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Abstract

Games constitute a research domain that is attracting the interest of scientists from
numerous disciplines. This is particularly true from the perspective of computational
intelligence. In order to examine the growing importance of this area in the gaming
domain, we present an analysis of the scientific collaboration network of researchers
working on computational intelligence in games (CIG). This network has been con-
structed from bibliographical data obtained from the Digital Bibliography & Library
Project (DBLP). We have analyzed from a temporal perspective several properties of
the CIG network at the macroscopic, mesoscopic and microscopic levels, studying the
large-scale structure, the growth mechanics, and collaboration patterns among other
features. Overall, computational intelligence in games exhibits similarities with other
collaboration networks such as for example a log-normal degree distribution and sub-
linear preferential attachment for new authors. It also has distinctive features, e.g.
the number of papers co-authored is exponentially distributed, the internal preferen-
tial attachment (new collaborations among existing authors) is linear, and fidelity rates
(measured as the relative preference for publishing with previous collaborators) grow
super-linearly. The macroscopic and mesoscopic evolution of the network indicates the
field is very active and vibrant, but it is still at an early developmental stage. We have
also analyzed communities and central nodes and how these are reflected in research
topics, thus identifying active research subareas.

Keywords: Complex network, scientific collaboration, network evolution,
computational intelligence, games

1. Introduction

Games have long been seen as an ideal test-bed for the study of artificial intelli-
gence (AI) [1]. In the past, much of the academic work on AI and games focused on
traditional board games, such as checkers and chess, and these games were in turn used
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to check the goodness/efficacy of AI techniques. Although this traditional focus is still
being used, there is now also a growing body of work on applying computational intel-
ligence (CI) to game development (including video games) with the aim of improving
the game itself. CI comprises a collection of nature-inspired methods –such as evo-
lutionary algorithms, artificial neural networks and fuzzy logic– for the resolution of
complex problems, and can be applied to optimize game development from different
perspectives: for instance, from the user’s point of view, current players demand, not
only outstanding graphics, but also other non-visual features that CI can help to signif-
icantly improve such as intelligent/adaptive behavior of non-player characters (NPC),
interesting narrative, or more attractive contents (in the form of, for instance, levels,
maps, weapons, armor, terrains, music or even the game rules themselves) and many
more. In addition, from the industry’s point of view, CI is starting to be viewed as a
mechanism to improve the process of game development as well as a tool to extend
the commercial life of games. Regarding the first issue, CI is being used to automat-
ically generate game content, such as terrains, maps or even music [2], whereby the
automation of this process would lead to a reduction in the production costs as the con-
tent would not be entirely hand-created and thus human intervention might be reduced.
Moreover, CI techniques applied to achieve this objective in one particular game might
presumably be adapted to a similar game belonging to the same genre and this would
also reduce the expense of implementing new games. With regard the latter issue, the
capacity of CI to produce automated NPC behaviors as well as multimedia content
is interesting (and promising) as, in theory, it would be natural to extend a successful
(i.e., a best seller) game by procedurally creating new content. This new content in turn
would produce a new (commercial) version of the game (the recursive application of
this idea sculptures the concept of infinite game) which represents a way of extending
the earnings at a minimum cost. Moreover, the industry perceives CI as a tool from
which it is possible to gain additional benefits as it can be used to extract interesting
players’ data that can be employed, for instance, to evaluate player satisfaction (e.g.,
via emotional analysis) or to construct specific games according to the profile of the
users.

However, the application of CI techniques to game development goes beyond the
idea of just generating pure entertainment and also covers the purpose of solving hard
(and, in many cases, socially accepted) problems; this is for instance, the case of the so-
called “serious games”. These games prioritize additional objectives then that of simply
fun such as training, learning, evaluation, management, marketing, or advertisement
among others. Serious games have already been implemented in a wide number of
heterogeneous areas such as education, health care, politics, or defense [3] and CI has
already been applied successfully to the construction of serious games – see [4].

In general, one can be certain that CI will have a great impact on game development
and for this reason the application of CI to games is currently attracting increasing in-
terest from both the industry and academia. The consequence of this interest is that
this field is a burning issue that seems to have undergone a huge transformation in
recent years. To study this transformation, we have embarked on an analysis of the
social network of researchers working on CI in games (CIG). Social network analysis
– see [5] for a survey – although an old discipline, has recently been given new im-
petus and tools from the field of complex networks. A review of complex networks
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is presented in [6]. The study of all kinds of networks has been an extremely active
research topic in the recent past, following the introduction of models for power-law
[7] and scale-free networks [8], which, in turn, has induced the study of many different
phenomena in this new light. The particular class of network the study of which is ad-
dressed in this work is a co-authorship network [9]: nodes in these networks are paper
authors, joined by edges if they have written at least one paper together. Note that the
co-authorship data is a social network since collaborating in a research study usually
requires that the coauthors become personally acquainted. Thus, studying the ties, their
structure, and their evolution enables a better understanding of the factors that shape
scientific collaboration. In this sense, this network analysis has been done in many
other fields, like mathematics [10, 11], evolutionary computation (EC) [12, 13, 14],
computer-supported cooperative work (CSCW) [15], social sciences [16] and physics,
biomedicine and computer science [17, 18], to cite some examples.

