
Geometrical vs Topological Measures for the Evolution
of Aesthetic Maps in a RTS Game

R. Lara-Cabrera, C. Cotta, A.J. Fernández-Leiva

Department of “Lenguajes y Ciencias de la Computación”
ETSI Informática, University of Málaga, Campus de Teatinos

29071 Málaga – Spain

Abstract

This paper presents a procedural content generation (PCG) method that is able
to generate aesthetic maps for a real-time strategy game. The maps were charac-
terized based on either their geometrical properties or their topological measures
(obtained in this latter case from the sphere-of-influence graph induced by each
map). Using these features, a distance function between maps can be defined.
This function is used in turn to determine how close/far each map generated
by the PCG method (a self-adaptive evolutionary algorithm) is to a collection
of maps which were taken initially to be aesthetic or non-aesthetic. This corre-
spondence guided a multi-objective evolutionary approach whereby maps close
to aesthetic maps and far to non-aesthetic maps are sought. Self-organizing
maps are used to ascertain whether the so-generated maps naturally cluster to-
gether with aesthetic maps, as well as to provide a qualitative assessment of the
ability of each set of features to characterize the latter.

Keywords: Procedural content generation, game aesthetics, computational
intelligence, real-time strategy games

1. Introduction

The videogame industry has taken the lead role from the entertainment
business, with a total consumer spent of $24.75 billion in 2011 [1] and estimated
game revenues of $70.4 billion worldwide in 2013 (which represents a 6% year-
on-year increase), according to Newzoo’s 2013 Global Games Market Report [2].
Moreover, the number of gamers was expected to surpass 1.2 billion by the end
of that year. This situation has motivated the research applied to videogames,
which has been acquiring notoriety during the last years, involving many areas
such as psychology and player satisfaction, marketing and gamification, compu-
tational intelligence, computer graphics, and even education and health (serious

Email addresses: raul@lcc.uma.es (R. Lara-Cabrera), ccottap@lcc.uma.es (C. Cotta),
afdez@lcc.uma.es (A.J. Fernández-Leiva)

Preprint submitted to Elsevier

games). The quality and appealing of video-games used to rely on their graphi-
cal quality until the last decade, but now, their attractiveness falls on additional
features such as the music, the player immersion into the game and interesting
storylines. It is hard to evaluate how amusing a game is because this evalua-
tion depends on each player, nevertheless there is a relationship between player
satisfaction and fun [3]. Nowadays, interesting new challenges and goals are
emerging within the area of video games, especially in the field of artificial and
computational intelligence in games [4].

Procedural Content Generation (PCG) [5, 6] refers to the algorithmic cre-
ation of game content, either with human intervention or without it, such as
maps, levels, textures, characters, rules and quests, but excluding the behavior
of non-playable characters and the game engine itself. The use of PCG has
several advantages, including saving memory and disk space, improving human
creativity and providing adaptivity to games. These benefits are well known
by the industry as demonstrated by the use of PCG techniques during the de-
velopment of commercial games such as Borderlands saga with procedurally
generated weapons and items, Skyrim (terrains and forests), and Minecraft or
Terraria with procedurally generated worlds. At the moment, there are three
main goals [5] of PCG research that are currently not obtainable and it would
require significant further research effort: multi-level multi-content PCG (i.e.
systems that are able to generate multiple types of quality content at multiple
levels of granularity in a coherent fashion while taking game design constraints
into consideration), PCG-based game design (i.e. creating games where a PCG
algorithm is an essential part of the game instead of being a design tool) and
PCG systems that could create complete games including the rules and game
engine. There is a subfield in PCG (i.e. Search-based PCG [7, 8]) whose tech-
niques apply a generate and test scheme so the content is firstly generated based
on previous evaluations and then evaluated according to some criteria (this pa-
per presents a method that follows this scheme).

The application of the aforementioned PCG techniques for Planet Wars in-
volves, in this case, generating the maps on which the game takes place. The
particular structure of these maps can lead to games exhibiting specific fea-
tures. In previous work [9, 10] we focused on making the game more fun to
play, achieving games that are balanced (i.e., games in which none of the play-
ers strongly dominates her opponent) and dynamic (i.e., games with a high
number of battles and changes in the owners of the planets). Despite we were
able to accomplish our requirements of balance and dynamism, the generated
maps lacked aesthetics (for example, maps with their planets clustered in a small
region), which is an interesting property apart from the fun that may lead to
increase the player satisfaction; in fact, fun and aesthetics are two complemen-
tary means of achieving the same goal [3]. In addition, non-aesthetic maps may
confuse the player, reducing her satisfaction or even leading her to stop playing
the game. This situation led us to tackle this problem [11]; therein we focused
on a way to characterize maps so as to attain a method capable of producing
scenarios with good aesthetics. In this paper, we have expanded the aforemen-
tioned characterization method including new topological measures that are not

