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Abstract We consider search-based procedural content generation in the context
of Planet Wars, an RTS game. The objective of this work is to generate maps for
the aforementioned game, that result in an interesting game-play. In order to char-
acterize interestingness we focus on the properties of balance and dynamism. The
former captures the fact that no player is overwhelmed by the opponent during
the game, whereas the latter tries to model the fact that there is a lot of action
during the game. To measure these properties on a given map, we conduct several
games on them using top AI bots and collect statistics which are, in turn, used
as inputs of a fuzzy rule base. This system is embedded within an evolutionary
algorithm that features self-adaptation of mutation parameters as well as variable-
length chromosomes (thus implying maps of different sizes). The experimentation
focuses both on the optimization of balance and dynamism as stand-alone proper-
ties and in the analysis of the different tradeoffs attainable through them. To reach
this goal a multi objective approach is used. We analyze both the usefulness of
map-size self-adaptation in each scenario, as well as the properties of maps leading
to different tradeoffs between dynamism and balance.

Keywords Procedural content generation · Game attractiveness · RTS ·
Self-adaptive evolutionary algorithm · Multiobjective optimization

1 Introduction

Videogames are becoming the most profitable component of the entertainment
industry with a total consumer spend of 24.75 billion US dollars in 2011 [4]. The
process of creating the game content, such as maps and models, is one of the main
budget items due to the amount of work required and the number of professionals
(graphic and game designers, software developers, etc.) involved, so any saving in
the cost of manually creating this content is desirable.
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ETSI Informática, University of Málaga, Campus de Teatinos, 29071 Málaga – Spain
E-mail: {raul,ccottap,afdez}@lcc.uma.es
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Procedural content generation (PCG) comprises useful techniques to create
game content automatically through algorithmic means which is useful for the
videogame industry for several reasons, such as a reduced memory consumption of
the games, the possibility to create endless videogames that change every time a
new game is started and the reduced expense of creating the aforementioned game
content, just to name a few.

The industry already recognizes these benefits so there are several examples
of the use of PCG techniques in the development of a commercial videogame
and even during its game-play. The first-person shooter (FPS) Borderlands [10]
uses a PCG system that creates weapons and items with different features and
special bonuses –such as rate of fire, accuracy and ammo regeneration– and even
the creation of random enemies. Minecraft [21] is a sandbox building game that
uses PCG to expand dynamically infinite maps where the game takes place. The
music of Spore [20] (a god game simulation) is procedurally generated, and has a
dynamically generated universe.

From an academic point of view, PCG is an active field of the computational
intelligence in the field of games, as shown by the large number of papers on
this topic. For example, Togelius et al. [25] designed a PCG system capable of
generating tracks for a simple racing game from a parameter vector using a deter-
ministic genotype-to-phenotype mapping. Frade et al. introduced the use of genetic
programming to evolve maps for videogames (namely terrain programming), us-
ing either subjective human-based feedback [7,8] or automated quality measures
such as accessibility [6] or edge-length [9]. Togelius et al. [27,26] linked several
structural properties of maps, in an imaginary RTS, to game properties such as
fairness, aesthetics, playability or interestingness, and used a multi-objective evo-
lutionary algorithm to analyze the conflict between pairs of them. Mahlmann et al.
[18] described another search-based map generator for an abstract version of the
game Dune. Low resolution matrices represented map genotypes that were then
converted to higher resolution maps by means of cellular automata.

Real-time strategy (RTS) games are a genre of video-games that usually con-
sist of resource gathering, base building, in-game technological development and
indirect control of units. They are games for two or more players who have to deal
with incomplete information during the game like, for example, the map being
covered by “fog of war”. Precisely because of these features, RTS games are a
great tool for computational intelligence research. Although academic game ar-
tificial intelligence (AI) has usually been linked to non player character (NPC)
behavior and path-finding, there are new research areas that have recently dealt
with other game development challenges such as procedural content generation
(PCG), player experience modeling (PEM) and large scale game data mining [30].