This work analyzes the collaboration network of the CIG community on three dif-
ferent scales –macroscopic, mesoscopic and microscopic– aiming to discern the status
and distinctive features of the community, the rules governing scientific cooperation
within it, and the direction in which it is heading as well as trying to identify which
seems to be some of the most active research topics in the area.

2. Materials and methods

The bibliographical data used for the construction of the scientific-collaboration
network has been obtained from the Digital Bibliography & Library Project (DBLP1)
bibliography server. This database, maintained by the DBLP Team at the University
of Trier, provides bibliographic information on major computer science journals and
proceedings. It lists more than 1.9 million publications and several thousand computer
scientists (as of March 2012). Besides this wide coverage of computer science, the
DBLP database provides an easy to use application programming interface (API) to
obtain filtered results. The results can be filtered by author, venue, date, keyword, etc.
These results are encoded into XML or JSON files, which can be easily parsed by a
scraping program.

We have built a program which queries the database and obtains the co-authoring
network. The process of obtaining this data is as follows. The program reads a set of
query terms from an external file. For each term, it queries the DBLP with this term,
and processes the results returned. These results are sets of articles with the information
associated with them, including the authors. The program marks as co-authors each
pair of authors of every returned article. It avoids processing duplicated articles, as the
DBLP API provides an internal ID number for each article. Once the data has been
gathered, the program generates several files describing the co-authoring network. To
obtain a suitable dataset we have chosen query terms which list all the articles published
in some conferences and journals on computational intelligence in games (i.e. CIG,
TCAIG, AIIDE, GAMEON, etc). In addition, the program also searches articles from
other conferences and journals (i.e. GECCO, PPSN, IJCAI, etc.) filtered by some

1http://www.dblp.org/db/
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game-related keywords. Finally, a group of keywords are used to obtain related articles
possibly missed from previous steps. There is a list with these conferences, journals
and keywords in Appendix Appendix A. We have used Cytoscape [19] to draw and
analyze the graphs obtained in addition to the igraph library, a software package for
complex network research [20].

The data used in this paper were collected in late April 2012, using the program
described. There are articles that date from 1971 to 2012, but the coverage is sparse
for these initial years. For this reason, we have concentrated our analysis on the period
between 1997-2011. Our time-window thus spans the last 15 years in the field and
while we do not claim to have the full graph of the computational intelligence in games
community, we expect that the behavior of this graph will be very similar to what is
shown in this paper, since, essentially, the authors will be the same. We have obtained
an essentially non-biased sample of the community by using an easily accessible bibli-
ography database. Needless to say, the usual caveats regarding distinguishing authors
with the same surname, first name and initials of middle names, or the existence of
authors whose pen name changes apply. While mostly unavoidable, these situations
are also the exception rather than the rule and therefore we do not expect them to have
a significant impact on our results.

3. Analysis of the Collaboration Network of CI in Games

Using the data gathered from the DBLP database we can represent the collabora-
tion network as a weighted graph G(V,E,W ) where each vertex v ∈ V represents
an author and each edge (v, w) ∈ E ⊆ V × V indicates that authors v and w have
co-authored (possibly with other additional co-authors) at least one paper. The num-
ber of collaborations between two authors is captured by W . More precisely, W is a
function with signature W : E → N+ such that W ((v, w)) is the number of papers
authors v and w have co-authored. Since we are interested in the temporal evolution of
this network, we define a series of weighted graphs Gt, each of them comprising the
collaboration information up to year t (included). We have focused on the last 15 years
as mentioned before, and thus 1997 6 t 6 2011 (the data for 2012 is still incomplete
and has therefore been left out of the study; we also note that publications in this field
before 1997 are very scarce and – while those early links are included in the network–
it does not make sense to extend the analysis much further back in time). This time
span is large enough to observe interesting phenomena in the evolution of the network.
It is also a long enough stretch of time for some authors to have become inactive in
the field. Although the information provided by these “fossil” vertices and links is still
interesting, they can also distort, in some cases, the short-term behavior of the network.
This limitation has also been recognized by other authors, e.g. [14], who define the no-
tion of effective network as one comprising only real (active) collaborations. Of course
this network can only be approximated by the bibliographical data since other forms
of social interaction are not available in our database. Following [14] we consider a
moving frame of X years and build a network GXt comprising information for years t′

such that t−X < t′ 6 t. Authors and links can thus disappear if they become inactive
in the area for X number of years or more. We have considered here a temporal frame
of X = 5 years.
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Figure 1: (a) Evolution of the total number of authors. The inset shows the number of papers published by
year. (b) Temporal evolution of the number of new authors and volatile authors (annual data). Straight lines
are their linear fits (∆x = 51.15, R2 = 0.92 for new authors and ∆x = 52.16, R2 = 0.95 for volatile
authors).