2

affected by rotation, scaling and translation, which is important to prevent two
maps being considered different when they are conceptually the same (they
are equal according to the gameplay). In order to obtain these measures, we
characterized every map as a sphere of influence graph [12], which establishes
a relationship between some set of points based on their spatial arrangement.
This characterization provides a higher-level of abstraction and paves the way
to measure topological properties of maps as well as providing a different per-
spective to analyze morphological properties of the latter. In the following, we
will describe these different characterizations, and study the results obtained
when an evolutionary PCG method is deployed on them.

2. Background

Real-time strategy (RTS) games offer a large variety of fundamental AI re-
search problems [13] –such as adversarial real-time planning and decision making
under uncertainty among others– have been widely used as a test-bed for AI
techniques [14, 15, 16, 17, 18]. PCG techniques are usually employed to gen-
erate maps, as exhibited by the large number of papers on this topic [6]. For
example, Mahlmann et al. [19] presented a search-based map generator for a
simplified version of the RTS game Dune 2, which is based on the transformation
of low resolution matrices into higher resolution maps by means of cellular au-
tomata. Frade et al. introduced the use of genetic programming to evolve maps
for videogames (namely terrain programming), using either subjective human-
based feedback [20, 21] or automated quality measures such as accessibility [22]
or edge-length [23]. There is another paper [24], by Liapis et al., that relies on
the human evaluation of the generated content. Togelius et al. [25] designed a
PCG system capable of generating tracks for a simple racing game from a pa-
rameter vector using a deterministic genotype-to-phenotype mapping. Dormans
[26] presented strategies to generate levels for action adventure games using an
approach that distinguishes between missions and spaces as two separate struc-
tures that need to be generated in two individual steps. There is a study by
Ashlock and McGuinness [27] that introduces the so-called landscape automata
for searching the space of height maps using an evolutionary algorithm. The
designer is able to specify checkpoints that must be mutually accessible in or-
der to control the generated height maps. Another level generator based on an
evolutionary algorithm is presented in [28], but in this case, the fitness function
depends on the difference between the difficulty curves defined by the designer
and calculated for the candidate content, respectively. Some authors [10, 29]
presented algorithms capable of generating balanced maps for the RTS games
Starcraft and Planet Wars.

As we stated before, there is a large number of papers devoted to the gener-
ation of maps and levels. They all have one thing in common, their algorithms
look for carrying out various restrictions related to the gameplay, such as en-
suring the accessibility of certain zones, adjusting the difficulty or balancing the
gaming level of the players. This increases the fun and thus the player satisfac-
tion. This paper deals with another way of improving this player satisfaction,

3

that is generating maps with good aesthetics, a topic we were not able to find
in the state of the art, besides our previous work.

In addition to maps and levels, there are other content that is generated
with these methods. For example, Font et al. [30] presented an initial research
regarding a system capable of generating novel card games. Collins [31] made an
introduction to procedural music in video games, examining different approaches
to procedural composition and the control logics that have been used in the past.
The authors of [32] have created a prototype of a tool that automatically produce
design pattern specifications for missions and quest for the game Neverwinter
Nights.

In this work we focus on Planet Wars, a RTS game based on Galcon and used
in the Google AI Challenge 2010 [33], a competition about creating a computer
program that plays the game of Planet Wars as intelligently as possible. Despite
players make their orders on a turn-by-turn basis, they issue these orders at the
same time, so we can treat this game as a real-time game. The game’s objective
is to conquer all the planets on the map or destroy all of your opponents ships.
A game of Planet Wars takes place in outer space, precisely on a map that
contains several planets with some number of ships on it. Each planet may
have a different number of ships. The planets may belong to some player or
may be neutral. The game has a time limit and it may end earlier if one of
the players loses all his ships, implying that the player who has ships remaining
becomes the winner. It is considered a draw if both players have the same
number of ships when the game ends. On each turn, the player is able to send
fleets of ships from any planet she owns to any other planet on the map. She
may send as many fleets as she wishes on a single turn as long as she has enough
ships to supply them. After sending fleets, each planet owned by a player (i.e.
not neutral) will increase the number of defending ships there, according to
that planet’s growth rate (i.e. size). Different planets have different growth
rates. The fleets will then take some number of turns to reach their destination
planets, where they will then fight those opposing forces there and, if they win,
take ownership of the planet. There is an important restriction: fleets cannot
be redirected during travel. Players may continue to send more fleets on later
turns even while older fleets are in transit. Next section will detail the structure
of maps in this game, and how their properties can be characterized.

