due to their characteristics, RTS games give us many
challenges to deal with. The work done in computational
intelligence in RTS games can be classified by the problem
tackled. In the following section we will describe the tasks
associated with these challenges and what work has been
done in relation to each of these tasks.

A. Planning

Humans and adversaries can use any available action to
form their game strategy, which is a plan. Planning is the
process of determining action sequences that when executed
accomplish a given goal. The presence of adversaries in
addition to real-time and hidden information constraints
greatly complicates the planning process.

Aha, Molineaux and Ponsen introduced in [1] a plan
retrieval algorithm which uses three key sources of domain
knowledge and removes the assumption of a static opponent.
This algorithm was called Case-based Tactician (CaT). This
same algorithm was used in [51], where the authors focused
on defeating a selected opponent while training up others, in-
stead of defeating randomly selected opponents. The authors
in [52] introduced an integrated RL/CBR algorithm that uses
continuous models instead of discrete approximation of these
models. The algorithm was called the Continuous Action and
State Space Learner (CASSL), and is an improvement of the
results obtained in [1], including the ability to learn and rea-
son with continuous action spaces. An improvement for plan
retrieval can be found in [50]. This improve was made by in-
troducing the concept of situation (high-level representation
of the state of the world) into the algorithm. This technique
represents a knowledge based approach for feature selection
for improving the performance of case retrieval in case-
based reasoning systems. In [67] an architecture for learning
transfer was presented, so knowledge acquired previously
is used to improve the performance of the artificial player
in subsequent games. This architecture, called CAse-Based
Reinforcement Learner (CARL), provides a useful task de-
composition, allowing the agent to learn tactical policies that
can be reused across different problem instances with similar
characteristics. In [59], [60] the authors proposed to extract
behavioral knowledge from expert demonstrations and reused

them as a case based behavior generator. They also presented
a case-based planning framework for RTS games.

In [2] PDDL was also used to define a planning domain
that can be used to implement an artificial player based
on automated planning in a RTS game. In [9], the authors
developed an online planner for resource production in the
game Wargus. In [55], Mufioz-Avila and Aha used hierar-
chical task networks (HTN) as a planning mechanism for
an artificial player of the game Stratagus. Another HTN
as a planning mechanism was used in [42]. This planner
was designed according to the balanced build policy which
seeks a balance between acquiring resources and producing
buildings and units. In [41], Kovarsky and Buro focused
on build-order optimization, instead of strategy planning.
Their aim was to optimize the gathering of resources and
the creation of buildings and units in the initial stage of the
game. The planning domain definition language (PDDL) was
used. A wall-building (or other passive defensive buildings)
algorithm for RTS games was described in [26]. In [83]
a goal-directed approach was used to develop agents that
reason about their goals in response to unanticipated game
events. In [53], the authors extended online planning with
a conceptual model of goal-driven autonomy, in which an
agent reasons about its goals, identifies when they need
to be updated, and changes or adds to them as needed
for subsequent planning and execution. Agents using this
technique can competently respond to unexpected events
in complex environments, producing a significant increase
in performance. The authors of [80] proposed a machine
learning approach to establish effective game strategies based
on the structure of the environments of the game.

A genetically evolved Planet Wars non-player character
was developed in [16], [17], [54]. The genetic algorithm was
used to tune a set of parameters for the decision engine of
the NPC. In [36] the performance of an artificial player was
improved by using a speciated evolutionary algorithm (based
on NEAT) for an optimal strategy selection. In [43] gene
expression programming was used to evolve a player for a
gathering resources game. In [46], Miles, Louis and Cole
define a system which learns general routing information
from a human player and they used case-injected evolu-
tionary algorithms to incorporate this acquired knowledge
into subsequent planning. This case injection effectively
biases the evolutionary algorithm toward producing plans that
contain important strategic elements used by human players.
The same approach was used in [47], where the improve-
ment of the response time of a case-injected algorithm was
shown. Another stochastic method, called Stochastic Plan
Optimization, was presented in [79] and used for finding and
improving plans. Another co-evolution approach was used in
[49], where the use of evolutionary algorithms to co-evolve
Al players for RTS games was investigated. This technique
[62] was combined with an evolutionary algorithm which
evolves the knowledge bases for the dynamic scripting.
These evolved knowledge bases improve the performance
of dynamic scripting against static opponents in the game

Wargus.

In [11], Chung, Buro and Schaeffer presented MCPlan,
a framework for Monte Carlo planning. They identified its
performance parameters and showed the results of its imple-
mentation. This algorithm was applied to simple “capture
the flag” scenarios and showed promising initial results.
Another Monte Carlo planning algorithm, called UCT, was
described in [4]. The algorithm was adapted from the context
of board games to the context of multi-agent tactical planning
and, across a set of 12 scenarios in the game of Wargus,
UCT is a top performer compared to a variety of baselines
bots and a human player. Moreover, MOCART-CGA [56]
is another Monte Carlo method that deals with the path
planning problem in RTS games. In [64], Sailer, Buro and
Lanctot presented a planning framework that uses strategy
simulation in conjunction with Nash-equilibrium strategy ap-
proximation. It was applied to an army-deployment problem.