We will commonly refer to Gt and G5
t networks as cumulative and effective, re-

spectively. Next, we analyze the properties and structure of these networks.

3.1. Basic Macroscopic Properties
The internal logic of the scientific collaboration network, namely the customary

publication behavior of authors in the field, makes its macroscopic properties evolve
in a certain direction. Looking at the data, we observe that several interesting trends
are present. First of all, Fig. 1a shows a glimpse of the size of the network and how it
evolves with time. The curve depicting the number of authors has positive curvature in
the initial years, indicating an accelerated growth in this number up to the mid-2000s,
where the growth stabilizes (more clearly seen in the effective network). This indicates
that CI in games is an active and vibrant field, attracting new researchers and generating
new papers. As shown in the inset of Fig. 1a, there is actually a marked increase in the
number of papers published per year from 2005 onwards, sustaining the steady growth
of the network. Clearly, the linear trajectory of the size of the network indicates that
in addition to a sustained influx of new authors there is also a constant flux of authors
moving out of this field of research. If we define an author as volatile if (s)he does not
publish after a given year t [12], we see in Fig. 1b that the rate at which volatile authors
leave the network parallels that at which new authors arrive. Both magnitudes can be
shown to grow linearly, the vertical offset providing a rather constant net result in favor
of new authors. Actually, the linear coefficient governing the growth of volatile authors
is slightly higher than that of new authors which might indicate a light deceleration of
the community. However, the estimation of volatility is inherently pessimistic as we
get closer in time to the present since authors have less time to publish again. The real
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Figure 2: (a) Distribution of authors per paper and papers per author (inset). In this and all subsequent mean
plots, the points indicate the mean and the whiskers mark the mean standard error. (b) Degree distribution
for the cumulative network G2011. Note the use of a log-log scale. The dashed line is a power-law fit
P (k) ∼ k−γ with γ = 3.27 and R2 = 0.96 (2 6 k 6 25). The solid line is the log-normal fit
P (k) ∼ exp(α ln k − β(ln k)2) with α = −10.5908 and β = −2.9923 (R2 = 0.98).

trend for volatility will thus be lower and more similar to that of new authors, hence
supporting the estimation of constant growth of the network.

Another salient macroscopic pattern in the temporal evolution of the community
is an increase in the mean number of authors per paper – see Fig. 2a. This pattern is
consistent with that observed by [12] in an analysis of the network of evolutionary com-
putation (EC) scientists but it cannot be attributed –at least not completely– to similar
reasons, namely the maturity that this field is developing and the increasing complex-
ity of research papers. This explanation made sense in the case of the EC given its
longer temporal trajectory and the rather flat trend in the mean productivity of authors.
However, the average number of papers per author –Fig 2a (inset)– has increased in the
effective network by about 10% since 2005, roughly the same rate at which the average
number of authors per paper grows for the same years, which suggests that the increas-
ing productivity of authors is due to their involvement in multiple co-authored papers.
Assuming authors try –consciously or not– to optimize their productivity at a constant
available effort, this emerges as a natural strategy, if only as a means for individual
authors to keep up with the pace of the community as a whole. Of course, the issue
is much more complex due to the very mechanics of science and academic production
(whether the combined effort of e.g. two papers written by the same two co-authors is
higher/lower than that of two papers authored by each of those authors alone is open
to much debate and cannot possibly be answered in a general way). At any rate –and
independently of whether the trend under discussion is the result of a social strategy or
a genuine requirement of increasingly complex papers (and note that these two options
are not mutually exclusive)– it requires (i) the availability of a growing network of sci-
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Figure 3: (a) Evolution of the number of connected components in the cumulative network. Y-axis in log-
scale. The solid line shows the best fit (y = α(1 + β)x, β = 0.47, R2 = 0.98 with 1997 6 x 6 2005).
The inset shows the same fit for the effective network (β = 0.35, R2 = 0.99 with 2001 ≤ x ≤ 2005). (b)
Solid line shows the ratio between the size of the largest component of the cumulative network and N2/3,
and the dashed line shows the ratio between the former and the size of the giant component size of a random
graph with the same number of nodes and edges. The inset shows the same data for the effective network.

entists and (ii) a true confluence of research interests justifying joint work. Given these
ingredients, different scenarios can arise depending on the laws governing the mechan-
ics of co-authorship. Such laws can be analyzed by observing their global imprint on
the network, as we will now do.

