
Scaling in distributed evolutionary algorithms with
persistent population

Juan J. Merelo-Guervós, Antonio Mora ∗, J. Albert Cruz †, Anna I. Esparcia-Alcázar ‡, Carlos Cotta §
∗ GeNeura Team

University of Granada (Spain)
Email: jmerelo@geneura.ugr.es

† Universidad de Ciencias Informáticas
La Habana, Cuba

Email: jalbert@uci.cu
‡ Grupo S2

Email: aesparcia@s2grupo.es
§ Departamento de Lenguajes y Ciencias de la Computación

Universidad de Málaga
Email: ccottap@lcc.uma.es

Abstract—This work presents the experimental results ob-
tained with a distributed computing system created by map-
ping an evolutionary algorithm to the CouchDB object store.
The framework decouples the population from the evolutionary
algorithm and –through the API that CouchDB provides– allows
the distributed and asynchronous operation of clients written in
different programming languages. In this paper we present tests
which prove that the novel algorithm design still performs as
good as a canonical evolutionary algorithm and discover what
are the main issues concerning it, what kind of speedups should
we expect, and how all this affects the fundamental evolutionary
algorithms concepts.

Index Terms—I.2.m.c Evolutionary computing and genetic
algorithms, C.1.4.a distributed architectures, H.2.4.d Distributed
databases.

I. INTRODUCTION

While algorithms have been traditionally designed with a
single memory and CPU in mind, current technological in-
frastructure includes a high variety of frameworks and devices
that twist and shift this paradigm in many different direc-
tions. Particularly for distributed evolutionary computation, the
traditional notions of asynchronous, homogeneous and static
computing systems have been superseded by others in which
one or all of these features are absent [1], [2], [3], thus making
the traditional distinction between master-slave and island-
based models [4] moot by making them just two of all the
possibilities that are created along the different feature axes.

Using these new foundations for evolutionary algorithms
(EAs) allows to take full advantage of the performance of
modern CPUs and operating systems and in some cases opens
up the possibility of using new devices for distributed com-
puting, making the participation in a distributed computation
experiment as easy as visiting a website [5].

This change in the computing framework might –and usu-
ally does– imply changes in the algorithms themselves. A
feature as usual as threads makes EAs escape the sequential
cage, and make us rethink how the biologically inspired art

of these algorithms [6] can be mapped to this new substrate.
For instance, database management systems are nowadays a
pervasive technology in business computing, but they were
not used until 1999 as a base for persistent evolutionary
algorithms by Bollini et al. [7]. They mention the fact that a
database allows the simultaneous actuation of several clients,
and change fundamentally the design of the EA from an ab
initio strategy to an incremental one that makes use of the
chromosomes that have been already created and evaluated,
are stored, and can be efficiently retrieved from the database.

Database management systems have also changed and the
last few years have seen the appearance of the so-called
NoSQL, object or key-value stores [8]. Beyond the obvious
fact that they do not use SQL for accessing data stores,
these systems are characterized by being structured as key-
value stores where the value is any kind of loosely structured
document. In general, documents can include any data struc-
ture, although some of them (like, for instance, sets) might
be present in only some of these systems. These generalized
data structures can be described in languages such as XML
or JSON (JavaScript Object Notation,[9]). The variety of
languages for retrieving, aggregating and operating on data
is as big as the number of different systems, but many of
them have settled on JavaScript, due to the availability of
efficient implementations and its widespread adoption by the
web development community. Aggregating functions include
in some cases map/reduce [10], [11], which is an efficient
way of working on large amounts of data without needing
large amounts of memory. Map/reduce requests are structured
in a map function that is applied to every element within the
selection, creating a couple of data structures that are reduced
by performing some operation on them. A map operation
might, e.g., create an array with the values of a certain field;
a reduce operation will create a hash that records how many
times each value appears.

These features are usually accessed through a REST (Rep-

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence 
June, 10-15, 2012 - Brisbane, Australia IEEE CEC

2183



resentational State Transfer) API, a lightweight way of in-
teracting with HTTP based servers which uses the semantics
and syntax of this protocol. Since the only requirements for
a language in order to create a wrapper around a REST API
is to be able to make web requests and build strings, NoSQL
databases can be accessed either easily from the command
line, from the address bar of a browser, or from libraries built
in many different programming languages. In either case, it
does not add much overhead to the raw request: most of it
lies in the conversion from the native NoSQL format (usually
JSON) to the data structures in the native language.