Dynamic scripting [70] is a reinforcement learning tech-
nique designed for creating adaptive video game agents. It
employs on-policy value iteration to optimize state-action
values based solely on a scalar reward signal. This technique
[62] was combined with an evolutionary algorithm which
evolves the knowledge bases for the dynamic scripting.
These evolved knowledge bases improve the performance
of dynamic scripting against static opponents in the game
Wargus. An extension to the dynamic scripting algorithm can
be found in [12]. This extension is a goal-directed approach
called GoHDS. Goals are used as domain knowledge for
selecting rules, and a rule is seen as a strategy for achieving
a goal. In [44] a tactical abstract game framework was
described and used to evaluate an extended version of the
dynamic scripting algorithm.

A method for evolving increasingly complex artificial
neural networks in real time, called r#NEAT, was introduced
in [71] by Stanley, Bryant and Miikkulainen and used later
in [78].

B. Unit maneuvering (micro management)

RTS games management can be splitted into two levels:
macro management (taking strategic decisions such as which
building has to be created next or which map zone has to
be scouted) and micro management. Unit formation planning
and target of attack is the core of micro management in RTS
games.

The work in [27] focused on micro-management of the
units. They designed and implemented a CBR/RL hybrid
system for learning which enemy units to target in given
situations during a battle in an RTS game, as well as in [84]
where a similar learning approach was used also in micro-
management. In [3], the authors proposed a method which
consists on each unit acting independently of the team and
having its own influence map (IM). This way, they achieved
team coordination while evolving all entities’ IM parameters
together. A similar evolutionary approach was described in
[39] and [40].

Hagelbédck and Johansson postulated in [29], [30], [32],
[33] the use of potential fields and multi-agent schemes for

the maneuvering of real-time strategy bots and dealing with
the partial observability of this genre of game, named fog of
war.

The intelligent moving and path-finding of units were
investigated in [13]. The authors obtained smooth and natural
movements of units combining flocking with IM pathfinding
and improving the performance of the units in every game
situation. Additionally, in [35] Jang and Cho proposed a
strategy generation method to produce a neural artificial
player with layered influence maps. In [48], a system with
influence maps and trees was developed in the context of a
tactical game, achieving more coordinated behaviors between
the units. In [57], the authors described a method for unit
formation planning. In this case, they applied potential field,
fuzzy measure and integral to perform a solution on micro
management. Their Al bot was able to divide the units into
sub-groups and perform this unit formation planning. There
are other papers [63], [81] that focused on units grouping and
dynamic formations. In [73], the authors proposed controlling
Starcraft units with a Bayesian model, outperforming the
original Al as well as other bots (tied with the winner of
AIIDE 2010 StarCraft competition). In [85], knowledge-rich
player agents were developed. The authors connected the
game engine with a SOAR cognitive architecture to improve
its performance.

C. Plan recognition and predictions

Plan recognition refers to the act of an agent observing the
actions of another agent whether it be human or computer-
based with the intent of predicting its future actions, inten-
tions, or goals. An introduction to case-based plan recog-
nition for real-time strategy games was presented in [10].
Continuing on case-based plan recognition, collected data on
building construction sequence can be used to analyze and
categorize player strategies and playing styles [34] (collected
data are replays of StarCraft games in this case). Ninety
percent of these replays were used to train a CBR decision
system, and the remaining ten percent were used to verify
the predicting accuracy of the fully trained decision system.
A similar approach was presented in [14], [25], where
probabilistic models of opponent behavior and actions were
learned from sets of saved games. Plan recognition can be
separated into two levels, strategic and tactical [37]. Strategic
plans dictate what kind of units the player will produce and if
she will play aggressively or defensively, while tactical plans
dictate how units are deployed and used. Another approach
was described in [65] and [66]. Hierarchical structured
models were used for opponent modeling. Two different
classifiers were evaluated in order to test the effectiveness
of this approach: fuzzy models and discounted rewards from
game theory. [72], [74] presented a Bayesian model to predict
the opening (rst strategy) of opponents. The model is general
enough to be applied to any RTS game with the canonical
gameplay of gathering resources to extend a technology tree
and produce military units. The model can also predict the
possible technology trees of the opponent. In [82] Weber
and Mateas presented a data mining approach to opponent

modeling. Machine learning techniques were applied to large
collections of saved games. These techniques provide the
ability to detect an opponent’s strategy before it is executed
and predict when an opponent is to perform strategic actions.

D. Procedural content generation

As defined in [75], procedural content generation (PCG)
refers to the automatic or semi-automatic generation of game
content. In this paper, the authors used a multi-objective
evolutionary algorithm to evolve complete maps for Starcraft.
This method is useful for automatic and machine-assisted
map generation. Other methods for map generation were
described in [68] and in [45]. Related to this, and from a
more general perspective, Frade et al. introduced the idea
of terrain programming, namely the use of genetic program-
ming to evolve playing maps for video-games, using either
subjective human-based feedback [20], [21] or automated
quality measures such as accessibility [22] or edge-length
[23]. A taxonomy of Procedural Content Generation (PGC)
algorithms can be found in [76], [87].