3.2. Large-Scale Structure

One of the most distinctive features of complex networks is the emergence of a
giant component, namely a single connected component that comprises a non-trivial
fraction of all nodes. This component arises from the coalescence of multiple smaller
components as new links are added. Of course, new nodes are also continuously added
and these may attach to existing nodes or not. Thus, new components may be contin-
uously created but as the giant component grows chances are higher that new nodes
will also attach to it as it will encompass most of the network. Fig. 3a shows the
evolution of the number of connected components both in the cumulative and in the
effective network. As expected, the number of components grows very fast, increas-
ing by 47% (resp. 35%) by year in the cumulative (resp. effective) network until the
mid 2000s. From around 2005 the growth markedly decelerates, pointing to the initial
stages of the formation of a giant component. However, this component is not really
large –customarily, we can say a component is large if it comprises at leastN2/3 nodes,
whereN is the total number of nodes [21]– until very recently (2009 for the cumulative
network, 2010 for the effective network) as shown in Fig. 3b. Indeed, this largest com-
ponent is much smaller than that of a random –Erdős-Rényi (ER) [22]– network with
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(a) 2006 (b) 2011

Figure 4: The giant component of the computational intelligence in games network in (a) 2006 and (b) 2011.
Nodes represent authors and edges represent a collaboration between them.

the same number of nodes and density (the fraction q of nodes contained in the giant
component of a random network is given by the solution to q = 1− eq(N−1)p, where p
is the network density and N = |V | is the number of nodes [23]). Furthermore, its size
is still relatively modest (about 18.6% of the cumulative network –and 13.5% of the
effective network– in 2011) in comparison with say, 36.5% for a genetic programming
(GP) network [14] or 62.8% for an evolutionary computation (EC) network [13] just to
mention two related examples. This indicates the CIG network is still at an early stage
of development, forming bonds and gaining cohesiveness but not yet fully formed. For
illustration purposes, Fig. 4 shows the evolution of the largest component by providing
two snapshots of its structure in 2006 and 2011.

Having shown how the macrostructure of the CIG network changes over time, we
will turn our attention to the growth mechanics of the network in next subsection.

3.3. Growth Mechanics: Preferential Attachment
In order to understand how the network grows, let us start by observing the actual

distribution P (k) of node degrees. This is shown in Fig. 2b. Visual inspection suggests
its tail follows a power-law P (k) ∼ k−γ and is thus a scale-free network [7]. This is not
uncommon in other scientific collaboration networks, e.g. [10, 12, 17, 14] and suggests
the growth of the network is driven by preferential attachment [7]. Contrary to Erdős-
Rényi networks [22] in which two vertices may link with constant uniform probability
p (thus giving rise to a Poisson distribution of node degrees P (k) ∼ e−kλk/k!), in
the presence of preferential attachment a new vertex will more likely connect to high-
degree vertices than to low-degree ones. More precisely, let the probability of a new
vertex linking to a vertex v be

Πv =
kαv∑
w∈V k

α
w

, (1)
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Figure 5: (a) Cumulated relative probability (computed over the last 5 years (2007-2011)) of new authors
collaborating with existing authors depending on the number of previous collaborators of the latter. The data
follows a power-law (α + 1 = 1.64 and R2 = 0.97). The inset shows the cumulated relative probability
of new collaborations (i.e. existing authors starting collaborations for the first time among them) depending
on the number of previous collaborators. The data follows a power-law (α + 1 = 2.01 and R2 = 0.91).
In all cases the number of previous collaborators is computed using the cumulative network. (b) Links type
percentage for cumulative data. The solid line shows a linear fit to the number of links between existing nodes
(∆x = 0.0036, R2 = 0.68), the dotted line shows a linear fit to the number of links between an existing and
a new node (∆x = 0.0217R2 = 0.83) and the dashed line shows a linear fit to the number of links between
new nodes (∆x = −0.0279, R2 = 0.85). The inset shows the same data for the effective network. Fit
parameters are ∆x = 0.0087, R2 = 0.75, ∆x = 0.0269, R2 = 0.0268 and ∆x = −0.0356, R2 = 0.92
respectively.

where kw is the degree of a vertex w ∈ V and α > 0 is some constant. For α = 1 we
have linear preferential attachment which gives rise to a scale-free network. As a matter
of fact, if nodes enter the network at a constant rate and link to a constant number m of
existing nodes under linear preferential attachment an exponent γ = 3 is obtained [10,
24]. The exponent we obtain in the CIG network is somewhat larger (γ = 3.27). As a
matter of fact, although the fit to the power-law is good (R2 = 0.96), the distribution
better adapts to a log-normal distribution. More precisely, we find that the tail of the
distribution has a slope ≈ −3 ln k on a log-log scale. A log-normal behavior has also
been observed by [25] when analyzing Slovenia’s scientific collaboration network and
suggests it may arise from near-linear preferential attachment [26].