3. Methodological issues

As stated before, let us firstly detail how the maps have been represented
and characterized in order to get better aesthetics, both from the geometrical
and topological point of view; next, we describe the evolutionary algorithm used
to generate the maps.

3.1. Representation and characterization

Game maps are sets with a certain number of planets np located on a 2D
plane. These planets are defined by their position on the plane (coordinates

4

(xi, yi)), their size si and a number of ships wi. The size si defines the rate
at which a planet will produce new ships every turn (as long as the planet
is controlled by any player) while the remaining parameter, wi, indicates the
number of ships that are defending that planet. Hence, we can denote a map as
a list [~ρ1, ~ρ2, · · · , ~ρnp

], where each ~ρi is a tuple 〈xi, yi, si, wi〉. A playable map
needs to specify the initial home planets of the players, which have been fixed as
the first two planets ~ρ1 and ~ρ2 for the sake of simplicity. The number of planets
np is not fixed and should range between 15 and 30 as specified by the rules of
the Google AI Challenge 2010. This variable number of planets is also a part of
the self-adaptive evolutionary approach described later on.

In order to evaluate the aesthetics of maps, we need to characterize its fea-
tures and compare these with those of other maps known to be aesthetic/non-
aesthetic. For this purpose we have considered different kinds of properties.
From a general point of view, we draw a distinction between geometrical features
(based on the spatial geometry of the map, namely coordinates and distances),
and topological features (based on higher-level qualitative features of the map
which are unaffected by simple geometrical transformations). In addition, we
also take into account morphological features (based on individual planet prop-
erties, such as size or initial number of ships) in combination with the other
two, leading to two collections of features for classification purposes which –by
virtue of simplicity– we will refer to as geometrical and topological respectively.
Beginning with the former, the list of features considered is listed below:

• Spatial distribution of planets: Let ~pi = (xi, yi) be the coordinates of
the i-th planet and np the total number of planets. The average distance
between planets µd and the standard deviation of these distances σd is
defined as follows:

µd =
1

n2p

np∑
i=1

np∑
j=1

‖~pi − ~pj‖ , σd =

√√√√ 1

n2p

np∑
i=1

np∑
j=1

(‖~pi − ~pj‖ − µd)2

• Planet features: Let si and wi be the size (i.e. growth rate) and number of
ships, respectively, of the i-th planet. The average and standard deviation
of these sizes (µs and σs respectively) and the Pearson’s correlation ρ
between the planet’s size and the number of ships on it are defined as:

µs =
1

np

np∑
i=1

si, σs =

√√√√ 1

np

np∑
i=1

(si − µs)2

ρ =

∑np

i=1 siwi − npµsµw

npσsσw

where µw and σw are the average and standard deviation of ships, respec-
tively.

These geometrical measures have been applied to compare the likelihood
between maps in the following way: each map is characterized by a tuple

5

Figure 1: A sphere-of-influence graph. There is an edge between two points only if their
spheres of influence intersects. These spheres are centered on the points and their radius are
the minimal distance from the center point to the others.

〈µd, σd, µs, σs, ρ〉, then the euclidean distance between these tuples defined the
similarity among the planets they represented. Additionally, we specified two
sets of maps, one of them containing 10 maps with good aesthetics and the
other one including 10 non-aesthetic maps; there was an expert that reviewed
and tagged as aesthetic/non-aesthetic several maps from the Google AI Chal-
lenge and those produced by our previous algorithms. These sets provide a
reference to compare with in a way that the goal of generating aesthetic maps
turned into an optimization problem about minimizing the distance between
generated and aesthetics maps while maximizing their distance to non-aesthetic
maps. The latter was necessary to insert diversity into the set of generated maps
in order to avoid the generation of maps that were very similar to the aesthetic
ones.

As to topological features, these emerge from the sphere-of-influence graph
(SIG) of each map. This graph establishes a relationship between some set of
points, based on their spatial arrangement (see Figure 1). This relationship is
not affected by scaling, translation and rotation, which is a desirable feature as
stated in section 1. SIGs have been applied to many applications and research
areas, such as data mining for clustering depending on their attributes, computer
vision for object recognition from input dot patterns, and computer graphics,
for defining surfaces over point clouds. In this case, we have computed the SIG
for a certain map executing the following procedure:

1. For each planet pi placed at (xi, yi), compute the distance di to the closest
planet as di = minj{‖(xi−xj , yi−yj)‖ | j 6= i} where ‖v‖ is the Euclidean
norm of vector v.