All these features make NoSQL databases an ideal candidate
for creating the backoffice for a distributed computation ex-
periment; even more so when most systems allow replication,
so that a multi-star (that is, multiple and linked servers with
clients hanging from each one) infrastructure can be created
and single points of failure avoided. In other papers about this
system [12] we have presented its main features and proved
that the concept works; we have also tested scalability and
found which are the main bottlenecks that must be avoided to
increase it.

In this paper we have refactored part of the system (proving
once again that implementation matters [13]) that allows us
to achieve higher speeds and better speed-ups, and our main
focus is to explore the parameter space to find the best
combinations. We will demonstrate that basic implementation
parameters affect not only the speed, but also the behavior of
the algorithm, having a definite influence in the number of
evaluations needed to reach the optimum.

II. STATE OF THE ART

We will have to look at pool-based distributed EAs for
the closest methods to the one used here. In these methods,
several nodes or islands share a pool where the common
information is written and read. To work against a single
pool of solutions is an idea that has been considered almost
from the beginning of research in distributed metaheuristics.
Asynchronous Teams or A-Teams [14] were proposed in
the early nineties as a cooperative scheme for autonomous
agents. The basic idea is to create a work-flow on a set of
solutions and apply several heuristic techniques to improve
them, possibly including humans applying methods by hand.
This technique is not constrained to EAs, since it can be
applied to any population based technique (and from a wider
perspective it lies at the heart of blackboard systems [15]), but
in the context of EAs, it would mean creating different single-
generation algorithms –with possibly several techniques– that
would create a new generation from the existing pool.

The A-Team method does not rely on a single implementa-
tion, focusing on the algorithmic and data-flow aspects in the
same way as the Meandre [16] system, which creates a data
flow framework with its own language (called ZigZag), which
can be applied, in particular, to EAs.

While algorithm design is extremely important, implemen-
tation issues always matter and some recent papers have
concentrated on dealing with pool architectures in a single

node environment: G. Roy et al. [17] propose a shared memory
multi-threaded architecture, each thread having read access to
the whole pool but write access to just a part of it. That
way, interlock problems can be avoided and –taking advan-
tage of the multiple thread-optimized architecture of today’s
processors– they can obtain very efficient, running time-wise,
solutions with the added algorithmic advantage of working
on a distributed environment. Although they do not publish
scaling results, they discuss the trade-off of working with a
pool whose size will have a bigger effect on performance than
the population size on single-processor or distributed EAs.
The same issues are considered by Bollini and Piastra in [7],
who present a design pattern for persistent and distributed
EAs; their emphasis is on persistence rather than perfor-
mance, and hence they try to present several alternatives to
decouple population storage from evolution itself (traditional
evolutionary algorithms are applied directly on storage) and
achieve that kind of persistence, for which they propose an
object-oriented database management system accessed from
a Java client. In this sense, our former take on browser-
based evolutionary computation [5] is also similar, using for
persistence a small database accessed through a web interface,
but only for the purpose of interchanging individuals among
the different nodes, not as storage for the whole population.

In fact, the efforts mentioned above have not had much
continuity, probably due to the fact that there have been,
until now, few (if any) publicly accessible online databases
containing the pools. One of them uses the public FluidDB
platform [18], combining evolution with (possible) stigmergy
(communication through the environment); other than that,
the pool based evolution is the same as the one proposed
in this paper, since population is persistent, evolution is
carried incrementally and the interaction among islands is
only performed through the environment (in this case, the
CouchDB DBMS). Our approach here differs however in
that we consider a local database instead of a single copy
of a global database accessed by all users, and thus latency
problems can be avoided, hence relieving the scale problems
presented by the authors of that paper (however, the results
obtained in this work about packet size, and, in general,
asynchronous organization of the algorithm can also be applied
to the present work). Furthermore, this work advances the state
of the art by introducing a novel fine-grained parallelization
technique, and also by testing it on a distributed and real world
environment.