Based on the taxonomy proposed by Togelius et al. [28], this paper presents an
offline PCG method that generates necessary content using random seeds, deter-
ministic generation and which follows a generate-and-test schema. This method
generates maps for the RTS game Planet Wars that exhibit interesting properties
such as balance (in terms of players not having any advantage over their oppo-
nents) and dynamism (promoting active games in which fights and fleet movements
take place) using evolutionary algorithms (EAs). It also compares different strate-
gies when generating maps (single and multiple objective optimization) as well as
different parameters of the evolutionary algorithm.
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2 Background

This section describes the game for which the maps are generated, specifically the
game Planet Wars (Sect. 2.1). Next, there is a brief description of what defines
unsuccessful videogames and what makes games more appealing to players (Sect.
2.2).

2.1 Planet Wars

Planet Wars is a real-time strategy game based on Galcon and used in the Google AI

Challenge 2010. It takes place on a map, on which a number of planets of different
sizes are scattered. The objective is to take over all the planets on the map or
eliminate all of your opponents’ ships. Initially each player has a home planet,
and the rest of planets are neutral. The sizes of the planets are related to how
many ships are produced every turn on each planet, so bigger planets are more
appealing to the players (neutral planets do not produce any ships though). In
order to conquer a planet a player has to move ships to it so as to outnumber
the number of ships already placed on the planet under dispute (these ships may
belong to another player, or represent an initial neutral number of ships to be
taken over if the planet has not been conquered by either player up to that point).
The game finishes when a certain number of turns is reached (so the player with
the highest number of ships is the winner) or when all the players except the
winner (the player that still has ships) have lost all their ships.

During a turn, the player can send fleets of ships from a planet that they own
to another planet. If the player owns the target planet the number of the fleet’s
ships is added to the number of ships on that planet, otherwise a battle takes
place on the target planet: ships from both sides destroy each other so the player
with the greatest number of ships remaining, owns the planet (with the number
of ships determined by the difference with the initial number of ships). The fleets
take a number of turns to reach their destination planets depending on how far the
planet is, and they can not be redirected while in flight. At the end of each turn,
owned planets produce a number of new ships proportional to their size. Although
the players issue their orders by a turn-by-turn scheme, they give these orders at
the same time, so we can treat this game as a real-time one.

2.2 Game Attractiveness and Player Satisfaction

In the past, the success of a video game was directly associated with its graphical
quality, but in the last decade this has changed and having good graphics does
not necessarily ensure high sales of a video game. Existing players demand video
games that show more than just a nice graphical skeleton and other issues (such as
music, the story, or the atmosphere of the game for instance) influence the decision
of a player to own a specific game. The question of what it is that attracts the
attention of players in a game is easy to answer: fun. However, how to obtain fun
games and whether we can predict if the game will be of interest to players are
not so easily answered.
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We find a number of theories in the literature, on why we play games and what
makes video games fun [13] and, according to [1], the success of a game might be
deduced by measuring in advance the quality of the game (which seems however
to be a difficult task). The notion of fun is difficult to measure as this depends on
each player but it is naturally associated with the notion of player satisfaction: the
greater the satisfaction, the greater the fun. Two research trends for measuring the
level of player’s satisfaction were categorized in [29]: the qualitative approach [2,19]
and the quantitative model [22]. Whilst the first approach is closer to psychology,
the second one suggests that the game is adapted in response to player’s needs.
Certainly, the latter can be handled via the generation of game contents that
adjust to the player’s skills, and this is currently automated via computational
intelligence (CI) techniques.

The most classic application of CI in this sense is the automatic generation
of strategies to govern the non-player characters (NPCs); in fact this is a natural
consequence of trying to satisfy the player’s demand to have opponents exhibiting
intelligent behavior and thus researchers try to obtain more intelligent NPCs.
However, this is not the primary goal of commercial games and game developers
focus on the attainment of NPCs that offer a challenge that is fun [16]. A key
principle is to let players survive a long time (e.g., reaching the highest possible
number of levels) while preventing players suffering a severe defeat (NPCs that
are too intelligent are therefore not wanted) and, at the same time, making sure
that too easy victory cannot be obtained (so, NPCs that are too stupid are not
appropriate either). The correct tradeoff between intelligence and stupidity is not
easy to achieve though and one can find in the literature many proposals for
generating NPCs the behaviors of which self-adapt to player skills [24,11].

