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Abstract. Memetic algorithms (MAs) constitute a metaheuristic op-
timization paradigm based on the systematic exploitation of knowledge
about the problem being solved, and the synergistic combination of ideas
taken from other population-based and trajectory-based metaheuristics.
They have been successfully deployed on a plethora of hard combina-
torial optimization problems, amongst which scheduling, planning and
timetabling are distinguished examples due to their practical interest.
This work examines the application of MAs to problems in these do-
mains. We describe the basic architecture of a MA, and present some
guidelines to the design of a successful MA for these applications. An
overview of the existing literature on the topic is also provided. We
conclude with some reflections on the lessons learned, and the future
directions that research could take in this area.

1 Introduction

Back in the late 1960s and early 1970s, it began to be evident that there existed
many practical problems for which neither the exact resolution nor approximate
approaches with realistic performance guarantees were acceptable in practice.
Motivated by this fact, several researchers laid the foundations of what we now
know as evolutionary algorithms [1–4] (EAs). Despite some voices claiming that
such approaches constituted “an admission of defeat”, these techniques have
steadily grown in usage and understanding to become what they nowadays rep-
resent: the cutting-edge approach to real-world optimization. Certainly, this has
also been the case for other related techniques, such as simulated annealing [5]
(SA), tabu search [6] (TS), etc. The term metaheuristics has been coined to
denote them.

The development of metaheuristics in general, and EAs in particular, reached
a critical point in the mid 1990s, when the need of exploiting problem knowl-
edge was clearly exposed. The formulation of the No Free Lunch Theorem (NFL)
by Wolpert and Macready [7] made it definitely clear that a search algorithm
performs in strict accordance with the amount and quality of the problem knowl-
edge they incorporate. Quite interestingly, this line of thinking had already been
advocated by several researchers in the late 1980s and early 1990s, e.g., Hart and



Belew [8], Davis [9], and Moscato [10]. It was precisely in the work of Moscato
where the paradigm of memetic algorithms [11–13] (MAs) started.

MAs are a family of metaheuristics that try to blend several concepts from
tightly separated –in their origins– families such as EAs and SA. The adjective
‘memetic’ comes from the term ‘meme’, coined by R. Dawkins [14] to denote
an entity that is analogous to the gene in the context of cultural evolution.
The purpose of the analogy (sometimes over-stressed in the literature) is to
emphasize the departure from biologically-inspired mechanisms of evolution, to
more general processes where actual information is manipulated, learned, and
transmitted. Due to the way in which this can be implemented, it is often the
case that MAs are used under a different name (e.g., ‘hybrid EAs’, ‘Lamarckian
EAs’, etc.), and sometimes with a very restrictive meaning. At any rate, we
can say that a MA is a search strategy in which a population of optimizing
agents synergistically cooperate and compete [10]. These agents are explicitly
concerned with using knowledge from the problem being solved, as suggested by
both theory and practice [15]. A more detailed description of the algorithmic
pattern of MAs is given in Sect. 2.

As mentioned above, the raison d’être of metaheuristics is the fact that
many problems are very difficult to solve using classical approaches. This is
precisely the case for many problems in the area of industrial planning, schedul-
ing, timetabling, etc. All these problems have something in common: a set of
entities have to be arranged in a time-like fashion, subject to some particular
constraints (based on, e.g., precedence, resource consumption, etc.), and usually
with some cost figure associated (to be optimized). Not surprisingly, MAs have
been extensively used to solve this kind of problems. In this work, we shall ana-
lyze the deployment of MAs on this domain. To this end, we shall provide some
general design guidelines in Sect. 3, and an overview of the relevant applications
of MAs in Sect. 4, trying to highlight the successful strategies. This chapter will
end with a summary of lessons learned, and some current and emerging research
trends in MAs for scheduling, planning, and timetabling.

2 Memetic Algorithms

MAs are population-based metaheuristics. This means that the algorithm main-
tain a population of candidate solutions for the problem at hand, i.e., a pool
comprising several tentative solutions. In the EA terminology, each of these can-
didate solutions is called individual. However, the nature of MAs suggests agent
as a more appropriate term here. In essence, this is due to the fact that ‘individ-
ual’ denotes a passive entity, subject to some evolutionary rules, whereas ‘agent’
implies the existence of an active behavior, purposefully directed to solving the
optimization problem at hand. This active behavior is reflected in several typ-
ical components of the algorithm such as (but not exclusively as) local search
add-ons. We shall return to this point later in this section.

A general sketch of a MA is shown in Fig. 1. As in EAs, the population of
agents is subject to processes of competition and mutual cooperation. Competi-



Memetic Algorithm

Input: An instance I of problem P .
Output: A solution sol.

// Generate Initial Population

1 : for j ← 1:popsize do
2 : let ind ← GenerateHeuristicSolution(I)
3 : let pop[j] ← LocalImprover (ind, I)
4 : endfor
5 : repeat // Basic Generational Loop

// Selection

6 : let breeders ← SelectFromPopulation(pop)
// Pipelined reproduction

7 : let auxpop[0] ← pop
8 : for j ← 1:#op do
9 : let auxpop[j] ← ApplyOperator (op[j], auxpop[j − 1], I)

10 : endfor
11 : let newpop ← auxpop[#op]

// Replacement

12 : let pop ← UpdatePopulation (pop, newpop)
// Check Population Convergence

13 : if Converged(pop) then
14 : let pop ← RestartPopulation(pop, I)
15 : endif
16 : until MA-TerminationCriterion(pop, I)
17 : return Best (pop, I)

Fig. 1. The general template of a memetic algorithm

tion is achieved via the standard procedures of selection (line 6) and replacement
(line 12): using the information provided by an ad hoc guiding function (fitness
function in the EA terminology), the goodness of agents in pop is evaluated;
subsequently, a sample of them is selected for reproduction according to this
goodness measure. This information is later used to determine which agents will
be removed from the population in order to make room for the newly created
ones. In both cases –selection and replacement– any of the well-known strategies
used in EAs can be utilized, e.g., tournament, ranking, or fitness-proportionate
selection, plus or comma replacement, etc. In addition to these, there are other
strategies that could be used here, and that have been proved successful in sev-
eral scheduling domains (see Sect. 4).