E. Partial observability

Although dealing with partial observability is included in
almost every planning paper reviewed before, there are some
papers focused on this task. In [28], the authors presented a
modified potential field bot that handles imperfect informa-
tion about the game world (namely fog of war). The effect
of imposing partial observability onto an RTS game with
regard to making predictions was shown in [8]. The authors
compared two different mechanisms that decide where best to
direct the attention of the observers to maximize the benefit
of predictions.

F. Opponent matching

As in partial observability, opponent matching is often
included in planning papers, but there are other that focuses
on this task. In [77] the authors used a evolutionary algorithm
to evolve a set of artificial neural networks which functions
as a controller in deciding what type of unit should be cre-
ated based on the enemy units. The experimentation results
showed clearly a group of mixed randomized opponent can
be defeated by the generated Al army. A simple and effective
system of self-organizing maps for defending group selection
was shown in [5]. The authors solved the problem of finding
a suitable group of fighting units to combat incoming enemy
groups.

G. Difficulty adjustment

In [31] the authors studied the feelings of players after
playing some games against multiple kinds of opponents.
The players found it more enjoyable to play an even game
against an opponent that adapts to the performance of the
player, than playing against an opponent with static difficulty.
The neuro-evolution methodologies NEAT and rtNEAT were
used in [58] to generate opponents who match the skill of
players in real-time. In [24] the authors described a method
for the automatic generation of virtual players that adapt to

the player skills. This was done by building initially a model
of the player behavior in real time during the game, and
further evolving the virtual player via this model in-between
two games.

IV. TECHNIQUES USED IN RTS GAMES

In the previous sections, we have presented the challenges
and tasks that have been studied in relation to computational
intelligence in RTS games. Next, we will describe what
techniques have been used to overcome these challenges.

A. Evolutionary algorithms and stochastic optimization

Evolutionary algorithms and stochastic optimization are
widely used in computational intelligence in RTS games.
They are often combined with other techniques to improve
the performance [62]. In [46] and [47], evolutionary algo-
rithms were used to learn to play strategic games, combined
with case-injection to improve the response time. In [81],
the authors used stochastic optimization as a learning al-
gorithm. Another use of evolution in machine learning was
presented in [71], where complex artificial neural networks
were evolved in real time, as the game was being played.
The same algorithm, rtNEAT, was used in [58] to adjust
the opponent difficulty level dynamically. Evolutionary algo-
rithms were used in [79] for plan optimization. The search
was initialized with expert plans to improve the performance
of the optimization. An analysis of the fitness landscape of an
abstract RTS game can be found in [38]. In [36] a speciated
evolutionary algorithm was used to improve the performance
of non player characters, while in [43] gene expression
programming was used to evolve a player for a RTS game. In
[39] the authors presented an analysis of evolved strategies.
A set of ten strategies evolved in a single environment were
compared to a second set of ten strategies evolved across
a set of environments. In [16], [17], [54] the authors used
evolutionary techniques to optimize the parameters of a bot,
as well as in [61]. Evolutionary search was used in [75]
to generate suitable Starcraft maps. There are other PCG
related papers that used evolutionary algorithms for content
generation: [20], [21], [22], [23], [45]. In [77], artificial
neural networks were evolved using evolutionary algorithms,
while in [24], virtual players were evolved using evolutionary
algorithms.

In [35], [48], evolutive techniques were combined with in-
fluence maps. The co-evolution of these influence maps was
introduced in this approach. Another co-evolution approach
was used in [49], where the use of evolutionary algorithms to
co-evolve Al players for RTS games was investigated. In [69]
a co-evolutionary algorithm was used to generate spatially
oriented tactics. Students can learn from non player charac-
ters who use these co-evolved tactics. In [40] evolutionary
computation techniques were used to develop an automated
player that uses a progressive refinement planning technique.
This automated player was co-evolved and analyzed. Co-
evolution was also used in [3] to generate coordinating team
tactics for a RTS game.

B. Case-based reasoning/Reinforcement learning

Case-based techniques are mainly used for plan selection
in RTS games, as shown in [1], [50], [51], [59], [60], [80]. In
[34] the authors analysed saved games of Starcraft to eval-
uate human-player behaviors and construct and intelligent
system. This system was trained using a case-based reasoning
approach. Algorithms which combine case-based reasoning
with reinforcement learning were presented in [52] and [27].
In the first case, the algorithm, called Continuous Action
and State Space Learner (CASSL), used continuous models
instead of discrete models. In the second case, the algorithm
focused on learning micro-management tasks. The same ap-
proach of combining case-based reasoning and reinforcement
learning was shown in [67], where a multi-layered archi-
tecture, named CAse-Based Reinforcement Learner (CARL),
was presented. In the context of opponent modeling, a case-
based plan recognition method was presented in [10].

C. Influence and potential maps

Influence maps were combined with evolutionary tech-
niques in [3], [35], [48], [69]. This technique was used also in
[13], where the authors dealt with intelligent moving of unit
groups and intelligent team composition and maneuvering. In
the context of opponent modeling, influence maps appeared
in [37] and they were used to recognize opponent behavior.
Potential fields were used in [28] to deal with the partial
observability in RTS games, specifically with the fog of war
in ORTS (Open Real-Time Strategy). The use of potential
fields in real time strategy bots was discussed and promoted
in [29], [30]. This approach was employed in [32] to create
a non player character. In [57], potential fields were used for
unit formation planning.