However, CI has also been applied to many other aspects of game development
such as computational narratives, player modeling, learning in games, intelligent
camera control, and procedure content generation (PCG), [17]. This paper centers
on the capacity of PCG to engage the player (as commercial games demand) by
maintaining, during a match, an adequate tradeoff between the dynamism of the
game and the balance between players that in all probability have distinct skills.
The work described here is related with self-adjustment techniques and can be
considered another form of respecting the key principles of game development as
described above.

3 Evolutionary Map Design for Planet Wars

As stated in the previous sections, we aim to design maps for the RTS game under
consideration, focusing on the properties that a priori make it entertaining and
appealing to play, in other words, ensuring that the games are balanced (i.e., no
player thoroughly dominates the other) and dynamic (i.e., there is action during
the game, and a player who is at a disadvantage at a certain point can regain their
position and start to dominate the game at a later stage). In fact we discovered
that these two properties are partially conflicting, thus suggesting the need for a
multiobjective approach. This will be dealt with later on. Firstly, let us consider
how solutions are represented and evaluated, as well as the evolutionary engine
used to design maps.
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3.1 Representation and Evaluation

A map for Planet Wars can be defined on the basis of a number np of planets located
on a 2D plane. Besides its coordinates (xi, yi), each planet is characterized by two
additional properties: its size si and a number of ships wi. The first parameter (si)
captures the rate at which this planet will produce new ships once it is captured
by one of the players. As for the second parameter (wi), it indicates the initial
number of ships required to conquer that planet. Hence, we can denote a map as a
list [ρ1,ρ2, · · · ,ρnp ], where each ρi is a tuple ⟨xi, yi, si, wi⟩. In order to be playable,
a map also needs to specify the home planets of the players. In order to keep things
simple, we have taken the first two planets ρ1 and ρ2 as the home planets. Note
that the number of planets np need not be fixed, and can range between 15 and 30
(as per specifications of the Google AI Challenge 2010 ). In fact, one of the features
of the evolutionary approach discussed later on is the ability to self-adapt to not
only search parameters but also to the complexity (i.e., number of planets) of the
map.

In order to evaluate the playability features of a map, we use a tournament sys-
tem. We run a set of Planet Wars games between an arbitrary number of non-player
characters (NPC). Each NPC plays a game against another. The tournament sys-
tem evaluates every game, analyzing some statistics gathered from each of them.
Such statistics capture properties of a given game and are later used to quantify
the extent to which a game can be said to have been balanced or dynamic. More
precisely, the system collects the following information from the i-th game (out of
the total number of Ng games played in the tournament):

– Territorial imbalance: Let τi be the number of turns played in the current game,

and let π
(a)
ij be the percentage of planets (out of the total number of planets

np) owned by player a (where a ∈ {1, 2}), in the j-th turn of this i-th game.
Then, we define

Πi =
1

τi

τi∑
j=1

∣∣∣π(1)ij − π
(2)
ij

∣∣∣ (1)

i.e., the average imbalance in conquered planets throughout the game. This
variable can take values from 0 to 1.

– Growth imbalance: planets have different sizes and hence produce new ships at
different rates. We can thus define the imbalance in the capacity for producing
new ships analogously to Eq. (1), i.e.:

Γi =
1

τi

τi∑
j=1

∣∣∣γ(1)ij − γ
(2)
ij

∣∣∣ , (2)

where γ
(a)
ij is the percentage of the total growth capacity of the map accumu-

lated by player a in the j-th turn of the i-th game. While obviously correlated
to territorial imbalance, this variable is not identical to the latter and provides
a different perspective on whether forces are balanced or not. Again, it is easy
to see that this variable ranges from 0 to 1.
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– Ship imbalance: Much as before, we can measure the extent to which the actual
fleets owned by the players are balanced or not. This is done by computing:

Ξi =
1

τi

τi∑
j=1

∣∣∣ξ(1)ij − ξ
(2)
ij

∣∣∣ , (3)

where ξ
(a)
ij is the percentage of the total number of ships the j-th turn of the

i-th game that are owned by player a. Note that a player can achieve territorial
balance at the cost of getting involved in numerous battles and seeing their
number of ships reduced, so once again this variable is correlated but not
qualitatively identical to the previous variables. It ranges from 0 to 1 as Pii
and Γi.