As to cooperation, it is accomplished through reproduction. At this stage,
new agents are created by using the existing ones. This is done by utilizing a
number of reproductive operators. Many different such operators can be used in
a MA, as illustrated in the general pseudocode shown in Fig. 1, lines 7–11. As it
can be seen, an array op of operators can be in general assumed. These operators



(whose number is denoted by #op) are sequentially applied to the population in
a pipeline fashion, thus resulting in several intermediate populations auxpop[i],
0 6 i 6 #op, where auxpop[0] is initialized to pop, and auxpop[#op] is the final
offspring. In practice, the most typical situation involves utilizing just three
operators: recombination, mutation, and local improvement. Notice that in line
9 of the pseudocode, these operators receive not only the solutions they must
act on, but also the problem instance I. This illustrates the fact that in MAs
these operators are problem-aware, and base their functioning on their knowledge
about the problem being solved. This is an important difference with respect to
classical EAs.

Recombination is the process that best encapsulates mutual cooperation
among several agents (typically two of them, but a higher number is possible
[16]). This is done by constructing new solutions using the relevant information
contained in a number of selected parents. By “relevant”, it is implied that the
information pieces manipulated bear some important information in order to de-
termine the goodness (or badness) of the solutions. This is an interesting notion
that departs from the classical manipulation of symbols for a certain syntax of
candidate solutions, typical of plain EAs. We shall return to this in next section.

The other classical operator –mutation– plays the role of keeping the pot
boiling, continuously injecting new material in the population, but at a low rate
(otherwise the search would degrade to a random walk in the solution space).
This interpretation of mutation reflects the classical view, dominant in the ge-
netic algorithm arena [17]. Certainly, evolutionary programming practitioners [1]
would disagree with this characterization, claiming the crucial role for mutation.
According to this latter view, recombination is generally regarded as a macro-
mutation process. While this is something that could be accepted to some extent
in many EA applications in which recombination is a mere random-shuffler of
information, the situation is quite different for MAs. Indeed, recombination is
usually performed in a smart way as anticipated before, and hence it provides a
central contribution to the search.

Lastly, one of the most distinctive components of MAs is the use of local
improvers. To understand their philosophy, let us consider the following abstract
formulation: first of all, assume a graph whose vertices are solutions, and whose
edges connect pairs of vertices such that the corresponding solutions differ in
some (typically small) amount of relevant information. Now, a local improver is a
process that starts at a certain vertex, and moves to an adjacent vertex, provided
that the neighboring solution is better than the current solution. Thus, the local
improver tries to find an “uphill” (in terms of improving the value provided by
the guiding function) path in the graph whose definition was sketched before
(formally termed fitness landscape [18]). Notice that this description is very
simplistic, and that many variations may exist in the way in which the neighbor
is selected, the precise criterion under which it is accepted or rejected, and the
termination condition for the local improvement.

As anticipated before, the utilization of local improvers (notice that several
different ones could be used in different points of the algorithm) is one of the



most characteristic features of MAs. It is mainly because of the use of this
mechanism for improving solutions on a local (and even autonomous) basis that
the term ‘agent’ is deserved. Thus, the MA can be viewed as a collection of
agents performing an autonomous exploration of the search space, cooperating
some times via recombination, and competing for computational resources due
to the use of selection/replacement mechanisms.

There is another interesting element in the pseudocode shown in Fig. 1,
namely the RestartPopulation process (lines 13–15). This process is very im-
portant in order to make an appropriate use of the computational resources:
should the population reach a state in which all agents were very similar to each
other, the generation of new improved solutions would be very unlikely. This
phenomenon is known as convergence, and can be identified using measures such
as Shannon’s entropy [19]. If this measure falls below a predefined threshold, the
population is considered at a degenerate state. This threshold depends upon the
representation of the problem being used, and must therefore be determined in
an ad hoc fashion.

It must be noted that while most MA applications can be dissected using the
general template presented here, it is obviously possible to conceive algorithms
somehow departing from it, that could nevertheless be catalogued as MAs. This
fact notwithstanding, the general principles depicted in this section should still
be applicable to these MAs.

3 Design Principles for Effective MAs

In order to solve a particular optimization problem in the area of planning and
scheduling, the general template of MAs depicted in Sect. 2 must be instantiated
with precise problem-aware components. No general approach for the design of
effective MAs exists in a well-defined sense, and hence this design phase must be
addressed from a heuristic point of view as well. Let us consider in the following
the main decisions that have to be taken.

3.1 Representation

The first element that one has to decide is the representation of solutions. This
notion must be understood not as the way solutions are encoded (something
that is subject to considerations of memory consumption, manipulation com-
plexity, etc.), but as the abstract formulation of solutions, as regarded by the
reproductive operators [20]. In this sense, recall the notion of “relevant” infor-
mation introduced in Sect. 2: given a certain representation of solutions, these
are expressed via some information units; if the operators used for manipulat-
ing solutions are problem-aware, these information units they identify must be
important to determine whether a solution is good or not. The evolutionary dy-
namics of the system would then drive the population to retain those positive
information units, making negative units disappear. This is better illustrated
with an example: consider a problem whose solution space is composed of all



permutations of n elements; there are several types of information units in such
solutions [21], e.g.,

– positional, i.e., element e appears in position j.
– precedence, i.e., element e appears before/after element e′.
– adjacency, i.e., element e appears next to element e′.

The relevance of each type of information unit will obviously depend on the
problem being solved. For example, adjacency information is important for the
Travelling Salesman Problem (TSP), but positional information is less so. On
the other hand, it seems that positional information is relevant when minimizing
makespan in a permutation flowshop problem [22], and adjacency information
is more irrelevant in this case. Therefore, an edge-manipulation operator such
as edge-recombination [23] (ER) will perform better than position-based opera-
tors such as partially-mapped crossover [24] (PMX) or uniform cycle crossover
[22] (UCX) on the TSP, but the latter will be better on permutation flowshop
problems.

There have been several attempts for quantifying how good a certain set of in-
formation units is for representing solutions for a specific problems. Among these
we can cite epistasis (non-additive influence on the guiding function of combin-
ing several information units) [25, 26], fitness variance of formae (variance of
the values returned by the guiding function, measured across a representative
subset of solutions carrying this information unit) [27], and fitness correlation
(correlation in the values of the guiding function for parents and offspring) [28,
29]. Notice that in addition to using a quality metric of representations to pre-
dict the performance of a certain pre-existing operator (i.e., inverse analysis),
new ad hoc operators can be defined to manipulate the best representation (di-
rect analysis) [13]. This is for example done in [22] for permutation flowshop
scheduling, once the positional representation is revealed as the most promising.

