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Abstract. In P2P and volunteer computing environments, resources are
not always available from the beginning to the end, getting incorporated
into the experiment at any moment. Determining the best way of us-
ing these resources so that the exploration/exploitation balance is kept
and used to its best effect is an important issue. The Intermediate Dis-
turbance Hypothesis states that a moderate population disturbance (in
any sense that could affect the population fitness) results in the max-
imum ecological diversity. In the line of this hypothesis, we will test
the effect of incorporation of a second population in a two-population
experiment. Experiments performed on two combinatorial optimization
problems, MMDP and P-Peaks, show that the highest algorithmic ef-
fect is produced if it is done in the middle of the evolution of the first
population; starting them at the same time or towards the end yields
no improvement or an increase in the number of evaluations needed to
reach a solution. This effect is explained in the paper, and ascribed to
the intermediate disturbance produced by first-population immigrants in
the second population.

1 Introduction

The volatility of resources is an important feature of some distributed compu-
tation environments, such as those based on P2P or voluntary computation:
resources appear and disappear in a continuous and unpredictable manner. For
instance, a new node might be added to an Evolvable Agents (EvAg) [1] P2P
distributed evolutionary computation experiment, or a new client might down-
load the web page to start a browser-based evolutionary experiment [2, 3]. Using
these high-churn computing environment efficiently so that their contribution to
the common compute pool does not get lost is obviously an important issue, and
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rules for using the node’s computing resources efficiently (or at all) have to be
researched. If the evolutionary experiment is sufficiently advanced, it might be
the case that computation performed in a certain way by the new node is use-
less, and it will be best devoted to a new experiment (or to help the experiment
in a different way). The same problem arises also in other heterogeneous and
asynchronous computing experiments: even if all nodes start at the same time,
those with less computing power will eventually lag behind, falling into a less
evolved state that might render them useless, churning out individuals whose
state would have made them eliminated in other nodes whose populations are
more advanced.

There are, in principle, two different ways of creating this initial popula-
tion: in a completely random way, or as an (imperfect) duplicate of the existing
population. If we look at the set of the two (new and old) populations as a
single one, it is obvious that these two ways correspond to tipping the explo-
ration/exploitation balance in one way or another. The introduction of a new
random population and the resulting application of the crossover operator would
correspond to a hyper or macromutation operator [4, 5], tipping the balance to-
wards exploration, while a new population generated via application of genetic
operators would correspond to an exploitation around the point in search space
that has actually been reached. In any case, it is quite clear that the result of
putting individuals from an existing evolved population in common with a new
random one will result in a complex interaction, with varying results depending
on the problem: it might be the case that different problems or even different
phases in the execution of a problem will need different strategies.

In this paper, our objective is to find out what are the effects of the incorpo-
ration of a new population, at different times, into an existing evolution problem,
and to eventually propose some heuristic rules to handle it. Our expected result
will be some rule of thumb about when the addition of these new populations
is most profitable or, in any case, a measure of how high is its influence on the
final outcome.

As far as we know, the type of asynchrony this paper deals with has not been
analyzed in depth in the existing literature. Certainly, asynchronous distributed
genetic algorithms have been discussed extensively, for instance Giacobini et
al. studied the selection intensity in asynchronous evolutionary algorithms [6],
and Alba et al. compare them with synchronous parallel distributed genetic
algorithms in [7]; a similar approach applied to distributed genetic programming
was presented in [8]. In general, the conclusion is that asynchrony in evolution
does not affect algorithm performance; however, that conclusion applies only if
all computing nodes start at the same time, which is not the case that we want
to address in this work.

Canti-Paz [9] found that the migration policy that causes the greatest re-
duction in total algorithmic work (expressed as total number of evaluations) is
to choose as migrants the best individuals and to replace the worse individuals
in the destination population, since this policy increases the selection pressure
and may cause the algorithm to converge significantly faster. However, too fast a



convergence can lead to the algorithm’s failure, as he states referring to parallel
EAs: “rapid convergence is desirable, but an excessively fast convergence may
cause the EA to converge prematurely to a suboptimal solution”. In fact, Alba
and Troya [10] found that migration of a random string prevents the “conquest”
effect in the target island for small or medium sized sub-populations. In line with
this, we study here the trade-off between selection pressure and diversity when
we have nodes starting at different times; and since it has been proved the best
strategy, the two nodes will migrate the best individual.