III. SOFEA, A COUCHDB-BASED EVOLUTIONARY
ALGORITHM

The first question is why choose CouchDB over other
similar products, such as MongoDB or Redis. There have
been several reasons for doing so: firstly, it is an open
source product which is available in most Linux distribution
repositories. This means that it is quite simple to create
that infrastructure; besides, it uses JavaScript as its query
language, which makes learning to use it very easy; besides,

2184



CouchDB introduces a new query language, UnQL1, which
is an hybrid between SQL and JSON. MongoDB can also be
queried using JavaScript, but Redis does not, using instead its
own language; thirdly, it uses persistent storage, which means
stored procedures and data can be reused after reboot. Redis,
on the other hand, handles everything in memory, which also
implies a large RAM consumption. Finally, in the shape of
DesktopCouch, CouchDB is a default install in most Linux
desktops that include Gnome. This means that you can start
to run this system out of the box, without needing additional
installs in most cases (at least if you are using the preferred
development system, a Unix or Linux box). Besides, CouchDB
has as an advantage over MongoDB a greater adherence to web
standards (the primary interface to the data is through RESTful
HTTP) which grants it an advantage for use it in the Internet
[19], and the possibility of using it in mobile platforms.

Mapping an EA to this system has to take into account its
peculiar features and go with its grain to achieve maximum
performance, both locally in the server and globally on the
system composed of server+clients.

The first step is to decouple population from the rest of
the EA, which usually include population as a variable that
is passed around together with operators and the rest of the
algorithm; even distributed EAs encapsulate the population
and the rest of the algorithm in a single problem. In this case,
and following Bellini et al. [7], we decouple population storage
and its processing. Population will be stored in CouchDB. A
document will include a chromosome, a random number and
the fitness value. Besides, CouchDB includes two other pieces
of data into each document: the key (which will coincide with
the chromosome) and a version number.

This version number (or revision) will be used to charac-
terize the state of a chromosome in the population:

• Revision 1: newly created chromosome, no fitness com-
puted yet

• Revision 2: chromosome with fitness
• Revision 3: dead chromosome.

Revision numbers are updated natively by CouchDB; when
a chromosome is updated with its fitness it is moved from
revision 1 to 2; doing any further operation will take it to
revision 3, but the only operation done by our system is to
drop it from the population.

Since one of the strong points of CouchDB is its ability to
stand a high number of simultaneous requests, the EA has been
divided itself in four different programs, which will operate
independently and asynchronously.

• Initialization: will create a set of chromosomes in revision
1.

• Evaluation: will take packets of chromosomes in revision
1, compute its fitness, upgrading them to revision 2
(in traditional EA parlance, they would be part of the
population).

• Reproduction: packets of chromosomes in revision 2 will

1Specs available from http://www.unqlspec.org/display/UnQL/Home

be crossed over and mutated; newly generated chromo-
somes are obviously in revision 1.

• Elimination: the population (chromosomes in revision 2)
is culled down to a fixed number of chromosomes so that
the less fit are progressively eliminated from it, taking
them to revision 3.

These last three components are run at the same time,
although they can be started asynchronously. In fact, they can
be run in any sequence. Since the population is out there any
part, or all of them, can be run in different languages, operating
systems, processes or machines. This also allows to optimize
the implementation of each one of them by using the language
that suits them better. This horizontal division of labor has
previously been used by Castillo et al. [20], in this case to
take computational charge off a central server which is used
mainly as a clearinghouse for distributing the population; the
full GA, however, is run on one of the clients and there is a
provision, in principle, for a single GA client with possibly
several evaluators.

The main problem with our configuration is the starving of
the algorithms, that is, the lack of chromosomes for performing
its task. Since operation is asynchronous, if reproduction is
not fast enough the evaluator will run out of chromosomes
to evaluate; if evaluator is not fast enough, the reproducer
will not have a sensible population to act on. The elimination
phase is not so critical, but if it is not run frequently the
reproductive population will grow out of proportion reducing
the exploitative ability of the whole algorithm. This is fixed,
in part, by making components wait one second if there is not
enough material to act on; however, this increases the number
of useless requests to the server. The main handle we can use
to act on this is introducing a slight delay when starting them
and changing packet size. However, ultimately the key is to
have enough chromosomes to evaluate, since the reproduction
phase can create new ones (maybe with less efficiency) even
with a few.

One of the main advantages of this configuration is the fact
that every chromosome is evaluated just once. Since we use
the chromosome string as a key, if the reproduction attempts
to reintroduce a chromosome it will return an already existing
error. This means that the reproduction phase (and, in fact,
also the evaluation phase) becomes increasingly less successful
with the ongoing algorithm, but also that every individual in
revision 2 is unique and thus (genotypic) diversity is mostly
kept, no matter what kind of EA we use.