It is also important to note that whatever the metric used to quantify the
goodness of a particular representation is, there are other considerations that
can play a central role, namely, the presence of constraints. Typically, these are
handled in three ways: (1) by using penalty functions that guide the search to
the feasible region, (2) by using repairing mechanisms that take infeasible solu-
tions back to the feasible region, and (3) by defining reproductive operators that
always remain in the feasible region. In the first two cases, the complexity of
the representation and the operators can be kept at a lower level1. In the latter
case, responsibility has to be taken either by representation or by operators to
ensure feasibility, and this comes at the cost of an increased complexity. Focusing
on representations, the use of decoders is a common option to ensure feasibility.
The basic idea is to use a complex genotype-to-phenotype mapping that not only
produces feasible solutions, but can also provide additional problem knowledge
and hence solutions of better quality. For example, a greedy permutational de-
coder is used in [30] for a nurse scheduling problem. A related approach is used
in [31–33] in the context of job shop scheduling.
1 At least from the functional point of view; from the practical point of view, more

sophisticated strategies can obviously result in improved performance.



3.2 Reproductive Operators

The generation of new solutions during the reproductive stage is done by ma-
nipulating the relevant pieces of information identified. To do so, the user could
resort to any of the generic templates defined for that purpose, e.g., random
respectful recombination, random assorting recombination, and random trans-
mitting recombination among others [34]. These are generic templates, in the
sense that they blindly process abstract information units. However, in order to
ensure top performance, reproductive operators must not only manipulate the
relevant information, but must do so in a sensible way, that is, using problem
knowledge.

There are many ways to achieve this inclusion of problem knowledge. From
a rather general stand-point, there are two major aspects into which problem
knowledge can be injected: the selection of the parental features that will be
transmitted to the descendant, and the selection of non-parental features that
will be added to it. Regarding the former issue, there exists evidence that trans-
mission of common features is beneficial for some problems (e.g., [23, 35]). After
this initial transmission, the offspring can be completed in several ways. For
example, Radcliffe and Surry [27] have proposed the use of local improvers or
implicit enumeration schemes. These implicit enumeration schemes can also be
used to find the best combination of the information units present in the parents
[36] (in this case, the resulting solution would not necessarily respect common
features, unless forced to do so). This operation is monotonic in the sense that
any child generated is at least as good as the best parent. Ibaraki [37] uses
dynamic programming for this purpose, in a single-machine scheduling problem.

To some extent, the above discussion is also applicable to mutation oper-
ators, although these exhibit a clearly different role: they must introduce new
information as indicated in Sect. 2. The typical procedure is removing some
information units from a single solution, and either complete it at random, or
use any of the completion procedures described before. Several considerations
must be made here though. The first one is the lower relevance that mutation
may have in some memetic contexts. Indeed, mutation is sometimes not used in
MAs, and instead it is embedded into the local search component, e.g., see [38,
39] in job shop scheduling, and [40] in single machine scheduling, among others.
The reason is the widespread usage in MAs of re-starting procedures for refresh-
ing the population when a stagnation point is reached (see Sect. 3.4). In some
applications, it may be better to achieve faster convergence and then re-start,
than diversifying continuously the search using mutation in pursuit of steady
(yet slower) progress.

In other applications, re-start strategies are not used and mutation is thus
more important. In these cases, it is not unusual to use several mutation op-
erators, either by considering different basic neighborhoods (e.g., [41] in open
shop scheduling, and [42] in single machine scheduling), or by defining light and
heavy mutations that introduce different amounts of new information (e.g., [43,
44] in timetabling, and [45] in flowshop scheduling). Note that according to the
operator-based view of representations presented in Sect. 3.1, the use of multi-



ple operators may imply the consideration of different solution representations at
different stages of the reproductive phase. This feature of MAs is also exhibited
by other metaheuristics such as variable neighborhood search [46] (VNS).

Problem-knowledge can also be attained by using of constructive heuristics.
These can be used for instance to create the initial population, as depicted in
Fig. 1, line 2. For example, Yeh [47] uses a greedy heuristic for this purpose in
a flowshop scheduling problem. Other examples of heuristic initialization can be
found in [48, 31, 49] for job shop scheduling, and in [43, 50, 51] for timetabling.

3.3 Local Search

The presence of a local search (LS) component is usually regarded as the dis-
tinctive feature of MAs with respect to plain evolutionary algorithms. To some
extent, it is true that most MAs incorporate LS; this said, the näıve equa-
tion MA = EA + LS is an oversimplification that should be avoided [11–13].
Indeed, there are metaheuristic approaches whose philosophy is strongly con-
nected to that of MAs, but that cannot be called “evolutionary” unless a very
broad meaning of the term (i.e., practically encompassing every population-
based metaheuristic) were assumed. The scatter search metaheuristic [52] is a
good example of this situation. On the other hand, there are MA that rely heav-
ily on the use of knowledge-augmented recombination operators, rather than on
LS operators, e.g., [36, 53]. Be that as it may, this is not an obstacle to state
that LS is commonly used in MAs (i.e., EA + LS ⊂ MA), and usually has a
determining influence on the final performance.

As sketched in Sect. 2, LS can be typically modelled as a trajectory in the
search space, that is, an ordered sequence of solutions such that neighboring
solutions in this sequence differ in some small amount of information. Of course,
some implementations can depart from this idealized description. As an example,
we can consider MA applications in which the LS component is implemented via
TS (tabu search, Sect. 1), such as [54, 55] in flowshop scheduling, [41] in open-
shop scheduling [56–60] in timetabling, or [61, 62] in maintenance scheduling,
among others. Some implementations of TS are endowed with intensification
strategies that resume the search from previous elite solutions (hence, rather
than a linear sequence, the path traversed by TS can be regarded as a branching
trajectory). Additionally, a feature of the utilization of TS –which is shared
with MAs that use other LS components as SA (simulated annealing, Sect. 1),
e.g., [39, 63] in flowshop scheduling, and also [44, 61] in maintenance scheduling–
is the fact that the quality of solutions in the trajectory is not monotonically
increasing, but can eventually decrease in order to escape from a local optimum.
Obviously, at the end of the process the best solution found (rather than the
last one in the trajectory) is kept.