The rest of the paper is organized as follows: the experimental setup is de-
scribed in Section 2, with results presented in Section 3. Finally, conclusions and
future work are commented in Section 4.

2 Experimental setup

Two functions have been used for testing: the problem generator P-Peaks and
the massively multimodal deceptive problem (MMDP), two of the three discrete
optimization problems presented by Giacobini et al. in [11]. These problems,
while being both multimodal, represent different degrees of difficulty for parallel
evolutionary optimization, and will be described next.

MMDP [12] is deceptive (that is, approached via hill-climbing algorithms
would lead to a suboptimal solution) composed of k subproblems of 6 bits each.
Each subproblem is evaluated on the basis of its unitation as follows:
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The fitness value of a 6k-bit string is defined as
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Note that the number of local optima is quite large (22%), while there are only
2F global solutions. In this paper, we consider a single instance with k& = 20 (120
bits).

On the other hand, the P-Peaks problem is a multimodal problem generator
proposed by De Jong in [13]; a P-Peaks instance is created by generating P
random N-bit strings where the fitness value of a string @« is the number of bits
that  has in common with the nearest peak divided by N.

1
fr-pPEAKs(T) = N fél%XP{N — H(x, Peak;)} (1)
where H(x,vy) is the Hamming distance between binary strings « and y. In the
experiments made in this paper we will consider P = 100 and N = 64. Note
that the optimum fitness is 1.0.



These two problems have been implemented and integrated in the public-
domain Algorithm: : Evolutionary[14] Perl library®. In order to simulate a par-
allel algorithm, the cooperative multitasking Perl module POE® has been used;
each node is represented by a POE session. Thus, in fact, the conclusions ob-
tained in this paper are algorithmic in nature; if runtime conclusions have to be
made, this experiment should be repeated in a true parallel environment. In this
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Fig. 1. Boxplot of the number of evaluations needed to find the solution in the P-Peaks
problem starting at different cycles. sync labels cases with the two nodes starting
synchronously: p512-sync with a population of 512, sync with 256, and p128-sync
with 128 individuals; 50 represents the behavior of the experiment in a single node,
since the algorithms finish before receiving any individual.

simulated parallel scenario we have implemented two nodes, each one applying
a rank-based substitution steady state algorithm [15] to a single population. We
do not think that using only two nodes represents a loss of generality, since mi-
grations are always performed between only two nodes, independently of how
many are running at a time. At the end of a preset number of generations (which
we will call a cycle), each node sends a single individual (the best one) to the
other in a theoretically synchronous manner (that is, both nodes evolve in lock-

5 Freely available under the GPL license from http://tinyurl.com/3v4gj7. The pro-
gram, along with some configuration files and experiment results, can be downloaded
from http://tinyurl.com/4ttaow; released versions can also be downloaded from
your closest CPAN repository.

6 Perl Object Environment; also available from CPAN



step). Algorithmic efficiency will be measured summing up the total number of
evaluations performed in each node until the solution is found in one of them.

In order to simulate the asynchronous start of the second population, several
experiments were made in which the second population started only after a
certain number of cycles (with g generations each). Population 1 was left running
for n cycles, and then Population 2 started running and interchanging individuals
with it. This asynchronous starting point is fixed (does not depend on the state
the evolutionary algorithm is), so it could happen that Population 1 has already
found the solution.

3 Experimental results

Every configuration was run 30 times in order to obtain statistically significant
results. All experiments were performed in Linux desktop and laptop machines
(Ubuntu 7.04 and Fedora Core 6 and 8), with statistical analysis performed using
the open source statistical package R.