D. Al planners, PDDL and Hierarchical Tasks Networks

In [55] the authors described a representation for explana-
tions in the context of hierarchical case-based planning and
detailed four types of explanations. An online planner for
resource production was developed in [9] (another online
planner can be found in [53]). In [41] another planner
was presented. This time, the Planning Domain Definition
Language (PDDL) was used to define the domain. A hier-
archical task network planner was developed in [42]. This
planner focused on the strategic level (buildings, units and
resource management). A planner for defensive buildings
was presented in [26]. In [2] PDDL was also used to
define a planning domain. Weber, Mateas and Jhala [83]
presented a reactive planning implementation of the Goal-
Driven Autonomy conceptual model.

E. Simulations

Monte-Carlo methods were employed in [4], [11] as
planning algorithms. On the first work, the authors de-
fined a modified Monte Carlo planning algorithm, called
UCT, which extends recent algorithms for bandit problems
to sequential decision problems while retaining the strong
theoretical performance guarantees. On the second, they
presented a framework for Monte Carlo planning called

Table I
TASKS AND TECHNIQUES

Planning Unit maneuver- | Opponent | Partial Plan recogni- | PCG Difficulty
ing Matching observ- tion Adjustment
ability
CBR/RL [1], [501, [511, | [27], [84] [10], [25], [34]
[52], [59], [60],
[67], [80]
Al Planning [2], [9], [26],
[41], [42], [53],
[55], [83]
Influence and [31, [13], [29], [28] [37]
Potential Maps [30], [32], [33],
[35], [48], [57]
Evolutionary [16], [17], [36], | [3], [35], [39], | [77] [20], [21], | [24], [58]
[43], [46], [47], | [40], [48], [61], [22], [23],
[49], [54], [62], | [81] [45], [75]
[79], [71]
Simulations [4], [11], [56], [8]
[64]
Dynamic script- | [12], [44], [62],
ing [70]
ANN [71], [78] [63] [51, [77] [58]
Fuzzy/Bayessian [73] [65], [66], [72],
models [74]

MCPlan. Sailer, Buro and Lanctot [64] presented a planning
framework that uses strategy simulation in conjunction with
Nash-equilibrium strategy approximation. They applied this
framework to an army deployment problem in a real-time
strategy game setting and presented experimental results that
indicate a performance gain over the scripted strategies that
the system is built on.
F. Dynamic scripting

As defined on the previous section, dynamic scripting
[70] is a reinforcement learning technique designed for
creating adaptive video game agents. It employs on-policy
value iteration to optimize state-action values based solely
on a scalar reward signal. In [12] the authors suggested
a goal-directed hierarchical dynamic scripting approach for
incorporating learning into RTS games. The same approach
was presented in [44] where dynamic scripting was extended
to improve the performance. A combination of dynamic
scripting and evolutionary algorithm was used in [62].

G. Fuzzy/Bayessian models

In [73] and [72] the authors presented Bayesian models for
controlling the units and for opening prediction in Starcrafft,
respectively. In the context of opponent modeling, fuzzy
models were used in [65], [66].

H. Other techniques

There are other techniques used to overcome challenges
that have been previously presented. Self-organizing maps
can be found in [63] and [S]. There are also papers that
focused on artificial neural networks, like [58], [71], [77];
and hidden Markov models [14]. Data mining was used in
[82] while a cognitive architecture (SOAR) was used in [85].
In [18], the authors presented a method to determine which
strategy to use depending on what kind of map the controller
is playing trough map characterization.

V. CONCLUSION

We have presented a review about the research in com-
putational intelligence applied to real-time strategy games.
This paper aims to be a starting point in this research
topic, helping the reader to understand the application of
computational intelligence to video-games, specifically real-
time strategy games.

This review shows us that the main challenges tackled in
this research topic are player and opponent modeling, while
the most used techniques to overcome these challenges are
evolutionary algorithms, stochastic optimization, case-based
techniques, influence maps and probabilistic methods.

Many techniques and algorithms have been described in
this paper. In the near future, we are going to combine these
techniques into hybrid and interactive algorithms to improve
the performance obtained from using these techniques sepa-
rately. This is one of the goals of the DNEMESIS project.

ACKNOWLEDGEMENTS

This work is partially supported by Spanish MICINN
under project ANYSELF (TIN2011-28627-C04-01), and by
Junta de Andalucia under project P10-TIC-6083 (DNEME-
SIS).

REFERENCES

[1] D. W. Aha, M. Molineaux, and M. J. V. Ponsen, “Learning to
win: Case-based plan selection in a real-time strategy game,” in
International Conference on Case-Based Reasoning, ser. Lecture Notes
in Computer Science, H. Muiloz-Avila and F. Ricci, Eds., vol. 3620.
Springer, 2005, pp. 5-20.