Since several evaluators and reproducers can act concur-
rently, we should issue them different chromosomes to work
on. One of the possibilities would be to keep tabs on the server
of the last one issued, but this is a problem since there is no
guarantee that the result will be returned, and then it would
also cause starvation if a slow client takes the last chromo-
somes to evaluate. So we included the random number in the
document, which is used to sort the population and retrieve all
the chromosomes whose random constant is higher than that
first random number. There are two problems with this: if this
number is too high, less chromosomes than the established

2185



packet size will be returned. This could be avoided by issuing
another request for the remaining number of chromosomes,
however this is cumbersome and it is not really a big problem
to have less chromosomes to operate on; the second one is
that there is small probability (which increases with decreasing
population size) that the same chromosome is returned twice to
two different clients. This is not a problem in the reproduction
phase, but it could be during evaluation, causing a conflict, as
we will later see.

One of the problems with this system is to make all
clients know the algorithm has finished, and make it so as
soon as possible. In general, the approach is to make the
client that finds the termination condition create (actually,
update) a special document that is periodically consulted by
all other clients. If the termination condition is to run a certain
number of evaluations, it is the reaper who creates it; in the
experiments described in this paper, as soon as an evaluator
finds the chromosome with all ones, it creates the document
and stops running. After every iteration in their loops, all
other clients check this document, and when it indicates the
experiment is finished, they stop. Since this involves a single
retrieval of a document with a known key, the impact on client
performance is very small.

Clients have been written in Perl and JavaScript (which has
been used also for writing CouchDB views) and are available
with a GPL licence from https://launchpad.net/sofea.

IV. EXPERIMENTS AND RESULTS

In this section we will first test the influence of the imple-
mentation parameters on the result, and then try to measure
the speed-up obtained when multiple clients are added.

A. Testing the influence of implementation parameters in the
algorithm

As mentioned above in the introduction, we will check the
influence of the parameters in the results. We will be using the
classical OneMax example, which reaches the optimum when
all bits in a string are equal to 1. Chromosome length is 128
and in all cases an initial population of 128 was generated
before starting to run the algorithm. The clients were run
until the optimal solution was found, and we changed two
parameters: the base population (the number of live individu-
als the reaper leaves every time it acts) and the evaluator and
reproducer population (the number of individuals every one of
them receives –and, in the case of the reproducer, also outputs–
every cycle). The combinations and their denominations are
shown in Table I.

TABLE I
COMBINATION OF PARAMETERS AND DENOMINATIONS WE ARE USING

FOR IT.

Denomination Base Evaluator Reproducer
Population packet size packet size

p128-e32-r32 128 32 32
p128-e64-r32 128 64 32
p128-e64-r64 128 64 64
p64-e32-r32 64 32 32

Instead of exhausting all possible parameter combinations
and packet sizes, we have used a reasonable set of combi-
nations; we have excluded sizes smaller than 32 since they
would increase the number of requests; the packet size for
the reproducer is never bigger than for the evaluator, since
that would create too many individuals the reproducer would
be unable to evaluate. Both packet sizes are smaller than
the base population, which gives each generated individual
a chance toreproduce before being eliminated. In general, this
combination has been found to reduce waiting time in every
client (due to lack of suitable genetic material) and makes the
algorithm to run smoothly, without making the number of non-
evaluated individuals increase excessively until the end of the
algorithm. Every configuration is repeated ten times.

Fig. 1. Boxplot of the number of evaluations for different combinations
of parameters; the meaning of the labels in the x axis is shown in Table I.
Differences are significant among p64 and the rest, but not among these.

The time and number of evaluations to success (AES,
average evaluations to success) are plotted in Figures 1 and
2. Focusing first on the number of evaluations, although we
find small differences depending on the packet size which
indicate that it might be better to make the packet size for the
reproducer smaller than for the evaluator, the main factor is the
base population size. While for population = 64 the number of
evaluations is on average 3,975, when the population doubles
the average hovers around 5,000, although the smallest value
corresponds to evaluator packet size = 64 and reproducer
packet size = 32, with an average of 4,627. In this sense, results
are in accordance with what is usual in genetic algorithms,
with smaller populations generating less useless individuals
and thus being able to find the solution quicker.

However, the second Figure 2 shows a different scenario.
Since the number of evaluations is smaller, again the smaller
population beats the other time-wise; but the biggest factor in

2186



Fig. 2. Boxplot of the time in seconds needed to find the solution for different
combinations of parameters; the meaning of the labels in the x axis is shown
in Table I. Differences are only significant among the first and the rest.

the number of evaluations performed per second seems to be
the packet size. When both evaluator and reproducer packets
are equal to 64, it needs on average 161.3 seconds to find the
solution; the other need on average more, almost 200 seconds
if the packet size is halved. In general, that difference can
be explained by the number of requests needed to finish the
algorithm. Taking into account that the number of evaluations
is roughly the same, p128-e64-r64 will need E+R requests,
p128-e64-r32 will use E+2R and p128-e32-r32 2(E+R).

