Optimizing search via diversity enhancement in evolutionary
MasterMind

Juan J. Merelo*, Antonio M. Mora, Thomas P. Runarsson and Carlos Cotta

Abstract— A MasterMind player must discover a secret
combination by making guesses using the hints obtained as
a response to the previous ones. Finding a general strategy
that scales well with problem size is still an open issue, despite
having been approached from different angles, including evolu-
tionary algorithms. In previous papers we have tested different
approaches to the evolutionary MasterMind and having found
out that diversity is essential in this kind of combinatorial
optimization problems, in this paper we try to tune the search
methods to keep a high diversity level and thus obtain solutions
to the puzzle in less average evaluations, and, if possible, in
less number of combinations played. This will allow us to get
improvements in the time that will be used to explore problems
of bigger size.

I. INTRODUCTION

MasterMind [1] is a two-player code-breaking game, or in
some sense a single-player puzzle, where one of the players
—the codemaker (CM)- has no other role in the game than
setting a hidden combination, and automatically providing
hints on how close the other player —the codebreaker (CB)—
has come to correctly guess this combination. More precisely,
the flow of the game is as follows:

e The CM sets and hides a length ¢ combination of x sym-
bols. Therefore, the CB is faced with x¢ candidates for
the hidden combination, which is typically represented
by an array of pegs of different colors (but can also be
represented using any digits or letter strings) and hidden
from the CB.

« The CB tries to guess this secret code by producing a
combination with the same length, and using the same
set of symbols. As a response to that move, the CM
acting as an oracle (which explains the inclusion of
this game in the category called oracle games) provides
information on the number of symbols guessed in the
right position (black pegs in the physical board game),
and the number of symbols with the correct color, but
in an incorrect position (white pegs); this is illustrated
in Table I.

o The CB uses (or not, depending on the strategy he is
following) this information to produce a new combina-
tion, that is assessed in the same way. If he correctly
guesses the hidden combination in at most N attempts,
the CB wins. Otherwise, the CM takes the game. N
usually corresponds to the physical number of rows in

JIM and AMM are with the Dept. of Architecture and Computer Technol-
ogy, ETSIIT, University of Granada, email: jmerelo,amorag @ geneura.ugr.es

TPR is with the School of Engineering and Natural Sciences, U. of
Iceland, email: tpr@bhi.is

CC is with the Dept. of Languages and Computer Sciences at the U. of
Malaga, email: ccottap@lcc.uma.es

the game board, which is equal to fifteen in the first
commercial version.

¢ CM and CB are then interchanged, and several rounds
of the game are played. The player that is able to obtain
the minimal amount of attempts wins. This is a part of
the game we do not consider.

This puzzle is, in fact, a quite interesting combinatorial
problem, as it relates to other oracle problems such as the
hacking of the PIN codes used in bank ATMs [2] or uniquely
identifying a person from queries to a genetic database [3].
Several issues remain open, such as what is the lowest
average number of guesses needed to solve the problem for
any given x and ¢. Associated to this, there arises the issue
of coming up with an efficient mechanism for finding the
hidden combination independently of the problem size, or at
least, a method that scales gracefully when the problem size
increases.

This paper is mainly concerned with tuning some search
parameters and methods in the evolutionary algorithm to find
the set that produces the best solutions in the least number
of combinations examined. In our previous paper in this
line of research [4] we introduced several mechanisms that
decreased the number of combinations that were needed to
find the solution mainly through endgames, i.e. heuristics that
abandoned the evolutionary algorithm or reduced the search
space when certain conditions were met. In this paper we will
mainly look at the evolutionary algorithm itself, introducing
operators that boost diversity so that search is enhanced and,
at the same time, better solutions can be found. Our main
intention is, once again, to find rules that are as general as
possible and that can be applied to a wide range of problem
sizes, eventually creating a solving method that can be used
to find the solution in real time for that range.

The rest of the paper is organized as follows: next section
presents the state of the resolution of the MasterMind puzzle
and its evolution, having special emphasis in evolutionary
solutions; we will explain then (in Section III) the general
characteristics of the evolutionary algorithm used to solve
MasterMind in this work. Results obtained with this setup
will be presented in Section IV, and we will finish the paper
with the conclusions that derive from them (commented in
Section V).