Several issues must be considered when implementing the LS component.
One of them is the termination criterion for the search. In classical hill climbing
(HC) techniques, it makes sense to stop the search whenever a local optimum
is found. However, this is not directly applicable to LS techniques with global
optimization capabilities such as TS or SA. In these cases (and indeed in the



case of plain HC) it is customary to define a maximum computational effort
to be devoted to each LS invocation. On one hand, this means that the final
solution need not be a local optimum, as some incorrect characterizations of
MAs as EAs in the space of local optima would suggest. On the other hand, it is
necessary to define an appropriate balance between the effort of LS and that of
the underlying population-based search. This issue has been also acknowledged in
other domains, e.g., [64], and the use of partial Lamarckism has been suggested,
i.e., not using LS on every new solution computed, but only on some of them,
selected at random with some probability or on the basis of quality, or only in
every k−th generation; see [65] for an analysis of these strategies in a multi-
objective permutation flowshop problem.

Similarly to the remaining reproductive operators, the selection of a particu-
lar LS scheme can be done in light of quality metrics computed on the resulting
fitness landscape. Fitness distance correlation [66, 67] (FDC) has been proposed
as a hardness measure. In essence, FDC is the correlation between the quality of
local optima and their closeness to the global optimum. If this FDC coefficient is
high (that is, quality tends to be larger for increasing closeness to the optimum),
the natural dynamics of the MA (i.e., get closer to local optima by virtue of the
LS component) would also lead it close to the global optimum. This a priori
analysis can be helpful to estimate the potential effectiveness of a particular LS
scheme. Its usefulness as a tool for dynamically acquiring information on the fit-
ness landscape is much more questionable, since some general theoretical results
indicate that information is conserved during optimization (i.e., information that
is apparently gained during the run is in fact a result of a priori knowledge) [68].

Another important issue that must be considered during landscape analysis
is its global topology, and more precisely, whether it is regular or not, and in the
latter case whether the irregularity is in some sense connected to quality or not.
This issue has been analyzed by Bierwirth et al. [69] for a job-shop scheduling
problem. They found that high quality solutions are also highly connected, and
hence there is a beneficial drift force that makes that random walks tend to
land closer to high quality solutions than to low quality solutions. Of course,
the contrary might be true for a certain problem, and this could hinder good
performance of the LS algorithm. At any rate, the same consideration regarding
the use of multiple mutation operators done in Sect. 3.2 is applicable here, and
multiple LS schemes can be used within a MA, see e.g., [65, 51].

3.4 Managing Diversity

As mentioned in Sect. 3.2, there are different views on how to manage the di-
versity of information in the population. In essence, we can make a distinction
between methods for preserving diversity, and methods for restoring diversity.
Clearly, the use of mutation operators falls within the first class. This does not
exhaust the possibilities though. For example, the strategy of injecting in the
population “random immigrants” [70] –i.e., completely new solutions– could be
used. This has been done in [71] for task allocation on multiprocessors. A much
more widespread option is the utilization of structured populations [72]: rather



than maintaining a panmictic pool of agents in which any two of them can mate,
or in which a new solution can potentially replace any existing solution, the pop-
ulation is endowed with a precise topology; both mating and replacement are
confined to neighboring agents. This causes a slowdown in the propagation of
information across the population, and hence hinders the apparition of super-
agents that might quickly take the population over and destroy diversity.

Different population topologies are reported in the literature, i.e., unidirec-
tional/bidirectional rings, grids, hypercubes, etc. In the context of MAs and
scheduling, the ternary tree topology has been particularly successful, see e.g.,
[73–80, 45]. MAs endowed with this topology usually combine it with the use of
a quality-based mechanism for placing solutions. More precisely, each internal
node of the tree is forced to have a better solution than that of its immediate
descendants in the tree. If at a certain point of the run an agent bears a better
solution than that of its parent’s, they exchange their solutions. This way, there
is a continuous upwards flow of better solutions that also guarantees that when
recombination is attempted, the intervening solutions are of similar quality.

The alternative (or better, the complement) to these diversity preservation
mechanisms is the use of diversity restoration procedures. These are triggered
whenever it is detected that the population has stagnated, or is close to a such
a dead-end state. This situation can be detected by monitoring the population
composition as mentioned in Sect. 2, or by analyzing the population dynamics
[81]. In either case, a re-starting procedure is activated. These procedures can
be implemented in different ways. A possibility is the utilization of triggered
hypermutation [82] (cf. heavy mutation, see Sect. 3.2), as it is done in [45] for
a flowshop scheduling problem with sequence dependent family setups. Alter-
natively, the population can be refreshed by using the previously mentioned
random-immigrant strategy, i.e., keeping a fraction of the existing agents (typi-
cally some percentage of the best ones), and renewing the rest of the population
with random (or heuristically constructed solutions).

We would like to close this section by emphasizing again the heuristic nature
of the design principles described in this and previous sections. There is still much
room for research in methodological aspects of MAs (e.g., see [83]), and the open-
minded philosophy of MAs make them suitable for incorporating mechanisms
from other optimization techniques.

4 Applications in Planning, Scheduling, and Timetabling

Scheduling problems can take many forms, and adopt many variants, so we
have opted for considering four major subclasses, namely machine scheduling,
timetabling, manpower scheduling, and industrial planning. Note that this clas-
sification aims to provide a general view of MA applications in this field, rather
than a conclusive taxonomy.



4.1 Machine Scheduling

In a broad sense, machine scheduling amounts to organizing in a time-like fash-
ion a set of jobs that have to be processed in a collection of machines. This
general definition admits numerous variants in terms of (1) the number of ma-
chines onto which the schedule must be arranged (e.g., one or many), (2) the
precise constraints involved in the arrangement (e.g., precedence constraints,
setup times, etc.), and (3) the quality measure being optimized (e.g., makespan,
total tardiness, number of tardy jobs, etc.). The reader may be convinced of the
competence of MAs by noting that almost every conceivable instantiation of this
generic problem family has been tackled with MAs in the literature.