To analyze the existence of preferential attachment in the CIG network we follow
the methodology suggested by [27]. The underlying idea is to measure to what extent
the actual attachment rate of new nodes departs from a uniform distribution. In this
sense, note that if we denote by nk′ = |{v ∈ V |kv = k′}| the number of nodes in the
network with exactly k′ neighbors, the probability Pk′ that a new node v attaches to
a vertex w ∈ V with degree dw = k′ would be Pk′ = nk′/N if links are uniformly
random. If preferential attachment is at work, high-degree vertices will receive more
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links than indicated by the previous expression. A term Rk′ is introduced to account
for this deviation, resulting in the expression:

Pk′ = Rk′
nk′

N
(2)

Rk′ can thus be interpreted as the relative probability of attachment to a vertex with
degree k′. It can be calculated by computing the actual probabilities Pk′ from the
empirical data and solving for it in Eq. (2) using the known values nk and N . Note
also that all these quantities are time-dependent and should be understood as a function
of time t. Fig. 5a shows the results for the CIG network. Given the moderate size of
Gt and the fact that not all high degree values may be adequately represented in it, we
use cumulative data (R′k =

∑k
1 Rk) to improve statistics. The data fits to a power-

law with exponent α + 1 = 1.64. This indicates a sub-linear preferential attachment
rate, much like [14] found for the GP network (α = 0.76), and by Barabási et al.
for mathematics (α = 0.8) and neuroscience (α = 0.75). We hypothesize that the
relatively lower value in this case is due to the fact that the CIG network is still at an
early developmental stage in comparison with the networks mentioned and hence it
is more decentralized (i.e. prominent figures are emerging but they are not yet fully
responsible for the macroscopic agglutination of new authors in the whole network).
This is also borne out by inspecting the profile of new links in the network as shown
in Fig. 5b. Note how the bulk of new links corresponds to so-called external links, i.e.
links between new authors entering the network. There is however a marked decreasing
trend in the proportion of such links, whereas attachment links (i.e. those connecting
new authors to existing ones) and internal links (i.e. those between existing authors)
are clearly increasing in importance. Regarding the former, it is interesting to note
the trend similarity to the GP network [14] and the fact that in this larger community
a crossover (attachment links surpassing external links) took place in the year 2000
whereas we will have to wait until 2014 (resp. 2015) to see a similar event in the
effective (resp. cumulative) CIG network.

As for internal links, they have been recognized as having a huge influence on
the topology and dynamics of the network [28]. As pointed out by [10] we have also
observed these links to be subject to preferential attachment in the CIG network (see
the inset in Fig. 5a). Indeed, this preferential attachment is linear, since the cumulative
data follows a power law with exponent α + 1 = 2.01. Hence, established authors
are increasingly likely to collaborate for the first time, the more previous co-authors
they have. This however does not explain the whole story since in principle authors
working in disparate sub-areas are not as prone to collaborate if only because of a
divergence of interests. Furthermore, once a collaboration is established it is interesting
to analyze how long it lasts (or more precisely how productive it is). The following
subsection will shed some light on how collaborators are picked and the extension of
such collaborations.

3.4. Collaboration patterns and clustering

As mentioned before, the selection of a co-author is a process in which the au-
thoritativeness of the actors (as measured by their number of previous co-authors) has
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Figure 6: (a) Relative probability of new collaboration depending on the number of common collaborators.
The solid line is the best lineal fit (∆x = 18.44, R2 = 0.98, without including x = 4 whose outlier status
we attribute to a finite effect due to the small size of the network). The inset shows the same data for the
effective network (∆x = 11.59, R2 = 0.66, without including x = 4). (b) Evolution of the clustering
coefficient. The solid line is the best lineal fit (∆x = 0.013, R2 = 0.93). The inset shows the evolution of
this coefficient grouped by 5-year frames and its lineal fit (∆x = 0.0093, R2 = 0.94)

an influence but it is not the only factor. A confluence of research interests is neces-
sary too. To some extent, this confluence can be indirectly inferred by the existence of
common co-authors: assuming each author is characterized by a collection of research
topics and a collaboration implies a non-empty intersection of the corresponding topic
collections, the higher the number of common co-authors that two non-connected au-
thors have, the greater the chance that their research interests will have some overlap.
Thus, it should be more likely that two authors collaborate if both of them have pre-
viously collaborated with the same people in the past. As in [27], this phenomenon
has been measured in a similar way as above, namely computing the relative proba-
bility Rm that two authors with m previous co-authors start collaborating together. If
we denote as nm the number of non-connected author pairs with exactly m common
neighbors, we have that the probability Pm of a new internal link connecting two such
authors is

Pm = Rm
2nm

N(N − 1)
(3)

The relative probabilities Rm for the CIG network are shown in Fig. 6a. As it can
be seen, there is a linearly increasing relative probability of collaborating as the number
of common collaborators increases. This collaboration pattern gives rise to clustering,
namely the fact that one’s neighbors are more likely to be neighbors themselves than
pure random chance would otherwise indicate. This is quantitatively captured by the
network’s clustering coefficient. Mathematically, the local clustering coefficientCi of a
node i is given by Ci = 2Ei/ [ki(ki − 1)] where Ei is the number of edges connecting
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Figure 7: (a) Distribution of the number of previous collaborations. Y-axis in log-scale. The solid line
shows the best exponential fit (P (y) ∼ ax, a = 0.4343, R2 = 0.94) (b) Relative probability of further
collaboration depending on the number of previous collaborations in 2011. Y-axis in log-scale. The solid
line shows the best exponential fit (a = 1.6318, R2 = 0.97). The inset shows the same data grouped by 5
years and its exponential fit (a = 1.3763, R2 = 0.80). The data corresponds in both cases to the cumulative
network and the fitting excludes the first and last data points.