II. BACKGROUND

As mentioned in Section I, a MasterMind problem instance
is characterized by two parameters: the number of colors
and the number of pegs ¢. Let N, = {1,2,--- k} be the
set of symbols used to denote the colors. Subsequently, any

combination, either the hidden one or one played by the CB,
is a string ¢ € N’ Whenever the CB plays a combination Cp»
a response h(cp,cn) € N? is obtained from the CM, where
¢p, is the hidden combination. A response (b, w) indicates
that the ¢, matches cp in b positions, and there exist other
w symbols in ¢, present in ¢, but in different positions.

Most strategies use what are called consistent combina-
tions; a combination c is consistent with another played
previously ¢, if, and only if, h(c,c,) = h(cp,cn), ie., if
¢ has as many black and white pegs with respect to the ¢,
as ¢, has with respect to the hidden combination. Intuitively,
this captures the fact that ¢ might be a potential candidate for
hidden combination in light of the outcome of playing c,,. We
can easily extend this notion and denote a combination ¢ as
consistent (or feasible) if, and only if, it is consistent with all
the combinations played so far, i.e., h(c,c}) = h(c}, cp) for
1 < ¢ < n, where n is the number of combinations played so
far, and c; is the —th combination played. Any consistent
combination is a candidate solution.

It is straightforward to see that the number of feasible
solutions decreases with each guess made by the CB (as
long as she always plays feasible solutions, and unlike it is
done in figure I; otherwise no reduction at all might happen,
which does not implies that, in the longer term, it might
be a better strategy). For the same reason, feasibility is a
dynamic property that all the solutions initially have, and
eventually loose at some point (depending on the feedback
from the CM), except for the hidden combination that always
remains feasible. This transient nature of feasibility (or in
other words, the decreasing size of the space of potential
solutions) turns out to be a central feature in the strategies
devised to play MasterMind; in fact, most strategies seek
to reduce search space as much as possible, or at least to
minimize the possibility of a minimal reduction.

Thus, a very naive approach is to play a consistent com-
bination as soon as it is found, in which case the objective is
to find a consistent guess as fast as possible. For example, in
[5] an evolutionary algorithm is described for this purpose.
These strategies are fast for small spaces and do not need
to examine a big part of the space, at least in the average
case. Playing consistent combinations eventually produces
a number of guesses that uniquely determine the secret
code. However, both the maximum and mean number of
combinations that need to be examined are usually high.
Hence, some bias must be introduced in the way how
combinations are searched; if not, the guesses will be no
better than a purely random approach, as solutions found
(and played) are a random sample of the space of consistent
guesses.

The main problem of the naive strategy is the fact that ev-
ery consistent combination in the set will, once played, yield
a different result (or one in a class of different results) and a
different reduction in search space size. Not paying attention
to these possible outcomes when selecting the combination
to be played, is, in fact, naive. For this reason a sensible
algorithm should try to find out which combination within

TABLE I
PROGRESS IN A MASTERMIND GAME THAT TRIES TO GUESS THE
SECRET COMBINATION ABBC. 2ND AND 4TH COMBINATIONS ARE NOT
consistent WITH THE FIRST ONE, NOT COINCIDING IN TWO POSITIONS
AND ONE COLOR WITH IT.

Combination Response
AABB 2 black, 1 white
ABFE 2 black
ABBD 3 black
BBBE 2 black
ABBC 4 black

the consistent set is expected to maximally reduce the set
of remaining combinations; other possibilities (for instance,
playing a fixed —non-sequential- set of combinations until
enough information for the hidden combination is gathered)
were already laid out by OGeran et al. in [6] together with
the one mentioned above, which is called first consistent
by them. This leads to a generic framework for defining
MasterMind strategies endowed with

1) a procedure for finding a large set (even a complete
one) ® of feasible combinations, and

2) a decision-making procedure to select which combina-
tion ¢ € ¢ will be played.

Regarding the first item, ® needs not be the full set
of feasible solutions at a certain step: as proved in our
previous paper [7] a fraction of around 1/6 (for the classic
mastermind) is enough to find solutions that are statistically
indistinguishable from the best solutions found. This was
experimentally established and then implemented by the
authors in an EA termed EvoRank [8].