For the P-Peaks experiment we have chosen the evolutionary algorithm pa-
rameters shown in Table 1 (middle column). Figure 1 shows the results of the

Parameter Value
P-Peaks|MMDP

Chromosome length 64 120
Population 256 1024
Selection rate 20% | 10%
Generations to migration (cycle size) 10
Mutation priority 2
2-point crossover priority 3

Table 1. Evolutionary algorithm parameters used in the P-Peaks experiments. The
Algorithm: :Evolutionary Perl library uses priorities for operators, that once normal-
ized, correspond to operator rates: to 40% mutation, 60 % crossover.

experiments performed with P-Peaks. For the sake of comparison, the total num-
ber of evaluations for the synchronous start experiments with population = 512
(leftmost box, labeled p512-sync) and population = 128 (rightmost box, labeled
p128-sync) have also been plotted. Comparing them with the sync experiment
(2 nodes, population = 256, synchronous start), it can be seen that lowering
the population size also improves the number of evaluations (y axis). However,
if we start by the p128-sync figure and proceed from right to left, we see that
splitting the population in two (that is, going from a single population with
256 individuals — start cycle = 507 — to two parallel populations with 128 in-
dividuals does not yield any improvement) increases the number of evaluations

7 which, in fact, would correspond to a single 256 individuals population, since by the
50th cycle, a single population has already reached the target fitness



needed to find the solution. Once again, moving from that experiment to its
left shows what happens if, instead of letting a single population proceed, we
introduce a second population by the 25th cycle (25 x 10 generations). What we
see is a decrease in the quality of the algorithm, i.e., an increase of the median
number of evaluations needed to reach target. A strikingly similar response is
reached if the second population starts any time before that: a higher number of
evaluations are going to be needed. Some other conclusions can be reached by
looking at this graph from left to right, and starting by the sync glyph (which
represents the behavior of two populations starting at the same time): whenever
the second population is started after the first one has already run a bit of its
course, the results are going to be better; however, the improvement is going
to stall by the time a few cycles have already run (in this case, after the 10th
cycle — 100" generation, when around 50% of the runs have already finished).
The Wilcoxon rank-sum test confirms that there is no difference among the four
last experiments, and that the difference among the three first and the rest is
significative.

Let us check these results running again the distributed evolutionary algo-
rithm (parameters shown in Table 1, right-most column) with a more difficult
problem, MMDP. The picture is quite different here, although the trend is more
or less the same: there is an average trend towards decreasing the number of eval-
uations when the start cycle of the second population is delayed, which stops
when the evolution of the first population is too advanced (in this case, after
50 cycles or 500 generations). However, the situation is not exactly the same.
The main difference arises from the fact that there is a non-null set of experi-
ments (among the 30 runs for each parameter set) that does not find the solution
before the maximum number of evaluations allowed (200000). The size of this
set is represented in Figure 3, which shows a rather jagged scenario, but if we
look at it from right to left, we see that it confirms the effect of the moment
of introduction of the second population on the total quality of results: from a
single population (z label = 100) to a late introduction of the second population
(x = 75,50), there is a very small improvement (from 45% to 40%). The situ-
ation gets a bit better if the second population is introduced at cycle # 20 or
30, but worsens again when it is introduced too early (cycle # 10). In this case,
the best worst-case scenario is given by the synchronous population, although
the best median number of evaluations is found when the second population is
introduced at cycle # 30. Putting both effects together, we find that the best
situation is in the intermediate area: lowest number of evaluations, without an
excessive raise in the number of unsuccessful runs (which might be changed if
the evaluation limit is set higher).

Find out the reason why this happens is a different problem, and the classi-
cal, synchronous start, two-population distributed evolutionary algorithm comes
out as a worse algorithm. In order to check what is going on, we did several runs
with another program where we logged the diversity after each cycle in the P-
Peaks experiment. The results are plotted in Figure 4, which shows the different
evolution paths of phenotypic entropy (computed using the Shannon formula) in



MMDP, algorithmic study

180000

140000
I

80000 100000
I I
o o
)

Number of evaluations

60000

40000
I

=

T T T T T T T
0 10 20 30 50 75 single

2nd population starts at cycle

Fig. 2. Logarithmic boxplot of the number of evaluations needed to find the solution in
the MMDP, after those that have not found it have been eliminated. = labels indicate
the cycle when the second population has been inserted, with “single” indicating results
for a single population. Once again, the Wilcoxon rank-sum test confirms the differences
among the three first, and its abscense among the 4 last.
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Fig. 3. Percentage of runs, for different start cycles of the second population, where
the target fitness was not found in the MMDP problem.