– Game length: this is just the percentage of the maximum number of turns
allowed τmax that have been played in the current game:

Ti = τi/τmax (4)

Ranging from 0 to 1, this variable simply measures the duration of the game.
– Conquering rate: this variable is used to account for the percentage of plan-

ets which are not neutral (i.e., they have been conquered by either player)

throughout the game. It can be easily computed using values π
(a)
iτmax

as

Ki = π
(1)
iτmax

+ π
(2)
iτmax

(5)

and is obviously bounded between 0 and 1.
– Reconquering rate: this variable is a measure of how often planets change

ownership. Let ζij be the number of planets that were owned by a player in
turn j − 1 and conquered by the other player in turn j (regardless of who was
the original owner, i.e., we simple count how many planets have changed hands
in each turn). Then:

Zi =
1

τi

τi∑
j=1

ζij
np

(6)

While this variable can theoretically range from 0 to 1, in practice it is more
likely to take values closer to the lower end.

– Peak difference: this is actually a family of variables, each of them measuring
the maximal amplitude of the variation in any of the resources accounted for,

in this case planets, combined size and ships. More precisely, if ϕ
(a)
ij is the

number of resources ϕ (which can be π, γ or ξ) owned by player a in the j-th
turn of the i-th game, we record the two points in which the relative difference
is best for one player compared to the other one and add up both quantities,
i.e.,

∆ϕ
i = max

16j6τi

{
ϕ
(1)
ij − ϕ

(2)
ij

ϕ
(1)
ij + ϕ

(2)
ij

}
− min

16j6τi

{
ϕ
(1)
ij − ϕ

(2)
ij

ϕ
(1)
ij + ϕ

(2)
ij

}
(7)

In this case, the three variables ∆π
i ,∆

γ
i and ∆ξ

i range from 0 to 2.
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Balance:
1. if Π is lo and Γ is lo then bal is hi
2. if Π is hi and Γ is lo and Ξ is lo then bal is med
3. if (Π is lo and Γ is hi) or T is lo then bal is lo
Dynamism:
1. if K is hi and Z is hi then dyn is hi
2. if ∆π is hi and ∆γ is hi and ∆ξ is hi then dyn is hi
3. if ∆π is hi and (∆γ is lo or ∆ξ is lo) then dyn is med
4. if ∆γ is hi and (∆π is lo or ∆ξ is lo) then dyn is med
5. if ∆ξ is hi and (∆γ is lo or ∆π is lo) then dyn is med
6. if ∆π is lo and ∆γ is lo and ∆ξ is lo then dyn is lo
7. if K is lo or Z is lo or T is very lo then dyn is lo

Fig. 1 Fuzzy rule base for balance and dynamism.

Each of the aforementioned variables is subsequently averaged for the Ng games
played in each tournament in order to obtain aggregate values (for the sake of
simplicity we use the same notation as above, dropping the subindex i to denote
these averaged values, i.e., Π,Γ , etc.) that will be then used for evaluating balance
and dynamism. For this purpose, we have considered the use of a fuzzy rule base
in order to encapsulate the expert’s knowledge of what makes a certain game
balanced or dynamic. The motivation for this is manifold. In previous work where
the focus was only on balance [14] a mathematical formula was used to aggregate
some statistics into a single value. While this is common practice, it is also true
that there is a certain degree of arbitrariness on how the values are combined
and how they are weighted in order to produce a single number. Certainly, it can
be argued that the specific functional form used is guided by experts’ knowledge.
Then again, it is preferable to have this knowledge expressed at a higher-level,
making it more amenable to interpretation and tuning if necessary.