the immediate neighbors of node i and ki is the degree of node i [29], i.e. the fraction
of one’s neighbors that are neighbors too. Once the local clustering coefficient has
been computed for each node, it can be averaged to obtain the clustering coefficient
of the whole network. The evolution of this coefficient is shown in Fig. 6b. quite
interestingly, we see there is a linearly increasing trend in clustering. This contrasts
with the empirical findings of [25] regarding Slovenia’s scientific community, but is
consistent with [14] results for the GP network. Similarly, [10] have analyzed a simple
model for the evolution of co-authorship networks in which there is a constant net
growth and preferential attachment rules the creation of both attachment and internal
links (much as we have observed in the case of the CIG network) and have observed
that for any positive rate of creation of internal links there should be an asymptotical
increase in the clustering coefficient.

Having analyzed how internal links are created, let us now turn our attention to
how long collaborations last. To this end, it is useful to analyze the distribution of
edge weights in the network. Recall that each edge is weighted by the number of times
the corresponding authors have collaborated. Therefore, this distribution indicates how
likely it is that an established collaboration reaches a given productivity. This distribu-
tion is shown in Fig. 7a. Note how the number of co-authored papers that two authors
have is exponentially distributed. This indicates a memoryless process in which the
probability of getting a new paper is constant (about 43% from the observed empirical
data). This decay rate can be attributed to the intrinsic difficulty of getting a paper
accepted (i.e. related to the acceptance rates in the area) and/or to the fact that col-
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laborations dissipate after a certain amount of time. We believe the former reason is
more important than the latter in light of the data shown in Fig. 7b. This figure shows
the relative probability of further collaborations depending on the number of previous
collaborations (computed using the methodology described before). Excluding the first
point (corresponding to no previous collaboration and hence beyond the scope of es-
tablished collaborations) and the last point (where a decay due to the finite size of the
network and the number of publications is present), this relative probability grows ge-
ometrically. As a comparison, [27] found a linear increase of this relative probability
for two databases of Physics and Medical papers. Although the growth factor is not
much larger than 1 – considering the last five years, it is about 38% more likely to
get a new paper with a co-author with whom one has m papers than with another one
with m− 1 previous papers – this indicates a interesting trend of “fidelity” in research
collaborations, which seem to be very durable in the CIG area.

3.5. Mesoscopic structure of the network
The attachment and internal linking dynamics described in the previous subsections

give rise to a particular structure of the network when analyzed on a larger scale. The
CIG network is not homogeneous, since some groups of authors are densely connected
between each other, but sparsely linked with authors outside the group. These groups
are called communities [30]. There are several approaches for identifying community
structure in networks. In this work we have opted for a method based on the greedy
optimization of modularity [31]. This method merges individual nodes into communi-
ties in a way that greedily maximizes the modularity score of the network. Intuitively,
modularity is a quality index of a partition of the network. Good scores are those in
which the internal cohesiveness (measured by the number of internal connections in-
side groups) is high and maximally different from the average density of the network.
We refer to the previous references and to [32] for more details on the modularity mea-
sure.

We have applied this analysis to obtain interesting information about how commu-
nities evolve over time. Fig. 8 shows the evolution of the number of communities and
their sizes. Not only does the number of communities grow over time (since 2003,
the growth is more marked – see the inset in Fig. 8a) but so does their size (Fig. 8a).
Communities get larger by attachment of new authors and by aggregation of smaller
communities, whereas they can get smaller by dividing into separate communities over
time. As shown in Fig. 8b the increase in the number of communities is also macro-
scopically reflected in the decreasing degree centralization of the giant component (in-
tuitively, degree centralization measures the starness of the network, i.e. the extent to
which it resembles the most centralized structure, namely a star with a central hub to
which all remaining nodes connect – see [33] for a detailed definition). This pattern
was also observed by [13] for the EC network and can not be just attributed to the per-
colation of different communities into a giant component but also to the age of nodes
(as a scientist evolves from PhD student to senior researcher (s)he begins to develop
new connections and take more students under his supervision, thus giving rise to new
hubs in the network). A preliminary analysis of the publication venues chosen by each
community indicates that there is a significant overlap among them, hence suggesting
that venue segregation is not the ultimate factor behind community formation.
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Figure 8: (a) Evolution of the average community size in the giant component of the cumulative network.
The inset shows the number of communities in the giant component. (b) Evolution of degree centralization
in the giant component of the cumulative network. A linear fit (∆x = −0.065, R2 = 0.93) is included.
The inset shows this data for the effective network (∆x = −0.055, R2 = 0.87).
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Figure 9: (a) Community interaction graph in the giant component until 2006 (sub-figure) and 2011, using
cumulative data. Each node represents a community. Node size is proportional to the betweenness of the
node. (b) Largest and most connected community in the giant component until 2011 using cumulative data.
Node size is proportional to the betweenness of the node and edge size is proportional to the number of
collaborations between the authors.