V. Alcéazar, D. Borrajo, and C. Linares Lépez, “Modelling a RTS
planning domain with cost conversion and rewards,” in Artificial Intel-
ligence in Games. Workshop of the Eighteenth European Conference
on Artificial Intelligence, Patras, Greece, 2008, pp. 50-54.

P. Avery and S. J. Louis, “Coevolving team tactics for a real-time
strategy game,” in [EEE Congress on Evolutionary Computation.
IEEE, 2010, pp. 1-8.

[4]

(51

(6]

(71

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

R.-K. Balla and A. Fern, “UCT for tactical assault planning in real-
time strategy games,” in International Joint Conference on Artificial
Intelligence, C. Boutilier, Ed., 2009, pp. 40-45.

N. Beume, T. Hein, B. Naujoks, N. Piatkowski, M. Preuss, and
S. Wessing, “Intelligent anti-grouping in real-time strategy games,”
in IEEE Symposium on Computational Intelligence and Games,
P. Hingston and L. Barone, Eds. IEEE, 2008, pp. 63-70.

G. H. Burgin and L. J. Fogel, “Air-to-air combat tactics synthesis and
analysis program based on an adaptive maneuvering logic,” Journal
of Cybernetics, vol. 2, no. 4, pp. 60-68, 1972.

M. Buro, “RTS games and real-time Al research,” in Behavior Rep-
resentation in Modeling and Simulation Conference, vol. 1. Curran
Associates, Inc., 2004.

S. Butler and Y. Demiris, “Partial observability during predictions of
the opponent’s movements in an RTS game,” in IEEE Conference
on Computational Intelligence and Games, G. N. Yannakakis and
J. Togelius, Eds. 1EEE, 2010, pp. 46-53.

H. Chan, A. Fern, S. Ray, N. Wilson, and C. Ventura, “Online planning
for resource production in real-time strategy games,” in International
Conference on Automated Planning and Scheduling, M. S. Boddy
et al., Eds. The AAAI Press, 2007, pp. 65-72.

D. Cheng and R. Thawonmas, “Case-based plan recognition for real-
time strategy games,” in GameOn Conference, A. El-Rhalibi and
D. van Welden, Eds. EUROSIS, 2004, pp. 36-40.

M. Chung, M. Buro, and J. Schaeffer, “Monte Carlo Planning in
RTS Games,” in IEEE Symposium on Computational Intelligence and
Games. 1EEE, 2005.

A. Dahlbom and L. Niklasson, “Goal-directed hierarchical dynamic
scripting for RTS games,” in Artificial Intelligence and Interactive
Digital Entertainment, J. E. Laird and J. Schaeffer, Eds. The AAAI
Press, 2006, pp. 21-28.

H. Danielsiek, R. Stiir, A. Thom, N. Beume, B. Naujoks, and
M. Preuss, “Intelligent moving of groups in real-time strategy games,”
in IEEE Symposium on Computational Intelligence and Games,
P. Hingston and L. Barone, Eds. IEEE, 2008, pp. 71-78.

E. W. Dereszynski, J. Hostetler, A. Fern, T. G. Dietterich, T.-T. Hoang,
and M. Udarbe, “Learning probabilistic behavior models in real-
time strategy games,” in Artificial Intelligence and Interactive Digital
Entertainment Conference, V. Bulitko and M. O. Riedl, Eds. The
AAAI Press, 2011.

Entertainment Software Association and Others, “Essential facts about
the computer and video game industry,” 2011. [Online]. Available:
http://www.theesa.com/facts/pdfs/ESA_EF_2011.pdf

A. Fernandez-Ares, A. M. Mora, J. J. Merelo Guervés, P. Garcia-
Sanchez, and C. M. Fernandes, “Optimizing player behavior in a real-
time strategy game using evolutionary algorithms,” in /EEE Congress
on Evolutionary Computation. 1EEE, 2011, pp. 2017-2024.

——, “Optimizing strategy parameters in a game bot,” in International
Work-Conference on Artificial Neural Networks, ser. Lecture Notes in
Computer Science, J. Cabestany et al., Eds., vol. 6692. Springer,
2011, pp. 325-332.

A. Fernndez-Ares, P. Garca-Snchez, A. M. Mora, and J. J. Merelo,
“Adaptive bots for real-time strategy games via map characterization,”
in Computational Intelligence and Games. 1EEE, 2012, pp. 417-423.
L. Fogel and G. Burgin, “Competitive goal-seeking through evolution-
ary programming.” DTIC Document, Tech. Rep., 1969.

M. Frade, F. F. de Vega, and C. Cotta, “Modelling video games’
landscapes by means of genetic terrain programming - a new approach
for improving users’ experience,” in Applications of Evolutionary
Computing, ser. Lecture Notes in Computer Science, M. Giacobini
et al., Eds., vol. 4974. Springer, 2008, pp. 485-490.

——, “Breeding terrains with genetic terrain programming: The evolu-
tion of terrain generators,” International Journal of Computer Games
Technology, vol. 2009, 2009.

——, “Evolution of artificial terrains for video games based on
accessibility,” in Applications of Evolutionary Computation 2010, ser.
Lecture Notes in Computer Science, C. D. Chio et al., Eds., vol. 6024.
Springer-Verlag, 2010, pp. 90-99.