The procedure mentioned in the second item should min-
imize the losses of the CB, i.e., reducing the number of
feasible solutions in the next step as much as possible. A
popular option to achieve this is to rely on the idea of
Hash Collision Groups, HCG [9] or partitions. These are
maximal sets of solutions that will remain feasible given a
certain feedback provided by the CM. Since the goal of the
CB is to find the hidden combination in as few steps as
possible, she is interested in obtaining as small a partition
as possible. Therefore, it makes sense to focus on the size
of these partitions (which one will be the remaining feasible
partition is obviously not known in advance, so some heuris-
tic reasoning is required). As an example, let us consider
the first combination in Table I: if the hidden combination
considered is AABB, there will be 256 combinations whose
response will be 0b, Ow (those with other colors), 256 with
0b, Iw (those with either an A or a B), and so on. Some
partitions may also be empty, or contain a single element
(4b, Ow will contain just AABB, obviously). For a more
exhaustive explanation see [10]. Each combination is thus
characterized by the features of these partitions: the number
of non-empty ones, the average number of combinations
in them, the maximum, and other characteristics related to
the reduction of the size of the search space that might
distinguish them.

—

To formalize these ideas, let = = {Z;,} be a three-
dimensional matrix that estimates the number =;;,, of com-
binations that will remain feasible after combination ¢; is
played and response (b, w) is obtained from the CM. Then,
the potential strategies for the CB are:

1) Minimizing the worst-case partition [11]: pick ¢; =

arg min; {maxy ., (Zipw) }-

2) Minimizing the average-case partition [12]: pick ¢; =
argming{> ", . PowZibw }, Where py,, is the prior prob-
ability of obtayining a particular outcome. If for instance
we compute Ppy =) ; Zibw/ Zi,b,w Zibw-

3) Maximizing the number of potential partitions [10]:
pick ¢; = argmax;{|{Zipw > 0}|}, where |C| isthe
cardinality of set C'. This strategy is also called most
parts.

4) Maximizing the information gained [13], [14]: pick
c; = argmax;{ Hy . (Eipw)}, Where Hp o, (Z;11]) is
the entropy of the corresponding sub-matrix.

On the other hand, the strategy defined by Kooi [10] is
based on the assumption that the size of the partitions is
irrelevant and that rather the number of non empty partitions
created, n, was important. This is an advantageous assump-
tion since computing the number of partitions is faster than
determining their expected size or entropy. For this reason the
most parts strategy has a certain computational advantage,
and has been used by us in our previous work [15] and in
this one too.

Another major component of the algorithm used in this
paper are endgames [16], which were added to EvoRank to
create the EvoRank-EG method; in this context endgames
refer to exhaustive search algorithms once that, due to
special combination of the constraints (the answers given
by the CM), the search space has been quite reduced. These
endgames were used in two particular cases: when the answer
is all whites, which means that the solution is a permutation
of the played combination, and when it is no whites or blacks,
effectively reducing the number of colors in the combination
to those that are not in the combination played. The general
framework will be explained in detail just next.

III. A NEW VERSION OF EVO, THE EVOLUTIONARY
ALGORITHM FOR PLAYING MASTERMIND

Previous instances of the MasterMind-solving EA used
particular evolutionary algorithms: Estimation of Distribution
Algorithms [7] or a Canonical GA [8]. In this paper we
have developed the more general evolutionary algorithm
introduced in [16] and made some changes designed to keep
diversity high, so that we can explore all the possibilities to
obtain the required exploitation/exploration balance. We will
explain the different parts of this algorithm, and the changes,
in the next paragraphs.

The fitness function [15] has two different factors. The first
one is the number of black and white peg changes needed
to make the current combination cgyess consistent [15]:

- Z ‘h(ci; Cguess) - h(ci7 Csec’r‘et)‘ (1)

i=1

f(cguess) -

This number is computed via the absolute difference between
the number of black and white pegs & that the combination
c; has had with respect to the secret code Cgecrer (Which
we know, since we have already played it), and what cgyess
obtains when matched with ¢;; being h a vectorial function, ||
is then equivalent to the taxicab distance or L. For instance,
if the played combination ABBB has obtained as result
2w, 1b and our cguess CCBA gets 1w, 1b with respect to
it, this difference will be |2 — 1jw + |1 — 1|b = 1. This
operation is repeated over all the combinations c; that have
been played.