2. For each planet pi, draw a circle with center (xi, yi) and radius di
3. Build the SIG as a graph G(V,E), where V = {p1, · · · , pnp

} and (u, v) ∈ E
iff the circles with centers in u and v intersect.

6

Once the SIG is available, we have calculated several measures to character-
ize them, namely:

• Number of connected components (sub-graphs in which any two vertices
are connected by paths).

• Average node’s degree (number of edges incident to the node).

• Density of the graph, which measures the ratio between number of edges
and nodes (specifically for undirected graphs δ = 2m/(np(np − 1)), with
np and m being the number of nodes (i.e. planets) and edges respectively).

• Average clustering coefficient. The clustering coefficient ci of a node quan-
tifies how interconnected (or grouped) with his neighbors it is. Mathemat-
ically, ci = 2Ei/ [ki(ki − 1)] where Ei is the number of edges connecting
the immediate neighbors of node i and ki is the degree of node i.

• Pearson correlation between the size of the nodes and their betweenness
centrality. The latter is a measure of the importance as intermediate
gateway of a node in a graph, as is computed as the average fraction of
shortest paths between any two nodes that go through a third certain
node.

• Pearson correlation between the size of the nodes and their degree.

• Size assortativity, i.e., Pearson correlation coefficient between the size of
nodes connected in the graph.

These parameters characterize several features of the maps, which are de-
tailed below. The number of connected components gives a measure of how
planets are clustered, precisely the number of interconnected group of planets,
while the average clustering coefficient assesses the shape of the cluster. The
average node’s degree and graph’s density quantify how regularly distributed
are the planets, because, according to the definition of a SIG, if the planets
are highly interconnected then the distances between them are quite similar.
Finally, the correlations introduce the size of the planets into the map charac-
terization process, establishing relationships between this parameter and other
planet features such as betweenness centrality, node degree and the size of the
neighbor planets.

In order to select a subset of the above variables, we have made a Random
Forest classifier (50 estimators each and bootstrap sampling) for each possible
combination of the above measures and we have evaluated the performance of
the classifiers using a Leave-one-out (LOO) cross-validation. AUC (Area under
ROC curve) values of the different combinations lead us to choose the following
variables as the map characterization: Graph’s density (δ), correlation between
node size and betweenness (ρSB), and size assortativity (ρSize) (i.e., Pearson
correlation coefficient between the size of planets connected in the graph), with
an AUC = 0.9916.

7

As in the aforementioned map characterization using geometrical measures,
we have featured each map by a tuple 〈δ, ρSB , ρSize〉. Hence the Euclidean
distance between these tuples defines the similarity among the maps they rep-
resent.

3.2. Evolutionary map generation

Evolutionary algorithms [34] are population-based metaheuristic optimiza-
tion algorithms whose operation is inspired by biological evolution. There is a
set of possible solutions to the optimization problem that act as individuals in
a population and whose quality (fitness) is measured by an evaluation function.
The algorithm mutates and recombines the solutions to create new ones, while
a process of selection dependent on the fitness of the individuals is performed to
determine which of them survive to the next generation. This iterative process
results in an increase in the quality of the solutions. There is a subset of these
algorithms that are capable of optimize multiple functions simultaneously, the
so-called multi-objective evolutionary algorithms; in this case, the fitness of in-
dividuals are vectors with many components as optimization objectives. The
best solutions are those found in the set of non-dominated solutions (i.e. if none
of the objective functions can be improved in value without degrading some of
the other objective values).

We used a similar approach for the map generator as in previous work
[10, 11], that is, a multi-objective NSGA-II [35] self-adaptive (µ + λ) evolu-
tion strategy (with µ = 10 and λ = 100) with two objectives: reduce (resp.
increase) the distance between the created maps and those from the training
set that were considered as aesthetic (resp. non-aesthetic). The solutions were
mixed real-integer vectors: planet’s coordinates (xi, yi) were real-valued num-
bers but sizes si and initial number of ships wi were positive integers; hence we
used two different mutation operators, one for each value type (Gaussian mu-
tation for real-valued parameters and a specific mutator for integers that uses
the difference of two geometrically distributed random variables to produce the
perturbation – see [10] for a full description). Regarding the recombination,
we considered a “cut and splice” operator that selects one cut point for each
individual and then exchanges these pieces, getting two new individuals with a
different number of planets in relation to their parents and ensuring the maxi-
mum mix-up of the genetic information during the recombination. As with the
mutation operator, which includes the mutation steps as a part of the solutions,
the recombination operator endows the algorithm with self-adaptation capaci-
ties, hence affecting the complexity of the maps, i.e., the number of planets in
the solutions.