The fuzzy rules considered are shown in Fig. 1 and the underlying fuzzy sets
are depicted in Fig. 2. We first focus on balance. The first rule (1) defines that a
map will have a high balance if the difference between the number of planets of
both players during the game (namely Π) is low and so is the difference between
their cumulated size (i.e., Γ ). If the latter is low (and thus neither of the players
has had a big advantage in growth rate); balance is said to be medium in rule
(2) if there is an imbalance in the number of planets and ships (and hence one of
the players has had a material advantage). Finally, rule (3) states that there is a
low balance if both players have controlled a similar number of planets but with
disparate sizes, or if the game length has been short (and hence one of the players
could win easily). Note that we do not have to exhaustively cover all possible
combinations of input variables. For example, if there is an imbalance both in the
number of planets and growth rate, we cannot make a statement about whether
the game is globally balanced or imbalanced because this may depend on whether
both imbalances fall on the same side or not. However, this does not cause a
problem because the aforementioned rules can still be activated to some degree in
this situation (there are two input fuzzy sets overlapping across the whole input
domain), and hence defuzzification can be carried out (details on the methods of
instantiating fuzzy inference and defuzzification are provided in Sect. 4) .

Regarding dynamism, the rationale behind the rules presented is to attribute
a high dynamism to games in which many planets are conquered and change
hands often – rule (1). Likewise, if there are high peak differences in all resources
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LO HI

0

1

0 1

(a)

LO HI

0

1

0 2

(b)

LO HI

0

1

0 0.1 1

(c)

LO HIMED

0

1

0 1

(d)

Fig. 2 Membership functions of the fuzzy sets. They correspond to variables (a) Π,Γ,Ξ, T,K
(b) ∆π ,∆γ ,∆ξ (c) Z and (d) bal and dyn.

accounted for, the game is also dynamic since one the players has made a comeback
from a difficult position – rule (2). If the peak difference is high in one of the
resources but not high in at least one of the remaining ones, then the game is
considered dynamic at a medium level – rules (3)-(5). Along these lines, if all peak
differences are low, dynamism is also considered to be low. However this rule (6)
would not cover a scenario in which both sides frantically fight each other but
always remain with balanced forces. That being said, this situation is somewhat
extreme and is nevertheless mitigated by the fact that rule (1) would then enter
into action, raising the dynamism. Finally, rule (7) states that if few planets are
conquered or these rarely change hands or the game is very short, then the game
is not dynamic.

Clearly, the rules defined above are not the only way in which balance and
dynamism can be characterized. An expert in the game could think of alternative
rules, or even of alternative statistics to be collected from the games. Be that
as it may, these rules represent a reasonable approach for the properties we are
interested in. Furthermore, they provide a modular way to evaluate tentative maps,
thus easing the incorporation of new rules or the modification of existing ones.
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3.2 The Evolutionary Approach

The procedural map generator makes use of a self-adaptive evolutionary approach
which tries to optimize either balance or dynamism. Solutions are encoded as
mixed real-integer vectors as planet coordinates (xi, yi) are real-valued numbers
but sizes si and initial number of ships wi are positive integers. Thus, a hybrid
mutation operator is considered, using different mutation methods for parameters
of either type: for real-valued parameters, Gaussian mutation is used; as for in-
teger variables, it considers a method that generates suitable integer mutations
[15,23] – see also [14]. It is similar to the mutation of real values but it uses the
difference of two geometrically distributed random variables to generate the per-
turbation instead of the normal distributed random variables used for real values.
The parameters governing mutation in either case are also a part of the solutions,
thus providing the means for self-adapting them. More precisely, in the case of
real-valued parameters ⟨r1, ..., rn⟩ they are extended with n step sizes, one for each
parameter, resulting in ⟨r1, ..., rn, σ1, ..., σn⟩. The mutation mechanism is specified
as follows:

σ′i = σi · eτ
′·N(0,1)+τ ·Ni(0,1)

r′i = ri + σi ·Ni(0, 1)

where τ ′ ∝ 1/
√
2n, and τ ∝ 1/

√
2
√
n. A boundary rule is applied to step-sizes

to prevent standard deviations very close to zero: σ′i < ϵ0 ⇒ σ′i = ϵ0 (in this
algorithm, σ0 represents 1% of the parameter’s range). Regarding integer-valued
parameters ⟨z1, ..., zm⟩ they are extended in a similar way as are real-valued pa-
rameters, resulting in ⟨z1, ..., zm, ς1, ..., ςm⟩. The mutation mechanism is specified
as follows:

ς ′i = max(1, ςi · eτ ·N(0,1)+τ ′·N(0,1))

ψi = 1− (ς ′i/m)

1 +

√
1 +

(
ς ′i
m

)2
−1

z′i = zi +

⌊
ln(1− U(0, 1))

ln(1− ψi)

⌋
−
⌊
ln(1− U(0, 1))

ln(1− ψi)

⌋
where τ = 1/

√
2m and τ ′ = 1/

√
2
√
m. As described, the main difference between

the two methods is the distribution used to generate the perturbation.
Regarding the recombination operator, we consider a “cut and splice” operator

that recombines two individuals by swapping cut pieces with different sizes. The
operator selects one cut point for each individual and then swaps these pieces,
obtaining two new individuals with a different number of planets in relation to
their parents. This endows the algorithm with further self-adaptation capabilities,
thereby affecting the complexity of the maps, i.e., the number of planets in the
solutions.

4 Results

The self-adaptive EA described in Sect. 3.2 has been implemented on the DEAP
library [5], using a population size of 100 individuals and a (µ+ λ) generational
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Fig. 3 Optimization of balance. (a) Mean balance attained in the self-adaptive EA. The inset
shows the evolution of the dynamism of the corresponding high-balance solutions. In both
cases the shaded area indicates the standard error of the mean. (b) Boxplot of the final values
of balance and dynamism.

scheme, with µ = 10, λ = 100. In order to analyze the effectiveness of the self-
adaptation of the number of planets, we have also considered a version of the
algorithm in which the length of solutions is decided at random at the beginning
of each run and kept fixed for all solutions during that run. The cut-and-splice
recombination is in this case substituted by a two-point crossover. On each given
optimization scenario we have conducted a series of 10 runs both algorithms.

The players of the tournament system used to assess the quality of the maps
during the evaluation phase were three bots submitted to the Google AI Challenge

2010, namely Manwe1, Flagscapper’s bot2 and fglider’s bot3. All of them ranked in
the top 100 (there were over 4600 participants) and who have their source code
available. The maximum number of turns per game τmax is 400 turns. As for the
evaluation of fuzzy rules, we have used the min t-norm, the max t-conorm, the x2

function as a realization of the fuzzy modifier very, and the center of mass as the
defuzzification method.

4.1 Balance vs. Dynamism

The first batch of experiments focused on analyzing the behavior of the algorithms
when optimizing either balance or dynamism. The results are depicted in Fig. 3.

As can be seen, the self-adaptive EA was quite successful in finding highly
balanced solutions. In fact it found solutions with perfect (1.0) balance as a median
result. The fixed-random variant was also quite successful at this, achieving the

1 https://github.com/Manwe56/Manwe56-ai-contest-planet-wars
2 http://flagcapper.com/?c1
3 http://planetwars.aichallenge.org/profile.php?user_id=8490
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Fig. 4 Optimization of dynamism. (a) Mean dynamism attained in the self-adaptive EA. The
inset shows the evolution of balance in the corresponding high-dynamism solutions. In both
cases the shaded area indicates the standard error of the mean. (b) Boxplot of the final values
of balance and dynamism.

same median result and a slightly better mean result (but with no statistical
significance according to a one-sided wilcoxon test, α = .1). This can be attributed
to the fact that finding highly-balanced maps is quite easy (actually, they are
commonly found very early on the run) and hence the use of self-adaptation in the
number of planets adds an unnecessary overhead. In fact, the self-adaptive method
can be regarded as slightly more exploratory as indicated by the distribution of
the dynamism values: as expected, dynamism decreases as balance increases but
the final values for the self-adaptive EA were somewhat higher than those of the
fixed-random variant.