——, “Evolution of artificial terrains for video games based on ob-
stacles edge length,” in IEEE Congress on Evolutionary Computation.
IEEE, 2010, pp. 1-8.

J. A. Garcia Gutiérrez, C. Cotta, and A. J. Fernandez Leiva, “Design
of emergent and adaptive virtual players in a war RTS game,” in
International Work-Conference on the Interplay Between Natural and

[25]

[26]

[27]

[28]

[29]

[30]

(311

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Artificial Computation, ser. Lecture Notes in Computer Science, J. M.
Ferrandez et al., Eds., vol. 6686. Springer, 2011, pp. 372-382.

W. Gong, E. Lim, P. Achananuparp, F. Zhu, D. Lo, and F. Chong
Tat Chua, “In-game action list segmentation and labeling in real-time
strategy games,” in Computational Intelligence and Games. 1EEE,
2012, pp. 147-154.

M. Grimani, “Wall Building for RTS Games,” in Al Game Program-
ming Wisdom 2. Hingham, Massachusetts: Charles River Media, Inc.,
2004, pp. 425-437.

M. Gunnerud, “A CBR/RL system for learning micromanagement in
real-time strategy games,” Master’s thesis, Norwegian University of
Science and Technology, 2009.

J. Hagelbick and S. J. Johansson, “Dealing with fog of war in
a real time strategy game environment,” in IEEE Symposium on
Computational Intelligence and Games, P. Hingston and L. Barone,
Eds. IEEE, 2008, pp. 55-62.

——, “The rise of potential fields in real time strategy bots,” in Ar-
tificial Intelligence and Interactive Digital Entertainment Conference,
C. Darken and M. Mateas, Eds. The AAAI Press, 2008.

——, “Using multi-agent potential fields in real-time strategy games,”
in Autonomous Agents and Multiagent Systems, L. Padgham et al.,
Eds. IFAAMAS, 2008, pp. 631-638.

——, “Measuring player experience on runtime dynamic difficulty
scaling in an RTS game,” in IEEE Symposium on Computational
Intelligence and Games, P. L. Lanzi, Ed. IEEE, 2009, pp. 46-52.
——, “A multi-agent potential field-based bot for a full RTS game
scenario,” in Artificial Intelligence and Interactive Digital Entertain-
ment Conference, C. Darken and G. M. Youngblood, Eds. The AAAI
Press, 2009.

J. Hagelbck, “Potential-field based navigation in StarCraft,” in Com-
putational Intelligence and Games. 1EEE, 2012, pp. 388-393.

J.-L. Hsieh and C.-T. Sun, “Building a player strategy model by
analyzing replays of real-time strategy games,” in International Joint
Conference on Neural Networks. 1EEE, 2008, pp. 3106-3111.
S.-H. Jang and S.-B. Cho, “Evolving neural NPCs with layered
influence map in the real-time simulation game *Conqueror’,” in [EEE
Symposium on Computational Intelligence and Games, P. Hingston and
L. Barone, Eds. IEEE, 2008, pp. 385-388.

S.-H. Jang, J. Yoon, and S.-B. Cho, “Optimal strategy selection of non-
player character on real time strategy game using a speciated evolu-
tionary algorithm,” in J[EEE Symposium on Computational Intelligence
and Games, P. L. Lanzi, Ed. IEEE, 2009, pp. 75-79.

F. Kabanza, P. Bellefeuille, F. Bisson, A. R. Benaskeur, and H. Iran-
doust, “Opponent behaviour recognition for real-time strategy games,”
in Plan, Activity, and Intent Recognition, ser. AAAI Workshops, vol.
WS-10-05. The AAAI Press, 2010.

D. Keaveney and C. O’Riordan, “Analysing the fitness landscape of an
abstract real-time strategy game,” in GameOn Conference, V. J. Botti
et al., Eds. EUROSIS, 2008, pp. 51-55.

——, “Evolving robust strategies for an abstract real-time strategy
game,” in IEEE Symposium on Computational Intelligence and Games,
P. L. Lanzi, Ed. IEEE, 2009, pp. 371-378.

——, “Evolving coordination for real-time strategy games,” IEEE
Transactions on Computational Intelligence and Al in Games, vol. 3,
no. 2, pp. 155-167, 2011.

A. Kovarsky and M. Buro, “A First Look at Build-Order Optimization
in Real-Time Strategy Games,” in GameOn Conference, L. Wolf and
M. Magnor, Eds. EUROSIS, 2006, pp. 18-22.

J. Laagland, “A HTN planner for a real-time strategy game.”
[Online]. Available: http://hmi.ewi.utwente.nl/verslagen/capita-selecta/
CS-Laagland-Jasper.pdf

P. Lichocki, K. Krawiec, and W. Jaskowski, “Evolving teams of
cooperating agents for real-time strategy game,” in EvoWorkshops,
ser. Lecture Notes in Computer Science, M. Giacobini et al., Eds.,
vol. 5484. Springer, 2009, pp. 333-342.

J. Ludwig and A. Farley, “Examining extended dynamic scripting in
a tactical game framework,” in Artificial Intelligence and Interactive
Digital Entertainment, C. Darken and G. M. Youngblood, Eds. The
AAAI Press, 2009.

