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1 Introduction

The term ‘Memetic Algorithms’ [74] (MAs) was introduced in the late 80s to denote a family of metaheuristics

that have as central theme the hybridization of different algorithmic approaches for a given problem. Special

emphasis was given to the use of a population-based approach in which a set of cooperating and competing

agents were engaged in periods of individual improvement of the solutions while they sporadically interact.

Another main theme was to introduce problem and instance-dependent knowledge as a way of speeding-up the

search process. Initially, hybridizations included Evolutionary Algorithms –EAs [35, 41, 89, 97], Simulated

Annealing and its variants [52] [79] and Tabu Search [75] [9]. Today, a number of hybridizations include

other metaheuristics [42] as well as exact algorithms, in complete anytime memetic algorithms [76]. These

methods not only prove optimality, they can deliver high-quality solutions early on in the process.

The adjective ‘memetic’ comes from the term ’meme’, coined by R. Dawkins [30] to denote an analogous

to the gene in the context of cultural evolution. It was first proposed as a mean of conveying the message

that, although inspiring for many, biological evolution should not constrain the imagination to develop
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population-based methods. Other forms of evolution may be faster, with cultural evolution being one of

those less-restrictive examples.

Due to the fact that MAs aimed at drawing the attention from two communities of researchers with

different agendas, aiming at hybridizations of their methods, this metaheuristic had to suffer tough initial

times. Today they are becoming increasingly popular due to their impressive success record and the high

sophistication of the hybridizations proposed. As a consequence of its evolution, it is not unusual to find MAs

disguised in the literature under different names such as ‘hybrid EAs’ or ’Lamarckian EAs’. Furthermore,

many of the underlying ideas of MAs can be also found in other metaheuristics that evolved in relative

isolation from MAs. Scatter search [38] is a good example of a metaheuristic sharing much of its functioning

philosophy with MAs. In Ref. [80], the authors cite a paper by S. Kase in which a “game” between a

set of hierarchical agents (players and referees) is proposed to hybridize heuristic approaches for a layout

problem[50]. What makes this interesting is that this is an approach that does not rely on computers for

optimization and helps the employees to become engaged in these issues. Anticipating further definitions, we

can say that a MA is a search strategy in which a population of optimizing agents synergistically cooperate

and compete [82]. A more detailed description of the algorithm, as well as an functional template will be

given in Section 2.

As mentioned before, MAs is a hot topic nowadays, mainly due to their success in solving many hard

optimization problems, attracting experienced researchers to work on the challenges of this field. A particular

feature of MAs is greatly responsible for this: unlike traditional EAs, MAs are intrinsically concerned

with exploiting all available knowledge about the problem under study. The advantages of this approach

was notably neglected in EAs for a long time despite some contrary voices, most notably Davis’ who also

advocated for hybridization in his book [29]. The formulation of the so-called No-Free-Lunch Theorem

(NFL) by Wolpert and Macready [104] made it definitely clear that a search algorithm strictly performs in

accordance with the amount and quality of the problem knowledge they incorporate, thus backing up one of

the leiv motivs of MAs.

MAs exploit problem-knowledge by incorporating pre-existing heuristics, preprocessing data reduction

rules, approximation and fixed-parameter tractable algorithms, local search techniques, specialized recombi-
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nation operators, truncated exact methods, etc. Also, an important factor is the use of adequate represen-

tations of the problem being tackled. This results in highly efficient optimization tools. We provide a brief

abstracted overview of MA applications in combinatorial optimization in Section 3. We will finish with a

brief summary of the current research trends in MAs, with special mention to those we believe will play a

major role in the near future.

2 Dissecting a Basic Memetic Algorithm

As mentioned in the previous section, MAs blend different search strategies in a combined algorithmic

approach. Like EAs, MAs are population-based metaheuristics. This means that in MAs we maintain a

population of solutions for the problem at hand. We are using the term “solutions” rather loosely here, as

we can have either feasible or proto-solutions (structures that can be extended/modified to produce feasible

solutions) or even unfeasible solutions (which can be “repaired” to restore feasibility). It is also assumed that

both repairing or extension processes can be done quite fast, as to justify including them in the population.

Each of these solutions will be termed individual as the EA jargon, mainly to simplify the discussion. In the

context of MAs, the denomination agent representing a processing unit that can hold multiple solutions, and

has problem-domain methods that help to improve them if required [74]. Each individual/agent represents

a tentative solution/method for the problem under consideration. When the agents adapt their methods

we call the resulting strategy an adaptive memetic algorithm. Adaptation may include a modification of the

data as in [42].