As described in section 3.1, we characterized every map as both tuples of five
(geometrical) and three (topological) elements, respectively, so the euclidean
distance between these vectors measures the likelihood between them, hence
the fitness function used to evaluate the individuals is, precisely, the median
euclidean distance from the individual to every map from the set of aesthetics
(minimization objective) and non-aesthetics (maximization objective) maps that
are within the training set.

8

0

2

4

6

0.5 1.0
distance to aesthetics

di
st

an
ce

 to
 n

on
−

ae
st

he
tic

s

Aesthetics

Non−aesthetics

Non−dominated

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2 0.4 0.6
distance to aesthetics

di
st

an
ce

 to
 n

on
−

ae
st

he
tic

s

Aesthetics

Non−aesthetics

Non−dominated

(b)

Figure 2: Cumulative set of non-dominated generated solutions (circle) and maps from aes-
thetic (triangle) and non-aesthetic (square) training sets for both geometrical (a) and topo-
logical (b) approaches

4. Experimental Results

We have used the DEAP (Distributed Evolutionary Algorithms in Python)
library [36] to implement the aforementioned algorithm. We have run two sets
of 20 executions of the algorithm during 100 generations, using both character-
ization approaches. We have also computed the cumulative non-dominated set
of solutions from every approach and execution – see Figure 2. As we can see,
there is a linear relationship between both distances in the middle range of the
front, no matter which characterization we use. This hints at the density of the
search space and the feasibility of linearly trading increasing distance to good
maps by increasing distance to bad maps.

Figure 3 shows how are distributed the values of the different variables that
make up the characterization vectors of a map. Note that there are some vari-
ables that are similar in both aesthetics and non-aesthetic maps, such as σd, σs
and δ. However, some variables such as ρSB and ρSize are higher in the case of
the non-dominated maps, which should explain the high distance between many
solutions in the front and the training maps, as seen in Figure 2. Another inter-
esting observation is the highly distributed values of µd in the non-dominated
maps, which probably means that this variable has an uncertain effect over the
fitness and hence the search space for this variable is wider with respect to other
variables.

In order to analyze qualitatively the generated maps, we created two self-
organizing map (SOM) [37] with 32× 32 process units over a non-toroidal rect-
angular layout, one for each characterization approach. As we can see in figure1

1There is a color version of the figure at http://dx.doi.org/10.6084/m9.figshare.

9

Avg. distance

Stdev. distance

Avg. size

Stdev. size

Corr. size−ships

0.0 0.5 1.0 1.5N
on

−
do

m
in

at
ed

 m
ap

s

Avg. distance

Stdev. distance

Avg. size

Stdev. size

Corr. size−ships

0.0 0.5 1.0 1.5

A
es

th
et

ic
s

m
ap

s

Avg. distance

Stdev. distance

Avg. size

Stdev. size

Corr. size−ships

0.0 0.5 1.0 1.5N
on

−
A

es
th

et
ic

s
m

ap
s

Assort. Sizes

Corr. Size−Betw.

Density

0.0 0.4 0.8N
on
−

do
m

in
at

ed
 m

ap
s

Assort. Sizes

Corr. Size−Betw.

Density

0.0 0.4 0.8N
on
−

A
es

th
et

ic
 m

ap
s

Assort. Sizes

Corr. Size−Betw.

Density

0.0 0.4 0.8

A
es

th
et

ic
 m

ap
s

Figure 3: Characterization variables for both non-dominated maps and training maps: spatial
distribution and SIG approaches

(a) (b) (c) (d)

Figure 4: Map’s distribution over the SOM for both geometric (a) and topological (b) ap-
proaches. Red for non-aesthetic, green for aesthetic and blue for non-dominated. (c) and (d)
show the topological approach solution projected over the geometric approach SOM and vice
versa.

4, the SOM of the geometrical approach established a separation between non-
aesthetic (red zones, upper-right) and aesthetic maps (green zones, lower-left).
Moreover, generated maps (blue zones) share the same region as aesthetic maps,
hence they should be considered aesthetic as well. However, regarding the topo-
logical approach, it was not able to establish a clear distinction between aesthetic
and non-aesthetic maps (note the overlapped zones).