One of the most well-studied problems in this area is single machine schedul-
ing (SMS), i.e., the scheduling of n jobs on a single processor, subject to different
constraints and/or cost functions. Many different SMS problems have been solved
with MAs. For example, França et al. [74, 78] and Mendes et al. [79] tackle the
SMS problem with sequence-dependent setup times and due dates, aiming to
minimizing the total tardiness of the schedule (i.e., the sum of the tardiness of
each job). This is done with a structured MA (with ternary tree topology, as de-
scribed in Sect. 3.4) using two different schemes for both local search (insertion
and swaps) and mutation (light and heavy, cf. Sect. 3.2). Sevaux and Dauzère-
Pérès [42] also tackle the SMS problem with MAs, considering the weighted
number of late jobs as quality measure. They use a low-cost local search scheme
whose complexity is O(n2), n being the number of jobs, and compare different
decoding functions for computing a feasible schedule from a plain permutation
of the jobs. The same SMS problem with the added requirement of robustness
(that is, high quality solutions remaining good when some changes take place
in the input data) is tackled by Sevaux and Sörensen in [84]. Maheswaran et al.
[40] consider a related objective function, namely the minimization of the total
weighted tardiness. They use a simple local search scheme based on swaps, which
is terminated as soon as the first fitness improvement is achieved.

Parallel machine scheduling (PMS) is the natural generalization of the SMS
to multiple processors. Cheng and Gen’s work [85] is one of the first memetic
approaches to PMS. They consider a MA with a sophisticated decoding mecha-
nism based on heuristics for the SMS. França et al. [73], Mendes et al. [75, 77],
and Moscato et al. [80] tackle successfully the PMS using the same structured
MA described before for the SMS. This approach is also used by these authors in
flowshop scheduling [76, 45], see below. Also, Bonfim and Yamakami [86] present
an interesting proposal in which a simple MA (using a plain hill-climber for local
search) is endowed with a neural network in order to evaluate solutions.

Flowshop scheduling (FSS) is another conspicuous problem variant, in which
the jobs have to be processed on m machines in the same order. Yamada and
Reeves [87, 88, 54] consider a MA that uses with path relinking [89] (PR) for
recombination. PR is a method that explores a sequence of solutions defined by
two endpoints: given initial solution s and a final solution s′, relevant attributes
of the former are successively dropped, and substituted by attributes from the
latter. Along this path, a local search procedure can be eventually triggered. Yeh



[47] tackles the problem with a MA that incorporates a greedy method to inject
a single high-quality solution in the population, and a local search scheme based
in two neighborhoods (swaps and insertions).

Several authors have also considered hybrid flowshop scheduling (HFSS) prob-
lems, in which jobs have to be sequenced through k stages, being a number of
identical machines available for each stage (this number being in general differ-
ent for each stage). Sevaux et al. [90, 91] have tackled this problem combining
MAs with constraint programming (CP) (see Sect. 5.1). In this case, the CP
method (actually a branch-and-bound algorithm) is used as local search mech-
anism. Žďánský and Poživil [55] also deal with the HFSS. The main feature of
their MA is the use of TS as an embedded method for performing local search.

FSS problems can be generalized to job-shop scheduling (JSS) problems, in
which each job follows its own technological processing sequence on the set of
machines, and further to open-shop scheduling (OSS) problems, in which no pro-
cessing sequence is imposed for jobs (i.e., a job requires being processed in some
subset of machines, and this can be done in any order). The JSS problem has
been dealt by Yamada and Nakano [38, 92, 93] using the PR approach mentioned
before for recombination. Also for the JSS, Wang and Zheng [94, 39] consider a
MA that incorporates simulated annealing as local search mechanism. Quite in-
terestingly, they name their approach GASA or “modified GA” rather than MA.
As to the OSS problem, MAs have been used by Liaw [41]. In this case, the MA
features tabu search as local search mechanism, and uses two ad hoc heuristics
for initializing the population.

4.2 Timetabling

Timetabling consists basically of allocating a number of events to a finite number
of time periods (also called slots) in such a way that a certain set of constraints
is satisfied. Two types of constraints are usually considered, the so called hard
constrains, that is, those constraints that have to be fulfilled under all circum-
stances, and soft constraints, that is, those constraints that should be fulfilled
if possible. In some cases, it is not possible to fully satisfy all the constraints,
and the aim turns to be finding good solutions subject to certain quality criteria
(e.g., minimizing the number of violated constraints, or alternatively maximiz-
ing the number of satisfied hard constraints, whilst the number of violated soft
constraints is minimized).

Timetabling arises in many different forms that differ mainly in the kind of
event (e.g., exams, lectures, courses, etc.) to be scheduled. By the mid 1990s,
it was already suggested that incorporating some amount of local search within
evolutionary algorithms might enhance the quality of final solutions [95, 96], and
experiments with directed and targeted mutation were addressed [97]. From then
on, MAs have been shown to be specially useful to tackle timetabling in each of
its modalities as shown in the following.

The university exam timetabling (i.e., scheduling a number of exams in a
given set of sessions avoiding clashes, e.g., no student has two exams at the



same time) is one of the instances that have attracted more interest for evo-
lutionary techniques. For example, Burke et al. [43] propose a MA that uses a
combination of mutation and local search. The local search component consists
of a hill climber applied after the mutation process (two operators are proposed).
In general, this algorithm does not perform well in highly constrained problems,
and the reason seems to be that the local search operator is less effective. A
similar idea taking into account recombination operators instead of mutation
operators is investigated by Burke and Newall [98] with unproductive results.
They also describe in [99] a multi-stage memetic algorithm that decomposes
larger problems into smaller components, and then applies to each of the sub-
problems a similar MA to that in [43]. The basic idea is to decompose the set of
events in k subsets phases (k = 3 in the paper) and then schedule the original set
of events in k phases. To avoid non-schedulable subsets, an idea from heuristic
sequencing methods is applied, choosing subsets according to a smart ordering.
This proposals follows the maxima of divide and conquer with the aim of re-
ducing the complexity of the problem. Indeed, this idea improves both the time
to find a solution, and the quality of solutions with respect to the original MA
applied over the whole original problem. Batenburg and Palenstijn [60] describe
an alternative multi-stage algorithm constructed from the replacement of the
MA used in [99] by TS.