Once communities have been identified we can construct the community interaction
graph, i.e., a graph where all authors within a community collapse into a single node
and edges indicates collaboration between authors from two separate communities.
Fig. 9a shows this interaction graph for the giant component in G2011. Inside this
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figure, there is a sub-figure that shows the community interaction graph for the giant
component in G2006. It can be clearly seen how the giant component has not just
grown in size but has also developed an increasingly complex internal structure with
a large number of interconnected communities. Note how this interaction graph has,
however, an elongated shape, which is not the signature of a scale-free network from
this perspective. Furthermore, there is a single community which can be identified
as playing a prominent role both in the interaction graph (it is the most connected
community and the one with higher betweenness – see Sect. 3.6) and in the original
network as well (it is the largest one). This community is depicted in Fig. 9b using
node sizes and edge widths to denote the centrality (a topic which will be tackled again
later) of authors and the strength of collaborations respectively.

In order to analyze the scope and research area of this prominent community, we
have to analyze not just the authors but the publication text [34]. To be precise, we have
generated a graph representing the words used in the title of the articles written by at
least one of its members, see Fig. 10. In this graph, each node represents a single word
and edges between nodes mean that these words appear in a same article’s title. The
node size represents the frequency of the word, while the size of the edges represents
the frequency of the relationship. Words such as articles or prepositions have been
filtered because they do not offer any useful information. Additionally, we have only
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included words summing up the top 10% of appearances to avoid clutter. For the same
reasons, edges connecting words that only appear together once are not included in the
graph. Once this graph has been obtained, we run a community detection algorithm
as above, suggesting 6 topic areas in which this community is working. Apart from
a group of keywords related to proceedings edition, there are three areas dealing with
specific games: Super Mario (isolated node), Pac-Man (in the context of evolution and
temporal difference learning) and car-racing games (involving TORCS and techniques
such as genetic algorithms). There is also an indication of two topic areas, one centered
on procedural content generation and the other one on interaction and player modeling.
This indicates some of the topics in which a core part of the CIG community is working.
A more global perspective of such topics requires a broader characterization of who the
core researchers are in the CIG community. This will be tackled next.

3.6. Centrality analysis
Centrality measures are indicators of the importance of a node within the network.

This importance can be assessed in different ways depending on the context and the
meaning of connections and hence different centrality measures have been defined in
the literature. Borgatti and Everett [35] have provided a cross-classification of cen-
trality measures along two axes: radial vs medial and volume-based vs length-based.
In order to capture the corresponding different perspectives on centrality provided by
this classification we have considered four centrality measures, each of them belonging
to a different cell of this four-fold characterization. Betweenness [36] has been cho-
sen as the volume-based medial measure. Roughly speaking, high betweenness nodes
are those that appear in many of the shortest paths between nodes (and hence are im-
portant intermediaries in the exchange of information). As for volume-based radial
measures we have chosen Kleinberg’s centrality [37] defined as the principal eigen-
vector of A′ × A, where A is the adjacency matrix of the graph. Intuitively, a node
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is here deemed influential if it is also connected to other influential nodes. Regard-
ing the length-based dimension we have chosen closeness [38] as the radial measure.
Nodes with high closeness have a low average distance to the rest of the nodes in the
network (measured as the number of steps required to reach the latter). Thus, they can
be considered privileged emitters as information originating in them will quickly reach
the rest of the network. Finally, Borgatti’s distance fragmentation [35] is chosen as
the length-based medial measure. This index accounts for the change in the average
distance between nodes once a certain node is removed. Highly central nodes under
this measure are those which produce a large increase in this average distance and thus
are important in maintaining the cohesion of the network.

We have computed these centrality measures in the effective network for 2011 for
each node and treated this data as a multi-objective optimization problem as done by
[39]. The Pareto front comprises four scientists. Subsequently, we conducted a similar
keyword analysis as in the previous section, i.e. we picked the papers written by at
least one of these authors and created the word graph depicted in Fig. 11. Now, a single
community comprising procedural content generation, car racing and player modeling
emerges. Two isolate nodes reflect the relevance of Super-Mario and evolution. Finally
a topic area related to a conference edition bridges the gap with topics such as drama
management, interaction and authoring. Overall, this graph provides an interesting
overview of some of the most relevant research topics in the CIG community.

4. Conclusion and future work

This work has provided the first steps towards understanding the dynamics of the
Computational Intelligence in games (CIG) co-authorship network and its modeling,
using an individual-based model. CIG is an active and vibrant field, attracting new re-
searchers and generating new papers, having a stable growth in the number of authors,
which had an accelerated growth up to the early/mid-2000s. The number of published
papers per year has been increasing since 2005, sustaining the steady growth of the
network. In addition to a sustained influx of new authors, there is a constant flux of
authors moving out this field of research that might indicate a light deceleration of the
community. However, the real trend for volatility is more similar to that of new authors,
supporting the estimation of constant growth of the community. The CIG network is
still at an early stage of development, forming bonds and gaining cohesiveness but not
yet fully formed, as we can observe from the size of its largest component.