T. Mahlmann, J. Togelius, and G. N. Yannakakis, “Spicing up map
generation,” in EvoApplications, ser. Lecture Notes in Computer
Science, C. D. Chio et al., Eds., vol. 7248. Springer, 2012, pp.
224-233.

C. Miles, S. Louis, N. Cole, and J. McDonnell, “Learning to play
like a human: case injected genetic algorithms for strategic computer

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

gaming,” in Congress on Evolutionary Computation, vol. 2, 2004, pp.
1441-1448.

C. Miles and S. J. Louis, “Case-injection improves response time for
a real-time strategy game,” in IEEE Symposium on Computational
Intelligence and Games. 1EEE, 2005.

——, “Towards the co-evolution of influence map tree based strategy
game players,” in IEEE Symposium on Computational Intelligence and
Games, S. J. Louis and G. Kendall, Eds. IEEE, 2006, pp. 75-82.
C. E. Miles, “Co-evolving real-time strategy game players,” Ph.D.
dissertation, University of Nevada, Reno, NV, USA, 2007.

K. Mishra, S. Ontafién, and A. Ram, “Situation assessment for plan
retrieval in real-time strategy games,” in European Conference on
Advances in Case-Based Reasoning, ser. Lecture Notes in Computer
Science, K.-D. Althoff er al., Eds., vol. 5239. Springer, 2008, pp.
355-369.

M. Molineaux and D. Aha, “Defeating novel opponents in a real-
time strategy game,” in International Joint Conference on Artificial
Intelligence Workshop on Reasoning, Representation, and Learning in
Computer Games, D. W. Aha et al., Eds. The AAAI Press, 2005,
pp. 72-717.

M. Molineaux, D. W. Aha, and P. Moore, “Learning continuous action
models in a real-time strategy environment,” in Florida Artificial
Intelligence Research Society Conference, D. Wilson and H. C. Lane,
Eds. The AAAI Press, 2008, pp. 257-262.

M. Molineaux, M. Klenk, and D. W. Aha, “Goal-driven autonomy in a
navy strategy simulation,” in Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, M. Fox and D. Poole, Eds., 2010.
A. M. Mora, A. Fernandez-Ares, J. J. Merelo Guervés, and P. Garcia-
Sanchez, “Dealing with noisy fitness in the design of a rts game bot,”
in EvoApplications, ser. Lecture Notes in Computer Science, C. D.
Chio et al., Eds., vol. 7248. Springer, 2012, pp. 234-244.

H. Muiioz Avila and D. Aha, “On the role of explanation for hierar-
chical case-based planning in real-time strategy games,” in European
Conference on Case-Based Reasoning, Workshop on Explanations in
CBR, 2004.

M. Naveed, D. Kitchin, A. Crampton, L. Chrpa, and P. Gregory,
“A monte-carlo path planner for dynamic and partially observable
environments,” in Computational Intelligence and Games. 1EEE,
2012, pp. 211-218.

P. H. FE Ng, Y. J. Li, and S. C. K. Shiu, “Unit formation planning
in RTS game by using potential field and fuzzy integral,” in Fuzzy
Systems. 1EEE, 2011, pp. 178-184.

J. K. Olesen, G. N. Yannakakis, and J. Hallam, “Real-time challenge
balance in an RTS game using rtNEAT,” in IEEE Symposium on
Computational Intelligence and Games, P. Hingston and L. Barone,
Eds. IEEE, 2008, pp. 87-94.

S. Ontaiién, K. Mishra, N. Sugandh, and A. Ram, “Case-based
planning and execution for real-time strategy games,” in International
Conference on Case-Based Reasoning, ser. Lecture Notes in Computer
Science, R. Weber and M. M. Richter, Eds., vol. 4626. Springer, 2007,
pp. 164-178.

——, “Learning from demonstration and case-based planning for real-
time strategy games,” in Soft Computing Applications in Industry, ser.
Studies in Fuzziness and Soft Computing, B. Prasad, Ed., vol. 226.
Springer, 2008, pp. 293-310.

N. Othman, J. Decraene, W. Cai, N. Hu, M. Y. H. Low, and A. Gouail-
lard, “Simulation-based optimization of StarCraft tactical Al through
evolutionary computation,” in Computational Intelligence and Games.
IEEE, 2012, pp. 394-401.

M. J. V. Ponsen, H. Muifioz-Avila, P. Spronck, and D. W. Aha,
“Automatically generating game tactics through evolutionary learning,”
Al Magazine, vol. 27, no. 3, pp. 75-84, 2006.

M. Preuss, N. Beume, H. Danielsiek, T. Hein, B. Naujoks, N. Pi-
atkowski, R. Stiir, A. Thom, and S. Wessing, “Towards intelligent
team composition and maneuvering in real-time strategy games,” IEEE
Transactions on Computational Intelligence and Al in Games, vol. 2,
no. 2, pp. 82-98, 2010.

F. Sailer, M. Buro, and M. Lanctot, “Adversarial planning through
strategy simulation,” in IEEE Symposium on Computational Intelli-
gence and Games. 1EEE, 2007, pp. 80-87.