Several authors have also suggested memetic solutions to tackle the problem
of producing a periodical (usually weekly) timetable to allocate a set of lecturers
and/or students in a certain number of time slots and rooms, with varying
facilities and student capacities (i.e., the university course timetabling problem).
For instance, Alkan and Özcan [100] use a set of violation directed mutation
operators, and a violation direct hill climbing operator in their MAs. Rossi-Doria
and Paechter [51] describe a different proposal where local search consists of a
stochastic process that transforms infeasible timetables into feasible ones. Local
search is applied initially on each solution in the initial population, and from
then on, on each child generated between generations. Wilke et al. [101] consider
a variant of the problem in the context of high schools. Their MA incorporates
a mechanism for self-adapting the parameters that control the application of
local search. Additional information on memetic approaches to course and exam
timetabling problems can be found in [102, 50, 103, 104].

Public transportation scheduling is another timetabling problem that is at-
tracting increasing interest, specially in the railway area. For instance, Greistor-
fer [57, 58] is concerned with the problem of finding a schedule of train arrivals in
a railway station with a number of different lines passing through it. To obtain
such a schedule, a MA incorporating tabu search is used. Semet and Schoenauer
[105] deal with the problem of minimizing the resulting delays in train timeta-
bles in case of small perturbations of the traffic. To do so, they consider an
indirect approach based on permutations representing train ordering, and com-
bine it with ILOG CPLEX, a mathematical programming tool. The cooperation
is performed in an autonomous way: initially the EA computes a good solution
that is then provided as input to CPLEX.



The automatic timetabling of sport leagues is another variant that has also
been solved successfully by MAs. Costa [56] describes an evolutionary tabu
search (ETS) algorithm that combines the mechanisms of GAs and tabu search.
The basic idea is replacing the mutation step in the GA by a search in the space
of feasible solutions commanded by the tabu search. This choice of TS for per-
forming LS is dictated by the reported superiority of this approach over other
LS techniques such as SA in the domain of graph coloring [106, 107]. The ETS is
applied to construct schedules on the National Hockey League of North America.
Schönberger et al. [108] propose a MA to schedule a regional table-tennis league
in Germany. Here, constraint programming (see Sect. 5.1) is used to experiment
with the order in which the decision variables are instantiated in the heuristic.

4.3 Manpower Scheduling

Manpower scheduling (also called rostering or human scheduling) is concerned
with the arrangement of employee timetables in an institution. To solve the prob-
lem, a set of constraints or preferences (involving the employees, the employers,
and even the customers) must be considered. The goal is to find the best shifts
and resource assignments that satisfy these constraints.

One of the most popular instances is nurse scheduling, i.e., allocating the
shifts (day and night shifts, holidays, etc.) for nurses under various constraints.
Traditionally, this problem has been tackled via an integer programming formu-
lation, although it has also attracted the attention of the evolutionary commu-
nity and many proposals of MAs have been done. For instance, Aickelin [109]
analyzes the effect of a family of GAs applied to nurse rostering. He concludes
that basic GAs cannot solve the problem, and that the results can be improved
via specialized operators and local searches. To do so, De Causmaecker and van
den Berghe [110] propose the use of tabu search as a local heuristic in a MA.

Burke et al. [59] present a number of MAs which use a steepest descent
improvement heuristic. These MAs only consider locally optimal solutions. The
MAs are compared to previously published TS results and, later, hybridized with
this TS algorithm (either as local improvement or as an improved method to be
applied over the best solution found by the MA; in both cases this combination
produces the best overall results in terms of quality of the solutions). Gröbner
and Wilke [111] describe a MA that incorporates reparing operators, applied at
an adaptive rate (cf. [101] for timetabling). Burke et al. [112] discuss a set of
MAs that apply local search on every solution in the population. The range of
these MAs varies from those already presented in [59] to new ones that consider
random selection in different stages of the algorithm (e.g., in the local search
step, in the parent selection, etc.). Özcan [113] has also tackled the nurse roster-
ing problem via a memetic approach based on the same setting proposed in [100]
for timetabling. Basically, Özcan proposes a self-adaptive violation-directed hi-
erarchical hill climbing (VDHC) method as a part of the MA; VDHC provides
a framework for the cooperation of a set of hill climbers targeted to specific
constraint types. The idea is very similar to the VNS approach.



A different problem –driver scheduling– is tackled by Li and Kwan [114].
They present a GA with fuzzy evaluation (GAFE) that can be catalogued as a
MA. The basic idea is similar to that of the GRASP metaheuristic [115] in the
sense that GAFE also applies a greedy heuristic to obtain feasible solutions and
performs searches based on multiple solutions to improve the local optimum. In
GAFE, fuzzy set theory is applied in the evaluation of potential shifts based
on fuzzified criteria represented by fuzzy membership functions. These functions
are weighted and the GA is precisely employed to tune these weights. This same
approach is extended in [116] by a self-adjusting approach that can be viewed
as a particular hybrid of population-based search and local search.

4.4 Industrial Planning

Industrial planning comprises those activities directed to the development, op-
timization, and maintenance of industrial processes. Roughly speaking, this
amounts to producing a list of activities (a plan) to achieve some pre-defined
goal. In some contexts, planning can be considered a prior stage to schedul-
ing, the latter being responsible for arranging in time those planned activities.
However, this distinction is not always clear. An example of this can be found
in maintenance scheduling, that is, organizing the activities required to keep a
certain set of facilities at a functioning level. Typically, this involves fulfilling sev-
eral constraints related to the external demands the system has to serve (e.g., an
electricity transmission system must keep supplying the demanded energy even
if some station is down due to maintenance reasons). Additionally, maintenance
costs must be kept low, thus introducing an optimality criterion.

Several maintenance scheduling problems have been attacked with MAs.
Burke and Smith [117, 118] consider the maintenance of thermal generators. A
rolling maintenance plan is sought, such that capacity and output constraints
are not violated, and such that the total combined cost of production and main-
tenance is minimized. They compared MAs incorporating either HC, SA, or TS.
It was shown that the MA with TS performed slightly better than the HC-
based and SA-based variants. The influence of local search was determinant in
the performance, to the point that heuristic initialization of the populations
seems to exert a negligible effect. Digalakis and Margaritis [61] further studied
this problem from the point of view of parallel multi-population MAs. In their
experiments, a MA with multiple populations using different local search tech-
niques produces better results than homogeneous multi-population MAs, using
just one kind of local improver.