Addressing growth mechanics, the growth of the network is driven by preferential
attachment with a sub-linear rate. This rate is due to the fact that the CIG network
is still gaining maturity and hence it is more decentralized. Preferential attachment
supports the fact that new authors are increasingly more likely to enter the field by col-
laborating with established authors when the latter have a higher number of previous
co-authors. There is also a significant fidelity in research collaborations, due to a ge-
ometric growth in the relative probability of a further collaboration depending on the
number of previous collaborations.

With regard to the mesoscopic structure of the network, the increase in the number
of communities is reflected in the decreasing degree of centralization of the giant com-
ponent. The incorporation of smaller communities to the latter suggests that the CIG
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community is starting to percolate thus supporting the idea that the network is still at
an early stage of development. Precisely this fact, and the heterogeneity of the field,
should encourage researchers who have not yet made their presence felt in the CIG
community, to participate in this area.

Future work will include an analysis of which sub-fields of computational intelli-
gence in games are gaining importance in the community. This is an interesting (and
hard to do) analysis, because it is not enough to process just the authors of the article,
but the complete text [34]. We are working on this to obtain a classification of com-
munity authors based on the topics they research. We will also include additional data
from other bibliographic databases, like Scopus2 or Google Scholar3.
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Appendix A. Conferences, journals and keywords used to query the DBLP database

• Artificial and computational intelligence in games:

– IEEE Trans. on Computational Intelligence and AI in games (TCIAIG)

– Artificial Intelligence and Interactive Digital Entertainment Conference (AI-
IDE)

– IEEE congress on Computational Intelligence and Games (CIG)

– Agents for Games and Simulations (AGS)

– Advanced Intelligent Paradigms in Computer Games

• Artificial intelligence and evolutionary:

– IEEE congress on evolutionary computation (CEC)

– Genetic and Evolutionary Computation Conference (GECCO)

– Parallel Problem solving from Nature (PPSN)

– National Conference on Artificial Intelligence

– Applications of Evolutionary Computation (EvoApplications)

– International Conference on Artificial Neural Networks (ICANN)

– Canadian Conference on Artificial Intelligence

– Artificial Intelligence and Applications (AIA)

– Artificial Intelligence Applications and Innovations (AIAI)

– Artificial Intelligence and Computational Intelligence (AICI)

– Artificial Intelligence: Methodology, Systems, Applications (AIMSA)

– Artificial Intelligence and Simulations (AIS)

– Computational Intelligence

– European Conference on Artificial Intelligence (ECAI)

– International Conference on Agents and Artificial Intelligence (ICAART)

– International Conference on Artificial Intelligence (IC-AI)

– International Conference on Artificial Intelligence and Soft Computing (ICAISC)

– International Conference on Evolutionary Computation (ICEC)

– International Conference on Genetic Algorithms (ICGA)

– International Conference on Genetic and Evolutionary Computing (ICGEC)

– International Conference on Intelligent Computing (ICIC)

– International Joint Conference on Artificial Intelligence (IJCAI)

– International Joint Conference on Computational Intelligence (IJCCI)

– International Joint Conference on Neural Network(IJCNN)

– International Symposium on Computational Intelligence and Design
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– International Symposium on Neural Networks

– International Work-Conference on Artificial and Natural Neural Networks
(IWANN)

– IITA International Joint Conference on Artificial Intelligence

– Modeling Decisions for Artificial Intelligence

– IEEE Transactions on Evolutionary Computation (TEC)

– International Work-Conference on the Interplay Between Natural and Arti-
ficial Computation (IWINAC)

– International Conference on Adaptive and Natural Computing Algorithms
(ICANNGA)

– Artificial Life (ALIFE)

– Simulation of Adaptive Behavior (SAB)

– International Conference on Artificial Neural Networks (ICANN)

– Simulated Evolution and Learning (SEAL)

– European Conference on Advances in Artificial Life (ECAL)

– International conference on Swarm Intelligence (ICSI)

– Hybrid Intelligent Systems (HIS)

– European Symposium on Artificial Neural Networks (ESANN)

– IEEE Transactions on Neural Networks

– IEEE Transactions on Fuzzy Systems

• Games:

– GAME-ON Conference (GAMEON)

– Advances in Computer Games (ACG)

– Computers and Games

– Computers Games Conference (CGAMES)

– Conference of the Digital Games Research Association

– International Conference on Entertainment Computing

– Computers in Entertainment

– Advances in computer entertainment technology

• Keywords:

– Artificial and computational intelligence in games: no keywords. All arti-
cles selected.

– Artificial intelligence and evolutionary: game/s, puzzle, player.

– Games: fuzzy, evol*, genetic, swarm, agent, local search, neural, ant.

– Other: all combinations from {fuzzy, evol*, genetic} and {game/s, puzzle,
player}
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