The second factor was included (in EvoRank [16]) to avoid
having all consistent combinations with the same fitness
(zero). This created a neutral evolution landscape which
impeded the progress of evolution; besides, as we have
seen in the previous section, not all combinations have the
same ability to solve the puzzle, so it is sensible to include
whatever score we are using to rank them also within the
fitness function. This was introduced in Initially, the fitness
of non-consistent solutions is computed as f(cgyess). Let us
call this score g,.., which is then defined as:

f(cguess)
P(Cguess)

f(cguess) <0
f(cguess) =0

That is, for a consistent solution fitness is the number of non-
empty partitions (noted with P), resulting in negative fitness
for non-consistent and positive for consistent solutions. This
fitness g is then lineally transformed (in case it is used in
fitness-proportional selection methods) by making

Graw (Cguess) - { (2)

g(cguess) = Yraw (Cguess) +1- mcln{f(c)}

so that the worst non-consistent solution will have fitness 1,
and the best consistent solution its initial number of partitions
plus one plus the minimum negative distance to consistency,
additionally ensuring that consistent solutions are always
better than non-consistent ones, and also different depending
on their score, which can then be used by evolution to
improve the population. Most-parts was chosen instead of
partition entropy, which is the best option when using the
whole consistent set, since, as proved in [7], when only a
part of the set is considered as we do in Evo, its results
are not statistically different from the most-parts strategy we
use here. The first combination is the usual one proposed by
Knuth [11]; for k = 6 it would be ABC A.

The rest of the Evo algorithm was presented in [4]; it
includes mechanisms to prevent population stagnation by
resetting it after several generations have lapsed without any
improvement; the basic idea is to fill the set of consistent
solutions until it is no longer possible and then play the best
combination found. The changes over the previous algorithm
[16] brought by this one included using tournament selection
(instead of roulette wheel) for increasing selective pressure if
needed, a heuristic crossover operator that ensured offspring
was different from parents, and new selection operators that
selected also parents that where always different.

However, even if this proved an improvement, there was
still some room for improving performance even further. Still
the average number of combinations examined for reaching
a solution was higher than search space size, at least for the
smaller sizes; for instance, for K = 8, ¢ = 4 search space size
is 8% = 4096 and average number of combinations examined
were 6949. Even as this was not the case for bigger space
sizes (the algorithm examined about half the search space),
the obvious implication is that combinations were examined
several times, or even that there were several copies of some
combinations in the population. These were problems that
led to stagnation, a high degree of exploration, and eventually
worse results than should be expected.

The changes introduced in this paper basically try to
overcome those problems by avoiding as much as possible
the introduction of repeated combinations, and, at the same
time, fixes some bugs that were present in the last version.
Our intention with these changes are basically to reduce
the number of combinations needed to find the solution
so that it scales better and can be carried reasonably to
bigger MasterMind problems. These improvements could, in
principle, improve the number of moves needed to find the
solution, but in advance this is not what we are shooting at.
At the same time, in the previous paper [4] we needed to set
the evolutionary algorithm parameters in a certain way so
that the best results were obtained for a particular problem
size. We will try to find a combination that is robust for all
sizes, so that we minimize the number of parameters needed
to find a good solution in a reasonable amount of time, and
reduce them only to population and consistent set size.

The main changes presented in this paper are included
in the Breeder_ Diverser operator included in the
Algorithm: :Evolutionary library [17]. We avoid the
introduction of repeated combinations by checking that the
offspring of the genetic operators is always different to
the parents. We do not check that it is not already in the
population, since this would lead to an additional problem;
thus, we will not avoid the reintroduction of combinations in
the population, just one of the causes: offspring and parents
being the same.

At the same time, since this version of the algorithm
has more parameters, we perform a partial exploration of
parameter space in order to find out the type of influence they
have on the outcome (moves and number of combinations
examined).

The implementation of this algorithm is available at the
writing of this paper at http://goo.gl/ky4Ge and will be later
on part of the Algorithm::MasterMind Perl module published
in CPAN (http://goo.gl/WAUOD).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We will test the changes introduced in this paper first
by exploring the influence of different parameter values on
the outcome, and then by comparing the best results with
other published so far. All tests will be made on a base
configuration that has ¢ = 4,k = 8. The MasterMind case
is too small to make any differences among configurations,

TABLE 11
VALUES FOR THE EVO PARAMETERS THAT OBTAIN THE BEST RESULT.
PERMUTATION, CROSSOVER AND MUTATION ARE priorities; THEY ARE
NORMALIZED TO 1 TO CONVERT THEM TO RATES.