Burke and Smith [44, 62] also address the maintenance problem of a British
regional electricity grid. As before, MAs with HC, SA, and TS are compared. In
order to alleviate the cost of local search, it is limited to a small number of iter-
ations after the first local optimum is found. In this case, the HC-based and the
TS-based MAs perform similarly, providing the best results and outperforming
the SA-based MA. This result was consistent with previous work by the authors
[119] indicating that TS was better than SA in terms of solution quality. TS was
also slightly better than HC, but at the cost of a higher running time.



There have been other attempts to deploy MAs on industrial planning prob-
lems. Not related with maintenance scheduling, but sharing several important
features, Evans and Fletcher [120] have considered the boiler scheduling problem.
The goal is scheduling the operation of boilers in a power plant, so as to opti-
mize the production of pressurized steam. The problem exhibits some production
constraints that are considered by an ad hoc heuristic in order to produce an
initial population of feasible solutions. Local search is implemented as a simple
hill-climbing step, i.e., a solution is modified, and the change is kept only if it
results in a quality improvement. Notice that this problem is also strongly re-
lated to the area of power scheduling, one of whose most conspicuous members
is the unit commitment problem. Although MAs have been applied here as well,
e.g., [121], an overview of these applications is beyond the scope of this work.

5 Directions for Future Developments

Unlike other optimization techniques, MAs were explicitly conceived as a eclectic
paradigm, open to the integration of other techniques (metaheuristic or not).
Ultimately, this ability to synergistically combine with diverse methods is one of
the major reasons of their success. The availability of numerous alternative (and
certainly complementary) optimization trends, tools, and methods thus offers a
huge potential for future developments. We shall provide an overview of these
possibilities in this section.

5.1 Hybridization with Constraint Programming

Most scheduling problems can be naturally formulated as constraint satisfaction
problems (CSPs) involving a high number of constraints. In evolutionary ap-
proaches, constraint handling represents a difficult task that can be managed in
different ways as mentioned in Sect. 3.1, e.g., using a suitable encoding in the
space of feasible solutions, or integrating constraints in the evaluation process
in form of penalty functions, among other approaches. In any case, dealing with
constraints is essential for solving scheduling problems.

A natural way to manage constraints and CSPs is constraint programming
[122–126] (CP). CP is a sound programming paradigm based on strong theoret-
ical foundations [127] that represents a heterogeneous field of research ranging
from theoretical topics in mathematical logic to practical applications in indus-
try. As a consequence, CP is attracting also widespread commercial interest since
it is suitable for modelling a wide variety of optimizations problems, particularly,
problems involving heterogeneous constraints and combinatorial search.

Optimization in CP is usually based on a form of branch and bound (although
other alternative models are also proposed, e.g. [128]), that is, as soon as a
solution is found, a further constraint is added, so that from that point on, the
value of the optimizing criterion must be better than the value just found. This
causes the system to backtrack until a better solution is found. When no further
solutions can be found the optimum value is known. CP techniques are complete



methods, and thus always guarantee in optimization problems that (1) if there
exist at least a solution, the solution found is optimal, and (2) if a solution is not
found, it is guaranteed that no solution exist. CP techniques have already been
applied to a wide range of scheduling and resource allocation problems (e.g.,
[129–132]), and there exist many successful applications (e.g., [133–135]).

Compared to evolutionary algorithms, CP systems present some advantages.
For instance, one could argue that these systems do not require excessive tuning
to fit the problem, and thus are usually easier to modify and maintain; they
can also handle certain classes of constraints better than MAs, e.g., preferences
[136, 137] since, these can be directly modelled as soft constraints, and one has
the possibility of controlling which of them are relaxed (whereas, in general, in
evolutionary techniques constraints are simply part of the evaluation function, or
are present in the representation of solutions). However, the nature of complete-
search techniques of CP is also its main drawback since the time needed to find
the optimal solution can be prohibitive for large problems. Hence, stochastic
techniques (e.g., MAs) may be better when the search space is huge.

In fact, we can say that CP and MAs are two complementary worlds that
clearly can profit one from the other. The hybridization of both approaches opens
very interesting lines of research. In this sense, some appealing hybrid proposals
to scheduling problems have recently appeared. We have already mentioned some
of these, i.e., [108, 90, 91]. Further in this line, Backer et al. [138] describe a
method for using local search techniques within a CP framework, and apply this
technique to vehicle routing problems. To avoid the search getting trapped in
local minima, they investigate the use of several meta-heuristics (from a simple
TS method to guided local search). Also, Yun and Gen [139] use CP techniques
for dealing with the preemptive and non-preemptive case in a single machine
job-shop scheduling problem. They consider constraints of different types (e.g.,
temporal constraints, resource constraints, etc.) and use them for generating the
initial population. Merlot et al. [140] propose a three-phase hybrid algorithm
to deal with timetabling problems. In the first phase, CP is applied with the
aim of obtaining a feasible solution (if any): a specialized constraint propagation
algorithm is firstly applied to reduce the domain of the constrained variables and
then, when no further reduction is possible, enumeration strategies are applied
to reactivate the propagation. Moreover, with the aim of improving quality, the
solution obtained by the CP method is used as starting point of a simulated
annealing-based phase and, in a third phase a hill climber is also used.

In general, we argue that MAs can help CP to tackle larger problems and
CP can help MAs to reduce drastically the search space by removing infeasible
regions what would allow to focus the evolution in the promising regions. Some
initial steps have already been done in this exciting line of researching [141].

5.2 Emergent Technologies

It is clear that our world is getting increasingly complex at an accelerated rate,
at least from a technological point of view (famous Moore’s Law being just an
example of this trend). In order to cope with the optimization problems to come,



in particular those from the areas of planning and scheduling, optimization tools
have to adapt to this complexity. This means that traditional, one-dimensional,
sequential approaches must move aside to make room for the next generation of
optimization techniques. Focusing in MAs, some of the topics that will become
increasingly important in the next years are multi-objective optimization, self-
adaptation, and autonomous functioning.