We performed a cross analysis between the non-dominated solutions (i.e.
maps) from the geometric and topological approaches to compare both char-
acterizations. As we can see in Figure 5, the solutions from the topological
approach are distributed over the same region of the fitness space than the so-
lutions from the geometrical approach, manifesting the similarity between the
quality of both sets of maps, according to the geometrical gauge. Similarly, we

1091371

10

obtained analogous results after projecting the solutions from the topological
and geometrical approaches over the latter SOM – see Figure 4c. Regarding the
solutions from the geometrical approach, they are mostly distributed over the
lower-left region of the topological fitness space, indicating that these maps are
nearer to the aesthetic and non-aesthetic maps of the training set than many
maps from the topological approach. If we look at the projection of the former
over the topological SOM (Figure 4), we can see that these geometric solu-
tions are more scattered than the corresponding topological solutions, although
they share the same area as the aesthetic maps, exposing their higher diversity
with respect to the solutions from the topological approach, even though both
approaches produce suitable maps.

0

2

4

6

0.25 0.50 0.75 1.00 1.25
distance to aesthetics

di
st

an
ce

 to
 n

on
−

ae
st

he
tic

s

Aesthetics

Non−aesthetics

Non−dominated (topologic)

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6
distance to aesthetics

di
st

an
ce

 to
 n

on
−

ae
st

he
tic

s

Aesthetics

Non−aesthetics

Non−dominated (geometric)

(b)

Figure 5: Cumulative non-dominated topological solutions in the fitness space of the geometric
solutions (a) and geometric solutions in the fitness space of the topological solutions (b).

5. Conclusions

We have performed an initial approach towards the procedural aesthetic
map generation for the RTS game Planet Wars. We have defined two methods
of map characterization in order to evaluate how aesthetic a map is. One of
them is based on several of its maps’ geometrical properties, the other one
depends on topological measures extracted from the spheres-of-influence graph,
which has been built for each map. We have used two sets of maps (aesthetics
and non-aesthetics) as a baseline to compare with, and an evolution strategy
whose objectives are to minimize/maximize the distance of the generated maps
to aesthetics/non-aesthetics maps in the training set (note some map samples
in Figure 6). The solutions have been further analyzed with a self-organizing
clustering method (SOM) which was able to make a separation between the
aesthetic and non-aesthetic maps that were procedurally generated using the

11

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

41

101

101

43

43

79

79

55

55

40

40

58

58

67

67

63 63

4

4

63

63

63

63

(a)

3

9

9

3

1

14

2
11

1
6 11

4

8
7

5

63
8 3

2

7

8

11

3

5 14

10

10

10

5

(b)

2

8

3

3

2

11

3

10

3

4

9

2

9
9

4

8
77

13

1

8

11

(c)

7

11

9

6

2

15

1

12

2

4
9

3

13

9

11

5

1

6

7

6

5

12
11

3

9

13

12

(d)

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

5

9

12

6

12

3

11

14

5
513

6

13

9

12

5

12

555

12

5

12

5

11

4

12

5 5

(e)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

65

75

60

61
95

17

15

19

49

94

90

5

6

15

4

86

20

61

4

86

63

20

61

4

12

15

7

4

12

(f)

Figure 6: Map samples: maps from training set with good (a) and bad (b) aesthetics and
maps generated using geometrical (c) (d) and topological (e) (f) approaches. Planets’ color
represents who owns the planet: red and green for player 1 and 2, respectively, and brown for
unoccupied planets. The number next to each planet represents the parameter ”w”, that is,
the number of defensive ships.

12

geometrical map characterization (i.e. created maps shared the same region
as the aesthetic maps). Nevertheless, the separation between both types of
maps that were created with the topological characterization is not so crisp
as the previous one. Finally, we have compared both approaches through a
cross analysis of their solutions, concluding that the maps from the geometric
approach are still considered aesthetic even if they are characterized using the
topological approach, and vice versa.

Lines for future developments are manifold. Firstly, a combined geomet-
rical/topological approach emerges as the next natural step. Such a hybrid
approach can be then augmented with information dynamically supplied by a
human user, thus providing a more refined depiction of the subjective notion
of aesthetics. Finally, playability can be included as an additional measure,
exploring the tradeoffs between what constitutes an aesthetically pleasant map
and what provides a satisfactory playing experience.