Due to the agents interactions, solutions are subject to processes of competition and mutual cooperation.

The general structure of MAs is shown in Figure 1.1. aiming to highlight similarities with other population-

based metaheuristics such as EAs. Relevant differences are nevertheless evident when we inspect the innards

of the high-level blocks depicted in Figure 1.1. First of all, notice the existence of an initialization block.

Standard EAs would simply generate µ = |pop| random solutions. This can be also done in MAs, but

more sophisticated mechanisms are typically used as they are more useful. For example, some constructive

heuristic can be utilized to produce high-quality solutions [102] [61]. Another possibility refers to the use of

a local improving method, as illustrated in Fig. 1.2.
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There is another interesting element in the flow chart shown in Figure 1.1: the Re-start Population

process. This component is sometimes present in some EAs, but it is essential in MAs. Consider that the

population may reach a state in which the generation of a new improved solution might be very unlikely.

This could be the case when all solutions in the population are very similar to each other. In this situation of

population convergence, it is better to refresh the population, rather than keeping the population constrained

to a small region of the search space, probably expending most of the time resampling the same solutions

[22]. This is specifically important in MAs since the inclusion of several knowledge-augmented components

contribute to accelerate the convergence of the population. Typical criteria for determining population

convergence are measuring the diversity of solutions –via Shannon’s entropy [28] for instance– and bayesian

decision-making [44]. In either case, and whenever the population is considered to have converged, re-starting

can be done in different ways. One of these is shown in Figure 1.3: top individuals of the population are kept

(a certain fraction p of the population; this value should not be very high since otherwise the population

would obviously converge again in a very short time afterwards), and the remaining solutions are created

from scratch, as it is done in the initialization phase.

The main functional block in the MA template is the generational step process. This is actually the

part of the algorithm in which evolution of solutions takes place. Its internal structure is depicted in Figure

1.4. As it can be seen, there are three main components in this generational step: selection, reproduction,

and update. The first one and the third one are responsible for the competition aspects of individuals in

the population. Using the information provided by a problem-dependent guiding function (termed fitness

function in the EA terminology), the goodness of individuals in pop is evaluated, and a sample of individuals

is selected according to this goodness measure to help create new solutions. Essentially, this selection

can be done using fitness-proportionate methods (the probability of selecting an individual is proportional

to its fitness), and non-proportionate methods (selection is done on the basis of qualitative comparisons

among individuals). The latter are being increasingly used, since they avoid some problems of the former

(assumption of maximization, need of transformation for dealing with minimization, scaling problems, etc.).

Among these, we can cite rank-based methods (the top in the rank of an individual, the higher its chances for

being selected), and tournament-based methods (individuals are selected on the basis of a direct competition
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within small sub-groups of individuals).

As to update, this component takes care of maintaining the population at a constant size, or more

properly, at a manageable size, since variable-size populations are not rare [34]. This is done by substituting

some pre-existing individuals in pop by some of the new ones from newpop, using some specific criterion. Two

major strategies are possible: the plus strategy in which the best µ individuals from pop∪ newpop are kept,

and the comma strategy in which the best µ from newpop are kept. In the latter case, if |pop| = |newpop|

then the update is termed generational ; if |newpop| is small (say |newpop| = 1), then we have a steady-state

replacement (the worst |newpop| solutions from pop are substituted). Other intermediate generational gaps

are possible by selecting higher values of |newpop|.

We finally arrive to the reproduction stage, where new individuals (or agents) are created using the

information existing in the population. More precisely, several reproductive operators (i.e., transformation

functions) are used in a pipelined fashion, as illustrated in Figure 1.4. Reproductive operators are algorithms

that be classified into two classes: unary operators and n−ary (n > 1) operators. Beginning with the former,

two further types of operators are typically used, namely mutation operators, and individual-improvement

operators (in many cases based on some form of local search). The latter were already mentioned before, e.g.,

in the initialization phase. As indicated by their name, their purpose is to improve the quality of a ceratin

solution. In general, this is implemented via an iterative process whereby small modifications are introduced

in a solution, and kept if they result in an effective quality improvement. This process is repeated until it can

be determined that no further improvement is possible, until the amount of quality improvement is considered

good enough, or –most typically– until a maximum number of improving attempts are performed. Hence, the

process need not stop at an optimum for the individual-improver, and therefore characterizations of MAs as

“EAs working in the space of local-optima [with respect to a certain fitness landscape]” are clearly restricting

even the methods that originated the denomination [74] [73] and should be avoided. As to mutation, it is

intended to generate new solutions by partly modifying existing solutions. This modification can be random

–as it is typically the case in EAs– or can be endowed with problem-dependent information so as to bias the

search to probably-good regions of the search space.