A salient feature of many of the highly-balanced maps found is the fact that
balance was achieved at the expense of complete inaction: both players sit on their
home planets and do not attempt to conquer other planets, let alone engage in
combat with the opponent. Such solutions are clearly unattractive and underline
the inability of balance –as a stand-alone property– to characterize interesting
games. We thus turn our attention to the optimization of dynamism. Fig. 4 show
the results in this case.

Several qualitative differences with respect to balance optimization are evident.
Firstly, the convergence of the algorithm is slower and suggests there is room
for improvement if longer runs are allowed. Also, the average fitness of solutions
places then close to medium level or half-way between medium and high level.
Taken together, this hints at a great difficulty in finding highly-dynamic maps. It
should also be noted that the trajectory of balance does not markedly decrease
(as was the case of dynamism in balance optimization) but rather it oscillates in a
narrow margin. This can partly be due to the fact that our definition of dynamism
implicitly incorporates a component of balance via the peak-difference variables: if
the game is very imbalanced and one player thoroughly dominates the other, these
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variables may take lower values than in games in which the dominated player makes
a comeback and thus the game goes through an intermediate stage of balance.
The fact that in such highly unbalanced games a victory of one of the players
may happen early on the game, also penalizes their dynamism – remember rule
(7). Regarding the comparison of the fully self-adaptive EA with the fixed-random
variant, Fig. 4b shows that while both algorithms provide maps, the balance of
which is almost identically distributed, the fully self-adaptive EA provides more
dynamic solutions than its fixed-random counterpart (with statistical significance
at α = .1 level). The self-adaptability of solution length seems to be helpful in this
more difficult optimization scenario.

An inspection of these results, and more precisely of the qualitatively-different
trajectories in fitness space of either property when the other is being optimized,
raises interesting questions as to what exactly are the possible tradeoffs attainable
between dynamism and balance. This requires approaching the problem from a
multiobjective perspective and is tackled in the next section.

4.2 A Multiobjective Approach

In order to perform multi objective optimization of balance and dynamism used the
Non-dominated Sorting Genetic Algorithm II (NSGA-II ) [3]. As with the single-
objective algorithm, we benchmarked the effectiveness of the self-adaptation of the
number of planets against another version of the algorithm in which the length of
solutions was decided at random at the beginning of each run. The comparison is
therefore based on two performance indicators, namely hypervolume [31] and R2

[12]. The former provides an indication of the region in the fitness space that is
dominated by the front (and thus it is to be maximized). This requires the use
of a reference point, which in our case is (0, 0) (the multi-objective fitness of the
worst hypothetical solution). As for the latter indicator, it estimates the extent to
which a given front approximates another one. For this purpose, we constructed a
non-dominated front by joining the fronts discovered in all runs of both algorithms
and removing dominated solutions. This front was then used as the reference front
to which the distance was measured (clearly, this distance is to be minimized).

Fig. 5 shows the results. As can be seen, the self-adaptive algorithm had a
faster convergence to better values of both indicators. The actual distribution of
the final values of these indicators is shown in Fig. 6a. In both cases the difference is
favorable to the self-adaptive algorithm (with statistical significance at the α = .1
level). A comparison of the cumulated fronts found by each algorithm is shown
in Fig. 6b. Quite interestingly, the random-fixed variant seems to perform better
on the extremes of the front, whereas the self-adaptive EA is more successful in
exploring the central part of the front, where a wide spectrum of different tradeoffs
between balance and dynamism are located.