References

[1] Entertainment Software Association, Essential facts about the computer
and video game industry (2012).
URL http://www.theesa.com/facts/pdfs/esa_ef_2012.pdf

[2] T. Hagoort, P. Warman, 2013 global games market report, Tech. rep.,
Newzoo, accessed 20 Jan 2014 (2013).
URL http://www.globalgamesmarket.com

[3] M. Nogueira, C. Cotta, A. J. Fernández-Leiva, On modeling, evaluating and
increasing players’ satisfaction quantitatively: Steps towards a taxonomy,
in: C. D. Chio, et al. (Eds.), Applications of Evolutionary Computation,
Vol. 7248 of Lecture Notes in Computer Science, Springer-Verlag, Málaga,
Spain, 2012, pp. 245–254.

[4] S. M. Lucas, M. Mateas, M. Preuss, P. Spronck, J. Togelius (Eds.), Artificial
and Computational Intelligence in Games, Vol. 6 of Dagstuhl Follow-Ups,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

[5] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva,
M. Preuss, K. O. Stanley, Procedural Content Generation: Goals, Chal-
lenges and Actionable Steps, in: S. M. Lucas, M. Mateas, M. Preuss,
P. Spronck, J. Togelius (Eds.), Artificial and Computational Intelligence in
Games, Vol. 6 of Dagstuhl Follow-Ups, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 2013, pp. 61–75.

[6] M. Hendrikx, S. Meijer, J. Van Der Velden, A. Iosup, Procedural content
generation for games: A survey, ACM Trans. Multimedia Comput. Com-
mun. Appl. 9 (1) (2013) 1:1–1:22.

[7] J. Togelius, G. Yannakakis, K. Stanley, C. Browne, Search-based proce-
dural content generation, in: C. Chio, S. Cagnoni, C. Cotta, M. Ebner,

13

A. Ekrt, A. Esparcia-Alcazar, C.-K. Goh, J. Merelo, F. Neri, M. Preu,
J. Togelius, G. Yannakakis (Eds.), Applications of Evolutionary Compu-
tation, Vol. 6024 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2010, pp. 141–150.

[8] J. Togelius, G. N. Yannakakis, K. O. Stanley, C. Browne, Search-based
procedural content generation: A taxonomy and survey, IEEE Transactions
on Computational Intelligence and AI in Games 3 (3) (2011) 172–186.

[9] R. Lara-Cabrera, C. Cotta, A. J. Fernández-Leiva, Procedural map gen-
eration for a RTS game, in: A. F. Leiva, et al. (Eds.), 13th Interna-
tional GAME-ON Conference on Intelligent Games and Simulation, Eu-
rosis, Malaga (Spain), 2012, pp. 53–58.

[10] R. Lara-Cabrera, C. Cotta, A. J. Fernández-Leiva, A procedural balanced
map generator with self-adaptive complexity for the real-time strategy
game planet wars, in: A. Esparcia-Alcázar, et al. (Eds.), Applications of
Evolutionary Computation, Springer-Verlag, Berlin Heidelberg, 2013, pp.
274–283.

[11] R. Lara-Cabrera, C. Cotta, A. J. Fernández-Leiva, Evolving aesthetic maps
for a real time strategy game, in: P. A. G. Calero, M. A. G. Mart́ın (Eds.),
1st Spanish Symposium on Entertainment Computing, Universidad Com-
plutense de Madrid, Madrid (Spain), 2013, pp. 61–71.

[12] G. T. Toussaint, A graph-theoretic primal sketch, Computational Morphol-
ogy (1988) 229–260.

[13] M. Buro, RTS games and real-time AI research, in: Behavior Represen-
tation in Modeling and Simulation Conference, Vol. 1, Curran Associates,
Inc., 2004, pp. 53–60.

[14] R. Lara-Cabrera, C. Cotta, A. J. Fernández-Leiva, A Review of Compu-
tational Intelligence in RTS Games, in: M. Ojeda, C. Cotta, L. Franco
(Eds.), 2013 IEEE Symposium on Foundations of Computational Intelli-
gence, 2013, pp. 114–121.

[15] M. Preuss, N. Beume, H. Danielsiek, T. Hein, B. Naujoks, N. Piatkowski,
R. Stür, A. Thom, S. Wessing, Towards intelligent team composition and
maneuvering in real-time strategy games, IEEE Transactions on Compu-
tational Intelligence and AI in Games 2 (2) (2010) 82–98.

[16] D. Keaveney, C. O’Riordan, Evolving coordination for real-time strategy
games, IEEE Transactions on Computational Intelligence and AI in Games
3 (2) (2011) 155–167.

[17] A. Mora, A. Fernández-Ares, J.-J. Merelo, P. Garćıa-Sánchez, C. Fernan-
des, Effect of noisy fitness in real-time strategy games player behaviour
optimisation using evolutionary algorithms, Journal of Computer Science
and Technology 27 (5) (2012) 1007–1023.