Non-unary operators are usually termed recombination operators. These operators constitute a dis-
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tinctive added-value possibility of population-based search, and encapsulate the mutual cooperation among

several individuals (typically two of them, but a higher number is possible). They generate new individuals

using the information contained in a number of selected solutions called parents. If it is the case that the

resulting individuals (the offspring) are entirely composed of information taken from the parents, then the

recombination is said to be transmitting [87]. This property can be difficult to achieve for certain problem

domains (the Traveling Salesman Problem –TSP– is a typical example). In those situations, it is possible

to consider other properties of interest such as respect or assortment. The former refers to the fact that the

recombination operator generate descendants carrying all features (i.e., basic properties of solutions with

relevance for the problem attacked) common to all parents; thus, this property can be seen as a part of the

exploitative side of the search. On the other hand, assortment represents the exploratory side of recombina-

tion. A recombination operator is said to be assorting if, and only if, it can generate descendants carrying

any combination of compatible features taken from the parents. In either case, similarly to mutation, per-

forming the combination of information in a problem-oriented way (rather than blindly) is crucial for the

performance of the algorithm, see, e.g., [26, 81].

This description of recombination has introduced a crucial concept, namely, relevant features. By relevant

features we mean the information pieces that can be extracted from solutions, exerting a direct influence on

the quality of these. Consider that a certain solution can contain a high number of atomic information units,

but only some of them are directly linked with quality. For example, a permutation π can be interpreted

as a collection of positional information units, i.e., position i has value πi. It also can be interpreted as a

collection of adjacency information units, i.e., values a and b occur in adjacent positions of the permutation.

It turns out that if the permutation is taken as a solution to the Traveling Salesman Problem, the latter

are indeed the relevant features, while for the Flowshop Scheduling Problem positional information is

much more important [24]. The definition of operators manipulating the relevant features is one of the key

aspects in the design of MAs.

There have been several attempts for quantifying how good a certain set of information units is for

representing solutions for a specific problems. We can cite a few of them:

• Minimizing epistasis: epistasis can be defined as the non-additive influence on the guiding function
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of combining several information units (see [27] for example). Clearly, the higher this non-additive

influence, the lower the absolute relevance of individual information units. Since the algorithm will be

processing such individual units (or small groups of them), the guiding function turns out to be low

informative, and prone to misguide the search.

• Minimizing fitness variance [87]: This criterion is strongly related to the previous one. The fitness

variance for a certain information unit is the variance of the values returned by the guiding function,

measured across a representative subset of solutions carrying this information unit. By minimizing this

fitness variance, the information provided by the guiding function is less noisy, with the subsequent

advantages for the guidance of the algorithm.

• Maximizing fitness correlation: In this case a certain reproductive operator is assumed, and the correla-

tion in the values of the guiding function for parents and offspring is measured. If the fitness correlation

is high, good solutions are likely to produce good solutions, and thus the search will gradually shift

toward the most promising regions of the search space. Again, there is a clear relationship with the

previous approaches; for instance, if epistasis (or fitness variance) is low, then solutions carrying specific

features will have similar values for the guiding function; since the reproductive operators will create

new solutions by manipulating these features, the offspring is likely to have a similar guiding value as

well.

Obviously, the description of these approaches may appear somewhat idealized, but the underlying phi-

losophy is well illustrated. For further advice on the design of MAs, the reader is referred to [77, 78].

3 MAs and Combinatorial Optimization

MAs constitute a extremely powerful tool for tackling combinatorial optimization problems. Indeed, MAs

are state-of-the-art approaches for many such problems. Traditional NP Optimization problems constitute

one of the most typical battlefields of MAs, and a remarkable history of successes has been reported with

respect to the application of MAs to such problems. Combinatorial optimization problems (both single-

objective and multi-objective [45][47][54]) arising in scheduling, manufacturing, telecommunications, and
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bioinformatics among other fields have been also satisfactorily tackled with MAs. Some of these applications

are summarized in Table 1.1.