Parameter Value
Crossover 1
Mutation 1
Permutation 1
Replacement rate ~ 0.75
Population 400
Tournament size 2

and this one is large enough to find differences among
configurations, but small enough to perform experiments in
a reasonable amount of time. All experiments used the code
and instance sets uploaded to the repository; in this case
the instancias4_8.txt which is at http./goo.gl/6yul6.
A single run over these set of instances, including 5000
combinations (which means that some of them will be
repeated) were made. Unless said otherwise, the values for
the parameters are as shown in table II.

Evo parameters fall in two different categories, those
related to the evolutionary algorithm and those that are
problem-specific, such as combination scoring and size of the
consistent set sample. We will begin by examining the latter.
As we have said, even if most-parts and other strategies for
scoring consistent combinations do not have difference for
certain consistent-set size, they could have for other problem
and consistent set sizes; however, it is very likely that for
the testbed we have chosen there is no difference, so we
concentrate on checking the influence of the size of the
consistent set (which we will call N, from now on). In order
to do that, we will use four different sizes: 25, 30, 35 and 40.
The computed size for the smaller problem (£ = 4,k = 6)
was 20, so we have started with a size that is slightly bigger
to end with twice the size. First result is that there is no
significant difference among the average number of moves,
which is around 5.16. It is slightly better for N., = 30,
but the difference with the worst is not significant using
Wilcoxon test. It is also slightly worse than the best value
published before (5.148), but difference is not significant.

However, there is a difference among the number of
combinations played to find the solution, as shown in figure
1. The average number of evaluations increases with the
set size, which is an expected outcome since the algorithm
must keep trying to fill the set to the desired size. This is
rather useless at the latest stages of search, because after the
third move the consistent set size is almost always smaller
than that size, so this deeper search does not lead to better
results, and might even make then worse. Please note that
all differences are significant, even as median values are the
same for some of them. Best average, at 6412 combinations,
is found for N_s = 30, which coincides with the best average
moves value. Please note that this value is also, already,
significantly better than the best value found previously [4] of
6949 combinations. It is, however, still bigger than the search

Evaluations to solution

15000 20000
1
---%mmcmn oo

#Evals to solution
10000
|

5000
|
—
|
—

Setsize
Different consistent set size

Fig. 1. Boxplots comparing the number of evaluations for different sizes
of the consistent set, all other parameters being the same.

space (4096). Our conclusion from this is that this parameter
does not have a big influence in the number of moves, but it is
convenient to keep it as small as possible to be able to reach
solutions fast. The rule of thumb here will be to increase
consistent set size with the logarithm of the search space size,
or set it to around 10% of the population (which, following
evolutionary algorithm lore, must also increase with search
space size).

The first evolutionary parameter we will test is the tourna-
ment set size. Tournament selection [18] picks 7" random in-
dividuals from the population, and deterministically chooses
the best to incorporate it into the pool of individuals that will
reproduce. Selective pressure increases with size, because it
makes much more unlikely that the worse individuals will be
selected. A tournament size of two makes possible that not-
so-good individuals make it to the reproductive pool when
confronted with others in the same tier; however, with bigger
tournament size this probability is diminished. Three sizes
besides baseline have been tested: 3, 5 and 7. The results
obtained on the number of evaluations are shown in figure
2. In this case, we changed crossover priority to 8, which
changed its application rate to 80% (as opposed to 33%
before). We performed several experiments with the baseline
value, and there was not enough change in either evaluations
or moves. It makes sense, since crossover is an exploitative
operator and it makes sense to enhance a higher selective
pressure with more exploitation.

In this case, the number of moves did have statistically
different values for different tournament sizes. 7' = 7 and
T = 5 were not different, but the former was different
from the rest and obtained the best result so far with an
average number of moves equal to 5.13, However, this value

Evaluations to solution

--<{mon@oo o
WO @D O @ O

15000
---{mn @™o @ o

8
e

10000
|

#Evals to solution

5000
L

s

EEm .

T T T T
2 3 5 7
Tournament size

Different tournament size

Fig. 2. Boxplots comparing the number of evaluations for different sizes
of the tournament used for selection, all other parameters being the same.
Crossover priority has been changed to 8; results for crossover 1 were not
significantly different from baseline.

is only different at an 80% level from the previous best value
obtained with the baseline configuration. The number of
combinations examined, however, were pairwise statistically
different and show an improvement with tournament size,
down to an average of 5550 for T' = 7.