F. Schadd, “Hierarchical opponent models for real-time strategy
games,” Universiteit Maastricht, Tech. Rep., 2007.

F. Schadd, S. Bakkes, and P. Spronck, “Opponent modeling in real-
time strategy games,” in GameOn Conference, M. Roccetti, Ed.
EUROSIS, 2007, pp. 61-68.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

(78]

(791

[80]

[81]

[82]

(83]

[84]

[85]

[86]

(871

M. Sharma, M. P. Holmes, J. C. Santamaria, A. Irani, C. L. Isbell
Jr., and A. Ram, “Transfer learning in real-time strategy games
using hybrid CBR/RL,” in International Joint Conference on Artificial
Intelligence, M. M. Veloso, Ed., 2007, pp. 1041-1046.

S. Shoemaker, “Random Map Generation for Strategy Games,” in Al
Game Programming Wisdom 2. Hingham, Massachusetts: Charles
River Media, Inc., 2004, pp. 405-412.

G. Smith, P. Avery, R. Houmanfar, and S. J. Louis, “Using co-
evolved RTS opponents to teach spatial tactics,” in IEEE Conference
on Computational Intelligence and Games, G. N. Yannakakis and
J. Togelius, Eds. IEEE, 2010, pp. 146-153.

P. Spronck, I. G. Sprinkhuizen-Kuyper, and E. O. Postma, “On-line
adaptation of game opponent ai with dynamic scripting,” Int. J. Intell.
Games & Simulation, vol. 3, no. 1, 2004.

K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neu-
roevolution in the NERO video game,” IEEE Transactions on Evolu-
tionary Computation, vol. 9, no. 6, pp. 653-668, 2005.

G. Synnaeve and P. Bessiere, “A bayesian model for opening predic-
tion in RTS games with application to StarCraft,” in Computational
Intelligence and Games. 1EEE, 2011, pp. 281 —288.

——, “A bayesian model for RTS units control applied to StarCraft,”
in I[EEE Conference on Computational Intelligence and Games. 1EEE,
2011, pp. 190 —196.

——, “Special tactics: a bayesian approach to tactical decision-
making,” in Computational Intelligence and Games. 1EEE, 2012,
pp. 409-416.

J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbéck, and G. N.
Yannakakis, “Multiobjective exploration of the Starcraft map space,”
in IEEE Conference on Computational Intelligence and Games, G. N.
Yannakakis and J. Togelius, Eds. IEEE, 2010, pp. 265-272.

J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and Al in Games, vol. 3,
no. 3, pp. 172-186, 2011.

C. K. Tong, C. K. On, J. Teo, and A. M. J. Kiring, “Evolving neural
controllers using GA for Warcraft 3 real time strategy game,” in Bio-
Inspired Computing: Theories and Applications. 1EEE, 2011, pp.
15-20.

J. M. Traish and J. R. Tulip, “Towards adaptive online RTS Al with
NEAT,” in Computational Intelligence and Games. 1EEE, 2012, pp.
430-437.

A. Trusty, S. Ontaiién, and A. Ram, “Stochastic plan optimization
in real-time strategy games,” in Artificial Intelligence and Interactive
Digital Entertainment, C. Darken and M. Mateas, Eds. The AAAI
Press, 2008.

L. van der Blom, S. Bakkes, and P. Spronck, “Map-adaptive artificial
intelligence for video games,” in GameOn Conference, M. Roccetti,
Ed. EUROSIS, 2007, pp. 53-60.

M. van der Heijden, S. Bakkes, and P. Spronck, “Dynamic formations
in real-time strategy games,” in /[EEE Symposium on Computational
Intelligence and Games, P. Hingston and L. Barone, Eds. IEEE, 2008,
pp. 47-54.

B. G. Weber and M. Mateas, “A data mining approach to strategy
prediction,” in IEEE Symposium on Computational Intelligence and
Games, P. L. Lanzi, Ed. IEEE, 2009, pp. 140-147.

B. G. Weber, M. Mateas, and A. Jhala, “Applying goal-driven au-
tonomy to StarCraft,” in Artificial Intelligence and Interactive Digital
Entertainment Conference, G. M. Youngblood and V. Bulitko, Eds.
The AAAI Press, 2010.

S. Wender and 1. Watson, “Applying reinforcement learning to small
scale combat in the real-time strategy game StarCraft:Broodwar,” in
Computational Intelligence and Games. 1EEE, 2012, pp. 402—408.
S. Wintermute, J. Z. Xu, and J. E. Laird, “SORTS: A human-level
approach to real-time strategy ai,” in Artificial Intelligence and Inter-
active Digital Entertainment Conference, J. Schaeffer and M. Mateas,
Eds. The AAAI Press, 2007, pp. 55-60.

G. N. Yannakakis, “Game ai revisited,” in Proceedings of the 9th
conference on Computing Frontiers, ser. CF *12. New York, NY,
USA: ACM, 2012, pp. 285-292.

G. N. Yannakakis and J. Togelius, “Experience-driven procedural
content generation,” IEEE Transactions on Affective Computing, vol. 2,
no. 3, pp. 147-161, 2011.