Entropy Entropy

wn wn
< < -
> >
Q Q
g o A £ oA
f=4 c
[} @
N~ N -
T T T T T T T T T T T
0 10 20 30 0 5 10 15 20 25 30
cycle cycle
Progress for 2 asynchronous populations Progress for synchronous populations

Fig. 4. Shannon Entropy (H(P) = —3_ _pp(f(9))logep(f(g)), with g a member of
the population, f(g) its fitness, and p(f(g)) the frequency of that fitness) of both
populations in a typical run of the P-Peaks problem, with asynchronous start (right)
and second population starting at cycle 20 (left); Population 1 is plotted in black and
Population 2 in red or light color. Please note that the total number of evaluations will
be lower in the first case, since Population 2 will have performed less evaluations.

an asynchronous (left) and synchronous (right) start experiment, in two typical
cases that finished in roughly the same amount of cycles (around 30). In time,
entropy tends to equalize; however, the level it reaches is that of the less diverse
population (Population 1, in both cases). However, it is interesting to see that
the highest effect in diversity is that of immigrants of Population 1 on Popu-
lation 2; in general, the effects of the less diverse (more converged, and thus,
further up the evolution ladder) on the more diverse (less evolved) population.
The bend found before cycle 30 in both cases indicates a quick exploitation that
eventually finds the solution. This leads us to think that the reduction in the
number of evaluations is mainly due to the effect of highly-fit individuals falling
and eventually mating with a pool of highly-diverse ones. This effect does not
take place if both populations start at the same time (diversity and fitness de-
grees reached are more or less the same across all the experiment), and where
exploration and exploitation take place roughly synchronously (more exploita-
tion at the beginning, more exploration at the end); or if one population is
introduced too late into the simulation, where the combination of highly fit in-
dividual with low-fitness ones will amount to exploration, thus raising the total
number of evaluations. However, it is the combination of highly-fit individuals
with a diverse population with the right difference in fitness which produces the
best algorithmic result in the shape of the best median number of evaluations.

This result is interesting, being roughly in accordance with the Intermediate
Disturbance Hypothesis [16], which states that the right amount of disturbance
produces the maximum diversity in ecosystems. In this case, low disturbance
(migration among similar populations) and high disturbance (in-migration of



an individual too highly fit) yields worse results than a better-fit individual
introduced a pool of individuals that have already evolved for some time.

4 Conclusions

In this paper we have tested the influence that the introduction of a new pop-
ulation has on the fragile exploitation/exploration equilibrium that reigns in a
single population undergoing evolution. We have used a simulated two-node par-
allel population, with the second population introduced at different times and
tested it on two different discrete optimization problems: P-Peaks and MMDP.

The result has been rather counter-intuitive: introducing a second population
a little after the first population always improves the algorithmic efficiency of the
set, while doing it close to the end of evolution, as was our a priori hypothesis,
does no good algorithmically and might even impact negatively on the overall
performance. The cause of this effect has been studied and we have concluded
that it might be related to the intermediate disturbance hypothesis applied to
the second late-coming population (the effect of immigrants from the second
population to the first being rather negligible): receiving high-fitness immigrants
from the first, already evolved population will be beneficial only if the fitness
difference between that immigrant and the current genetic pool is just right. If it
is too high (first population highly evolved) or too low (first population started
at the same time), the increase in diversity (and thus the speedup in finding the
solution) in this second population will be negligible.

This yields the rule of thumb that additional populations should be started
later at regular (short) intervals, instead of at the same time; and that if there is
a new node arriving in a distributed computation experiment, it should be used
for outsourcing, by doing just fitness evaluations or some other expensive task,
and not for offshoring, by spawning a whole new population that will perform
its own evolution in parallel.

In the future, we will try to confirm the results obtained in these simula-
tions by applying it to more discrete and continuous optimization experiments,
and also using more simultaneous populations, although this addition should
not essentially alter the results. It would be also interesting to test them in a
real parallel environment, to match not only the algorithmic gain, but also the
time gain obtained by starting two populations asynchronously and in heteroge-
neous computers. In principle, the effect of having a second population in a slow
computer would be akin to having a late-start second population, and the work-
ing hypothesis would be that the effect could be beneficial if the performance
differences are not too high, but this would have to be tested. Eventually, our
intention is to create a distributed computation framework that would self-adapt
to late comers, asynchrony and differences in performance extracting the most
from it.