From this we can conclude that the evolutionary algorithm
searches efficiently the space via its exploitative mechanisms.
It is convenient to tip the exploitation/exploration balance
towards the former, improving thus moves and, at the same
time, the number of evaluations. Besides, we have performed
several experiments changing the value of permutation and
mutation rate, as well as population, with results that proved
that their influence on the outcome is not too important.

So, eventually, using the default combination shown above,
we have performed experiments over a bigger range of the
solution space. Even as the best results were obtained for
T =17, good enough results were obtained for 7' = 2, which
is the default value and the one we use here.

The main result of the experiments above is that the
resetting mechanism is never activated; this was one of the
main reasons why Evo yielded a high number of evaluations.
Besides, the change in other parameters (crossover, mutation
and permutation priority) did not have impact either on the
number of evaluations or the number of moves. So we settled
for the parameters in table II and repeated the experiments
for several problem sizes, including one not approached (due
to the time it needed) before. The average number of moves
is virtually the same, but using a smaller population, as in
the [4], although for the first time we have managed to go
up to £ = 6,x = 9 obtaining 6.479 4+ 0.89 moves.

Berghman does not publish the number of evaluations,

TABLE III
MEAN NUMBER OF EVALUATIONS AND THE STANDARD ERROR OF THE MEAN.

(=4 (=5 (=6

K=38 k=38 k=9 k=9
Evo++ 6412 + 3014 14911 + 6120 25323 £ 9972 46483 + 17031
Evo 6949 + 48 19758 + 556 36485 + 413

so in IIl we compare with our own. New algorithm yields
always less evaluations, with difference increasing with prob-
lem size. We also set a baseline for the bigger problem size;
{ = 6,k = 9. It should be noted that standard error is
bigger, but even so differences are statistically significant.
The number of evaluations made are a decreasing portion of
the search space, up to 8% for the bigger problem but is,
still, higher than our own [5]. However, it should be noted
that it is relatively easy to obtain solutions using more moves
and less evaluations by decreasing population and consistent
set size.

V. CONCLUSION AND FUTURE WORK

In this paper we have advanced the research into Master-
Mind solution strategies initiated seventeen years ago [19]
by exploring the space of parameters to find out that one of
them, the size of the consistent set that is used to compute
the score of consistent combinations, does not have a big
influence in the resulting number of moves, so it can be
reduced to improve performance. Increasing diversity also
boosts speed by reducing the number of repeated combi-
nations in the population and avoiding the hyper mutation
phases that plagued previous versions of the algorithm; this
also allows to increase selective pressure via the tournament
set size which results in a better exploitation of the search
space and eventually better results in both fronts: number of
guesses and evaluations.

We have also proved that, by itself, the increase in diversity
combined with the decrease in size of consistent set and
population is robust enough to yield a lower number of
evaluations throughout a wide range of sizes, making bigger
problems approachable. However, the outcome of using a
higher selective pressure has not been checked. This is
left as future work, together with the examination of the
contributions of diversity, consistent set construction and
application of endgames which were introduced previously
to the overall result.

ACKNOWLEDGMENTS

This work is supported by grants TIN2011-28627-C04-02,
-01 and PO8-TIC-03903.

REFERENCES

[1] E. W. Weisstein, “Mastermind.” From MathWorld-A Wolfram
Web Resource. [Online]. Available: http://mathworld.wolfram.com/
Mastermind.html

[2] R. Focardi and F. Luccio, “Guessing bank pins by winning a master-
mind game,” Theory of Computing Systems, pp. 1-20, 2011.

[3] M. Goodrich, “On the algorithmic complexity of the Mastermind
game with black-peg results,” Information Processing Letters, vol. 109,
no. 13, pp. 675-678, 2009.

[4] J.-J. Merelo-Guervés, A.-M. Mora, and C. Cotta, “Optimizing worst-
case scenario in evolutionary solutions to the MasterMind puzzle,”
in IEEE Congress on Evolutionary Computation. 1EEE, 2011, pp.
2669-2676.