Starting with multi-objective optimization (MOO), it is clear that the exis-
tence of many different cost functions for a single problem (e.g., machine schedul-
ing, cf. Sect. 4.1) is an indication of (1) the richness of these problems, and (2)
the inappropriateness of single-objective optimization to grasp many of their
practical implications. Although MOO is hardly an emerging paradigm (in the
sense of having been extensively studied in the last decades), the development
of multi-objective MAs for scheduling and planning is still a developing field.
Several proposals have been made, e.g., [63, 65, 142], but clearly, there is still a
long way to go in exploring new strategies for adapting MAs to MOO.

Another crucial feature of MAs that deserves further exploration is self-
adaptation. As anticipated in [11], future MAs will work in at least two levels
and two time scales: in the short-time scale, a set of agents would explore the
search space associated to the problem; in the long-time scale the MA would
adapt the heuristics associated with the agents. This idea is at the core of the
memeplexes suggested by Krasnogor and Smith [143]. Some work has already
been done in this area [116]. Very related ideas are also currently being developed
in hyperheuristics, see e.g. [144, 145]. A hyperheuristic is a high-level heuristic
which adaptively controls the combination of several low-level heuristics. Hyper-
heuristics have been successfully applied to scheduling problems [146–150], and
offer interesting prospects for their combination with MAs.

Finally, autonomous functioning is another feature that has to be boosted
in near-future MAs. Recall the use of the term “agent” in the description of the
functional pattern of MAs (see Sect. 3). Indeed, the original conception of MAs
envisioned the search as a rather decoupled process, that is, with inter-agent
communication being less frequent than individual improvement. This fits very
well with the behavior of multi-agent systems, which have been also applied
to planning and scheduling with satisfactory results [151–153]. Enhancing the
autonomous component of MA agents would redound in new possibilities for
their efficient parallelization in distributed systems, as well as open a plethora
of research lines such as, e.g., the use of epistemic logic systems for modelling
the distributed belief of the agents on the optimal solution [154].

5.3 Other Interesting Scheduling Problems

There exist several scheduling problems that have not been treated –to the best
of our knowledge– by MAs. These do not just provide challenging optimization
tasks, but can also open new scenarios for further research on MAs for scheduling.

The scheduling of social tournaments (SST) has attracted significant atten-
tion in recent years since they arise in many practical applications, and induce



highly combinatorial problems. SST problems may be considered either as in-
stances of timetabling problems (e.g., timetabling of sport leagues) or rostering
problems (e.g., judge assignments). One of the most popular SST instances is
that known as the social golfer problem (problem #10 in the CSPLib2): it con-
sists of trying to schedule g × s golfers into g groups of s players over w weeks,
such that no golfer plays in the same group with any other golfer more than
once. The problem can be regarded as an optimization problem if for two given
numbers g and s we ask for the maximum number of weeks the golfers can play
together. An instance to the problem is characterized by a triple w− g− s. The
initial question consisted of scheduling 32 golfers in a local golf club (i.e., g = 8
and s = 4). The optimal solution for this instance is not yet known, and the
current best known solution is a 9 week schedule (i.e., w = 9). There also exist
interesting instances and variants for this problem as the Kirkman’s schoolgirl
problem [155], the debating tournament problem and the judge assignment [156].

Pattern sequencing problems have also important applications, especially in
the field of production planning (for instance, in talent scheduling [157, 158]).
Those problems generally consist of finding a permutation of predetermined
production patterns (groupings of some elementary order types) with respect
to different objectives. These objectives may represent, e.g., handling costs or
stock capacity restrictions, which usually leads to NP-hard problems. In these
problems, the use of heuristics to construct near-optimal pattern sequences is
generally assumed to be appropriate [159].

6 Concluding Remarks

One of the main conclusions that can be drawn from the extensive literature
on MAs for planning, scheduling, and timetabling is they constitute a versa-
tile and effective optimization paradigm. Indeed, MAs are one of the primary
weapons in our arsenal for dealing with problems in this area. They provide an
appropriate framework to seamlessly integrate successful heuristics into a single
search engine. In this sense, MAs should not be regarded as competitors, but
as integrators. Whenever non-hybrid metaheuristics start to reach their limits,
MAs are the next natural step.

There is an important empirical component in the design of MAs. How-
ever, this does not imply that MAs are just a plug-and-play approach. The user
can benefit from the methodological corpus available for both population-based
and trajectory-based search techniques. Design by analogy is another powerful
strategy in this area: although very diverse at first sight, scheduling problems
have strong underlying connections; hence, knowledge transfer from one subarea
to another one is not just feasible, but also likely to be useful. The selection
of reproductive operators and/or local-search strategies is at any rate an open
problem in methodological terms. Some guidelines for LS design in specific appli-
cations are available as shown in Sect. 4, but these are very specific, and hard to

2 http://www.csplib.org



generalize. For this reason, computational considerations, such as the affordable
running time, remain one of the governing factors in taking decisions with this
regard. For example, more sophisticated LS techniques can provide better results
regarding solution quality than plain HC, but the improvement is likely to take
place after longer run times. This must be taken into account when dealing with
complex scheduling problems in which evaluating local moves is computationally
expensive, or in which the size of neighborhoods is huge.

New computational challenges will rise in the years to come. Scheduling prob-
lems will not just become a matter of large-scale optimization, but will also be-
come richer and more complex. Consider for example the situation in machine
scheduling, where technological developments in manufacturing processes and
production strategies will result in new (multiple) objectives to optimize, ad-
ditional constraints to be considered, etc. New methods will start to play an
essential role, e.g., safe kernelization techniques, commonly used in the realm
of parameterized complexity [160]. Metaheuristics will have to adapt to this
new scenario, and eclecticism appears to be essential for this. The future looks
promising for MAs.
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strategy for scheduling problems with bottlenecks. European Journal of Opera-
tional Research 145 (2003) 57–71

50. Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling.
European Journal of Operational Research 140 (2002) 266–280

51. Rossi-Doria, O., Paechter, B.: A memetic algorithm for university course
timetabling. In: Combinatorial Optimisation 2004 Book of Abstracts, Lancaster,
UK, Lancaster University (2004) 56

52. Laguna, M., Mart́ı, R.: Scatter Search. Methodology and Implementations in C.
Kluwer Academic Publishers, Boston MA (2003)

53. Nagata, Y., Kobayashi, S.: Edge assembly crossover: A high-power genetic algo-
rithm for the traveling salesman problem. In Bäck, T., ed.: Proceedings of the
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