We now look in more detail at the solutions comprised in the non-dominated
front and analyze how their properties map a different tradeoff between the two
objectives considered. Firstly, consider the number of planets in each map – see Fig.
7a. In general, the number of planets tends to be larger in increasingly dynamic
maps. As a matter of fact, the number is close to the upper limit of 30 planets in
the left hand side of the front and actually hits the lower limit of 15 several times
as we move towards the right. A natural interpretation of lies in the broader set
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algorithms. The inset shows the same measure for the cumulated front of both algorithms. (a)
hypervolume (b) R2.
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Fig. 6 (a) Boxplot of the values of performance indicators for both algorithms. (b) Comparison
of the global non-dominated fronts for both algorithms.

of choices available for players in larger maps, and the possibility they offer for
building larger empires or engaging in more fights for planet control. Besides the
number of planets, their distribution on the map also differs according to the zone
of the front where we are located as demonstrated in Fig. 7b. While the trend is
not so marked as in the previous case, we can see that planets are, in general,
farther apart from each other in highly-dynamic maps than in highly-balanced
maps. Furthermore, their arrangement appears less structured (as indicated by a
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Fig. 8 (a) Distribution of planetary sizes. (b) Pearson correlation between planet sizes and
their initial number of ships.

larger inter-quartile distance, i.e., with higher dispersion in the inner half of the
distribution). This higher irregularity contributes to dynamism, likely due to the
fact that it makes maps more anisotropic and hence can provide very different
stimuli to each player, eliciting actions from either of them which in turn triggers
further action by the opponent.

Regarding planetary sizes (Fig. 8a) the median size is analogous at the extremes
of the front, but seems to have a greater dispersion towards the high-dynamism
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end. Again, the irregularity effect could be at work, promoting dynamism. At any
rate, the trend is not very strong. However, an interesting fact emerges when we try
to correlate the size of each planet with the initial number of ships placed on them
(Fig. 8b). In general this correlation tends to be positive at the high-dynamism
end, while it is virtually zero (i.e., very close to it, from above or from below) near
the other end. In this case, we may interpret this feature as a safeguard against
highly imbalanced scenarios in which large planets can be conquered at a low cost,
providing a decisive edge for one of the players in the game.

5 Conclusions

This paper compares several PCG methods for generating maps for Planet Wars,
an RTS game. These maps should fulfill some desirable requirements, such as bal-
ance and dynamism, in order to obtain interesting and appealing games. We have
observed that the first objective can be easily misused by the optimization engine,
leading to maps that promote absolute inaction of the players (thus achieving per-
fect balance at the expense of extreme dullness). To the contrary, our definition
of dynamism implicitly carries with it a component of balance as well, if only by
negation of extreme imbalance (a very imbalanced game ends very early and/or is
likely to exhibit less comebacks from one of the players). This way, medium-high
dynamism is compatible with medium balance. A multiobjective optimization EA
has been used to explore what other tradeoffs between these two objectives are
attainable, and has shown a gentle degradation of dynamism as the balance is
increased, followed by a sharp decrease of the former upon reaching the high end
of balance. We have further studied the different properties of maps providing dif-
ferent balance/dynamism tradeoffs. In general, dynamic games seem to be related
to maps featuring a larger number of planets, widely scattered on the map and
whose sizes are positively correlated to the initial number of ships. We hypothesize
that these features promote dynamism by providing ample stimuli to the players
to expand their empires, eventually clashing with each other. Of course, a point of
caution is that the particular bots used in the experimentation exert an influence
on these results. The fact that we have considered three different, highly compet-
itive bots may make the case for the validity of the argument though. Whatever
the case, future work will allow more experimentation in this regard. Other points
to be addressed in future work are the inclusion of additional criteria capturing
interestingness and aesthetic appeal.

From an algorithmic point of view, we have presented an EA that optimizes
maps by self-adapting mutation parameters and map size (i.e., number of planets).
We have benchmarked this self-adaptive EA against a variant that features ran-
dom fixed-length maps. In general the fully self-adaptive EA has been shown to
outperform its counterpart both in the optimization of dynamism as a single ob-
jective (which is harder than optimizing balance) as in the multiobjective scenario
(as measured by the hyper volume and R2 indicators). We will try to confirm this
result on different RTS games in the future. In this regard, the approach presented
here can be easily generalized to other RTS scenarios since these often feature bases
and resources to be conquered. Last but not least, further study will be dedicated
to the actual characterization of balance and dynamic, and how adjusting these,
influences the optimization process.
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