[5] J. J. Merelo-Guervés, P. Castillo, and V. Rivas, “Finding a needle
in a haystack using hints and evolutionary computation: the case of
evolutionary MasterMind,” Applied Soft Computing, vol. 6, no. 2, pp.
170-179, January 2006, http://dx.doi.org/10.1016/j.as0c.2004.09.003.

[6] J. O’Geran, H. Wynn, and A. Zhigljavsky, “Mastermind as a test-bed
for search algorithms,” Chance, vol. 6, pp. 31-37, 1993.

[71 T. P. Runarsson and J. J. Merelo, “Adapting heuristic Mastermind
strategies to evolutionary algorithms,” in NICSO’10 Proceedings, ser.
Studies in Computational Intelligence. Springer-Verlag, 2010, pp.
255-267, also available from ArXiV: http://arxiv.org/abs/0912.2415v1.

[8] J. Merelo, A. Mora, T. Runarsson, and C. Cotta, “Assessing efficiency
of different evolutionary strategies playing mastermind,” in Compu-
tational Intelligence and Games (CIG), 2010 IEEE Symposium on,
August 2010, pp. 38-45.

[9] S.-T. Chen, S.-S. Lin, and L.-T. Huang, “A two-phase optimization
algorithm for mastermind,” Computer Journal, vol. 50, no. 4, pp. 435—
443, 2007.

[10] B. Kooi, “Yet another Mastermind strategy,” ICGA Journal, vol. 28,
no. 1, pp. 13-20, 2005.

[11] D. E. Knuth, “The computer as Master Mind,” J. Recreational Math-
ematics, vol. 9, no. 1, pp. 1-6, 1976-77.

[12] L. Berghman, D. Goossens, and R. Leus, “Efficient solutions for
Mastermind using genetic algorithms,” Computers and Operations
Research, vol. 36, no. 6, pp. 1880-1885, 2009.

[13] A. Bestavros and A. Belal, “Mastermind, a game of diagnosis
strategies,” Bulletin of the Faculty of Engineering, Alexandria
University, December 1986. [Online]. Available: http://citeseer.ist.psu.
edu/bestavros86mastermind.html

[14] C. Cotta, J. Merelo Guervés, A. Mora Garcia, and T. Runarsson,
“Entropy-driven evolutionary approaches to the Mastermind problem,”
in Parallel Problem Solving from Nature PPSN XI, ser. Lecture
Notes in Computer Science, R. Schaefer et al. Eds., vol. 6239.
Springer Berlin / Heidelberg, 2010, pp. 421-431. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15871-1_43

[15] J.-J. Merelo and T. P. Runarsson, “Finding better solutions to the
Mastermind puzzle using evolutionary algorithms,” in Applications
of Evolutionary Computing, Part I, ser. Lecture Notes in Computer
Science, C. di Chio et al., Ed., vol. 6024. Istanbul, Turkey: Springer-
Verlag, 7 - 9 Apr. 2010, pp. 120-129.

[16] J.-J. Merelo-Guervés, C. Cotta, and A. Mora, “Improving and Scaling
Evolutionary Approaches to the MasterMind Problem,” in EvoAppli-
cations (1), ser. Lecture Notes in Computer Science, C. D. Chio, S.
et al, Eds., vol. 6624. Springer, 2011, pp. 103-112.

[17] J.-J. Merelo-Guervés, P-A. Castillo, and E. Alba,
“Algorithm: :Evolutionary, a flexible Perl module for
evolutionary computation,” Soft Computing, vol. 14, no. 10, pp. 1091-
1109, 2010, accesible at http://sl.ugr.es/O00K. [Online]. Available:
http://www.springerlink.com/content/8h025g83j0q68270/fulltext.pdf

[18] D. Goldberg and K. Deb, “A comparative analysis of selection schemes
used in genetic algorithms,” Foundations of genetic algorithms, vol. 1,
pp. 69-93, 1991.

[19] J. L. Bernier, C.-I. Herrdiz, J.-J. Merelo-Guervés, S. Olmeda,
and A. Prieto, “Solving MasterMind using GAs and simulated
annealing: a case of dynamic constraint optimization,” in Proceedings
PPSN, Parallel Problem Solving from Nature IV, ser. Lecture
Notes in Computer Science, no. 1141. Springer-Verlag, 1996, pp.
553-563. [Online]. Available: http://www.springerlink.com/content/
78j7430828t2867g