References

10.

11.

12.

13.

14.

15.

16.

17.

. Laredo, J., Castillo, P., Mora, A., Merelo, J.: Exploring population structures for

locally concurrent and massively parallel evolutionary algorithms. [17] 2610-2617
Merelo, J.J., Garcia, A.M., Laredo, J.L.J., Lupién, J., Tricas, F.: Browser-based
distributed evolutionary computation: performance and scaling behavior. In:
GECCO ’07: Proceedings of the 2007 GECCO conference companion on Genetic
and evolutionary computation, New York, NY, USA,; ACM Press (2007) 2851-2858
Merelo, J., Castillo, P., Laredo, J., Mora, A., Prieto, A.: Asynchronous distributed
genetic algorithms with Javascript and JSON. [17] 1372-1379

Morrison, R., De Jong, K., Syst, M., McLean, V.: Triggered hypermutation revis-
ited. In: Evolutionary Computation, 2000. Proceedings of the 2000 Congress on.
Volume 2. (2000)

Jones, T.: Crossover, macromutation, and population-based search. In: Proceed-
ings of the Sixth International Conference on Genetic Algorithms, Morgan Kauf-
mann (1995) 73-80

Giacobini, M., Alba, E., Tomassini, M., et al.: Selection intensity in asynchronous
cellular evolutionary algorithms. Proceedings of the Genetic and Evolutionary
Computation Conference, Chicago, USA (2003) 955-966

Alba, E., Troya, J.: Analyzing synchronous and asynchronous parallel distributed
genetic algorithms. Future Generation Computer Systems 17(4) (2001) 451-465
Fernandez, F., Galeano, G., Gomez, J.: Comparing Synchronous and Asynchronous
Parallel and Distributed Genetic Programming Models. In: Genetic Programming:
5th European Conference, EuroGP 2002, Kinsale, Ireland, April 3-5, 2002: Pro-
ceedings, vol. 2278 LNCS, Springer (2002)

Canti-Paz, E.: Migration policies, selection pressure, and parallel evolutionary
algorithms. Journal of Heuristics 7(4) (2001) 311-334

Alba, E., Troya, J.M.: Influence of the migration policy in parallel distributed GAs
with structured and panmictic populations. Appl. Intell. 12(3) (2000) 163-181
Giacobini, M., Preuss, M., Tomassini, M.: Effects of scale-free and small-world
topologies on binary coded self-adaptive CEA. In Gottlieb, J., Raidl, G.R., eds.:
Evolutionary Computation in Combinatorial Optimization — EvoCOP 2006. Vol-
ume 3906 of LNCS., Budapest, Springer Verlag (2006) 85-96

Goldberg, D.E., Deb, K., Horn, J.: Massive multimodality, deception, and genetic
algorithms. In R. Ménner, Manderick, B., eds.: Parallel Problem Solving from
Nature, 2, Amsterdam, Elsevier Science Publishers, B. V. (1992)

Jong, K.A.D., Potter, M.A., Spears, W.M.: Using problem generators to explore
the effects of epistasis. In Béck, T., ed.: Proceedings of the Seventh International
Conference on Genetic Algorithms (ICGA97), San Francisco, CA, Morgan Kauf-
mann (1997)

Merelo-Guervés, J.J.: Evolutionary computation in Perl. In Perl Mongers, M., ed.:
YAPC::Europe::2002. (2002) 2-22

Syswerda, G.: A Study of Reproduction in Generational and Steady-State Genetic
Algorithms. Foundations of Genetic Algorithms (1991)

Ward, J., Stanford, J.: Intermediate-Disturbance Hypothesis: An Explanation for
Biotic Diversity Patterns in Lotic Ecosystems. Dynamics of Lotic Systems, Ann
Arbor Science, Ann Arbor MI. 1983. 347-356 p, 2 fig, 35 ref. (1983)

IEEE Congress on Evolutionary Computation (CEC2008). In: WCCI 2008 Pro-
ceedings, IEEE Press (2008)