14

[18] A. Fernández-Ares, P. Garćıa-Sánchez, A. Mora, J.-J. Merelo, Adaptive
bots for real-time strategy games via map characterization, in: Computa-
tional Intelligence and Games (CIG), 2012 IEEE Conference on, 2012, pp.
417–721.

[19] T. Mahlmann, J. Togelius, G. N. Yannakakis, Spicing up map generation,
in: C. D. Chio, et al. (Eds.), Applications of Evolutionary Computation,
Vol. 7248 of Lecture Notes in Computer Science, Springer-Verlag, Málaga,
Spain, 2012, pp. 224–233.

[20] M. Frade, F. F. de Vega, C. Cotta, Modelling video games’ landscapes by
means of genetic terrain programming - a new approach for improving users’
experience, in: M. Giacobini, et al. (Eds.), Applications of Evolutionary
Computing, Vol. 4974 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin Heidelberg, 2008, pp. 485–490.

[21] M. Frade, F. F. de Vega, C. Cotta, Breeding terrains with genetic terrain
programming: The evolution of terrain generators, International Journal
of Computer Games Technology 2009.

[22] M. Frade, F. de Vega, C. Cotta, Evolution of artificial terrains for video
games based on accessibility, in: C. Di Chio, et al. (Eds.), Applications
of Evolutionary Computation, Vol. 6024 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin Heidelberg, 2010, pp. 90–99.

[23] M. Frade, F. F. de Vega, C. Cotta, Evolution of artificial terrains for video
games based on obstacles edge length, in: IEEE Congress on Evolutionary
Computation, IEEE, 2010, pp. 1–8.

[24] A. Liapis, H. Martinez, J. Togelius, G. Yannakakis, Adaptive game level
creation through rank-based interactive evolution, in: Computational In-
telligence in Games (CIG), 2013 IEEE Conference on, 2013, pp. 1–8.
doi:10.1109/CIG.2013.6633651.

[25] J. Togelius, R. De Nardi, S. Lucas, Towards automatic personalised content
creation for racing games, in: Computational Intelligence and Games, 2007.
CIG 2007. IEEE Symposium on, 2007, pp. 252–259.

[26] J. Dormans, Adventures in level design: Generating missions and spaces
for action adventure games, in: Proceedings of the 2010 Workshop on Pro-
cedural Content Generation in Games, PCGames ’10, ACM, New York,
NY, USA, 2010, pp. 1:1–1:8.

[27] D. Ashlock, C. McGuinness, Landscape automata for search based proce-
dural content generation, in: Computational Intelligence in Games (CIG),
2013 IEEE Conference on, 2013, pp. 1–8. doi:10.1109/CIG.2013.6633619.

[28] H. Diaz-Furlong, A. Solis-Gonzalez Cosio, An approach to level design us-
ing procedural content generation and difficulty curves, in: Computational

15

Intelligence in Games (CIG), 2013 IEEE Conference on, 2013, pp. 1–8.
doi:10.1109/CIG.2013.6633640.

[29] A. Uriarte, S. Ontanon, Psmage: Balanced map generation for starcraft,
in: Computational Intelligence in Games (CIG), 2013 IEEE Conference on,
2013, pp. 1–8.

[30] J. Font, T. Mahlmann, D. Manrique, J. Togelius, A card game description
language, in: A. Esparcia-Alczar (Ed.), Applications of Evolutionary Com-
putation, Vol. 7835 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2013, pp. 254–263.

[31] K. Collins, An introduction to procedural music in video games, Contem-
porary Music Review 28 (1) (2009) 5–15.

[32] C. Onuczko, D. Szafron, J. Schaeffer, M. Cutumisu, J. Siegel, K. Waugh,
A. Schumacher, Automatic story generation for computer role-playing
games., in: AIIDE, 2006, pp. 147–148.

[33] Google AI challenge, accesed: 2014-07-01.
URL http://planetwars.aichallenge.org/

[34] A. E. Eiben, J. E. Smith, Introduction to evolutionary computing, Springer,
2003.

[35] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii, Evolutionary Computation, IEEE
Transactions on 6 (2) (2002) 182–197.

[36] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau, C. Gagné,
DEAP: Evolutionary algorithms made easy, Journal of Machine Learning
Research 13 (2012) 2171–2175.

[37] T. Kohonen, The self-organizing map, Proceedings of the IEEE 78 (9)
(1990) 1464–1480.

16