This list of applications is by no means complete since its purpose is simply to document the wide

applicability of the approach for combinatorial optimization. Indeed, MAs have been successfully applied

to other domains. Other such application areas of MAs include machine learning, robotics, engineering,

electronics, bioinformatics, oceanography, and many more. For further information about MA applications

we suggest checking Refs. [77][78], or querying bibliographical databases or web browsers for the keywords

‘memetic algorithms’ and ‘hybrid genetic algorithm’.

4 Conclusions and Future Directions

We believe that MAs have very favorable perspectives for their development and widespread application.

We ground our belief in several reasons: firstly, MAs are showing a great record of efficient implementations,

providing very good results in practical problems – cf. previous section. We also have reasons to believe that

we are near some major leaps forward in our theoretical understanding of these techniques, including for

example the computational complexity analysis of recombination procedures. On the other hand, the inherent

asynchronous parallelism of MAs adapts very well to the increasing availability of distributed systems.

We also see as a healthy sign the systematic development of other particular optimization strategies. If

a simpler –non-population-based– metaheuristic performs the same as a more complex method (GAs, MAs,

Ant Colonies, etc.), Ockham’s razor should prevail and we must either resort to the simpler method, or to

the one that has less free parameters, or to the one that is easier to implement. Such a fact should defy

us to adapt the complex methodology to beat a simpler heuristic, or to check if that is possible at all. An

unhealthy sign of current research, however, are the attempts to encapsulate metaheuristics on stretched

confinements. The evolutionary computing community had to endure a difficult time in the past, until the

artificial boundaries among the different EA families were overcome. It would be unwise to repeat the same

mistakes in the wider context of metaheuristics.

There are many open lines of research in MAs. One of them is multi-level evolution. It was anticipated in

[76] that future MAs could simultaneously evolve solutions (in a short-time scale), as well as representations
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and methods (ia a longer-time scale). In this sense, Krasnogor has recently introduced techniques to adap-

tively change the neighborhood definition [57], and with colleagues is these adaptive memetic algorithms for

the difficult problem of protein structure prediction [55]. Smith also presents a recent study on these issues

in [99] and [94],

Multiparent recombination is another promising area in which further work has to be done. Recall

that recombination is precisely one of the additional search possibilities contributed by population-based

algorithms, and that its augmentation with problem knowledge results in notably enhanced optimization

capabilities. It seems natural to generalize these ideas to multiple-solution recombination. Not only one can

have a wider pool of information for building the offspring, but additional hints can be obtained with respect

to, e.g., negative knowledge, that is, what pieces of information should be avoided in the offspring. This is

definitely one of the most challenging issues for future development in MAs.
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Figure 1.1: The general structure of MAs. Solid arrows indicate the control flow, whereas dashed arrows

indicate the data flow.
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Figure 1.2: Generation of the initial population. A local improver can be used to enhance the quality of

starting solutions.
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Figure 1.3: A possible re-starting procedure for the population. The top π = pµ agents in the population

are kept, and the remaining µ− π are generated from scratch.
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Figure 1.4: The basic generational step. Notice the use of a pipeline of reproductive operators for creating

new solutions.
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Table 1.1: Some applications of memetic algorithms in combinatorial optimization.

Graph Partitioning [13][70] Min Number Partitioning [9][10]

Max Independent Set [2][40][93] Bin-Packing [90]

Min Graph Coloring [20][33] Set Covering [7]

Min Generalized Assignment [19] Multidimensional Knapsack [25][49][100]

Quadratic Assignment [69][71] Quadratic Programming [72]

Set Partitioning [59] Gate Matrix Layout [63][64]

Traveling Salesman Problem [14][42][56] Min Weighted k-Cardinality Tree [12]

[67][91][107] Min k-Cut Problem [105]

Uncapacitated Hub Location [1] Placement Problems [43][58][95]

Vehicle Routing [8][48][85] Task Allocation [39]

Prize-Collecting Steiner Tree [53] Network Design [4][86][92]

Vertex-Biconnectivity Augmentation [51] Error Correcting Codes [23]

OSPF routing [15] Maintenance Scheduling [16]

Open Shop Scheduling [18] Flowshop Scheduling [36][46][98]

Single Machine Scheduling [37][62][65] Parallel Machine Scheduling [66]

Project Scheduling [88] Production Planning [32]

Timetabling [3][84] Rostering [31]

Sport Games Scheduling [21][96] Airport Gate Scheduling [60][106]

Multistage Capacitated Lot-Sizing [11] Graph Isomorphism Problem [103]

Protein Structure Prediction [5][6][57] Clustering [68][83][101]
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