This gives us a rule of thumb to run the algorithm to success:
try to make the population as small as possible, packet size
for clients which is equal to half the base population size;
however, this rule is for a baseline configuration and will have,
later on, to check it to see whether it scales up properly. That
way, the best combination of AES and running time will be
achieved. This will be tested in the next experiment, where
we will try to check the speed-up behavior by multiplying the
number of clients.

B. Speed-up behavior when adding clients

This experiment will be run as follows: keeping the reaper
to a single client, the number of evaluators and reproducers
will be changed. The dynamics of evaluation and reproduction
is complex and the number need not be the same: since they act
asynchronously, adding more clients run the risk of running
into the conflict of several evaluators trying to evaluate the
same set of individuals; or else, both clients can starve if
they do not have enough individuals to act on. Besides, the
parameter space is huge and we cannot but explore a small
part of it: even if we keep the base population constant, the
block size for both clients and the number of clients of each

one can be changed in many different combinations.
To try and reduce this possible number of combinations,

we have run a profiler (which is a good practice in the design
and development of evolutionary algorithms [13]) to identify
beforehand which can be the best block size. We know that
block size does not affect much the quality of the algorithm but
it affects running time via the response time of the database;
besides, since response time is based in the size of the request
and response but also on the operations run on the set, it might
not be exactly linear with size. At any rate, by running a Perl
profiler (Devel::NYTProf) on the client we have found
that client running time is dominated by the interaction with
the database and –as we have supposed in advance–, there
is a big influence in block size. The critical request is the
instruction that requests a block of individuals in the state we
need them (Revision 1, without evaluation or Revision 2, ready
for reproduction), which can take from 50 ms. (smallest size)
to 200 ms. (bigger size). We thus chose 16 as universal block
size, eliminating one parameter. Besides, profiling allows us
to optimize map/reduce functions running within CouchDB to
make them as fast as possible and eliminate unneeded requests
that were used mainly for statistical purposes.

Once the block size was fixed to 16, we tried different
client configuration, varying the number of evaluators and
reproducers as shown in Table II.

TABLE II
COMBINATION OF NUMBER OF EVALUATORS/REPRODUCERS AND

DENOMINATION WE ARE USING FOR IT.

Denomination Evaluator # Reproducer #
E1R1 1 1
E2R1 2 1
E4R1 4 1
E6R2 6 2
E8R2 8 2

Each experiment was repeated ten times with the same
initial conditions, that is, a clean database just created; before
each iteration, all individuals in the database were erased
twice since, due to the asynchronous termination of clients,
sometimes it took some time for one of them to finish. At the
end of each run the database occupied around 1-2 Gigabytes
which can result in some degradation of performance; that is
why it was started anew each time. All clients were run in
the same computer: an AMD six core with 24 GB memory
running Ubuntu 10.10. CPU occupation was monitored and
even in the case of a dozen clients running at the same time,
no excessive CPU load was observed, so that if there is any
degradation in running time it must be due exclusively to the
program itself, not to the operating system context.

The first thing we are interested in is, of course, whether
there is any improvement with the number of clients. Running
time in seconds and using nomenclature shown in Table II
is shown in Figure 3. The figure shows that, for these
configurations, adding clients result in a definite improvement
in running time. The most dramatic time is when a single eval-
uator is added to the base configuration; average running time

2187



Fig. 3. Boxplot of running time (in seconds) for different client configuration.

Fig. 4. Boxplot of the number of evaluations to solution for the different
number of clients, denomination is the same as in Figure 3.

goes from 118.0 down to 67.4 s. Decrease is not so dramatic
for the rest of the configurations, but it does reach a minimum
average of 46.95 when 8 evaluation and 2 reproduction clients
are used; this amount is almost 1/3 of the initial running
time. It is difficult to estimate the actual speed-up, since
computing nodes are dissimilar but it is clear that there is an
improvement in running time for these configurations. We also
tested a configuration with 9 evaluation and 3 reproduction

clients, but there was no further improvement and even a
slight increase in running time; this was to be expected,
since speed-up cannot increase to infinity. However, since
the problem is not in the central server, but probably in
the fact that the number of simultaneous evaluations, 128, is
the same as the base population, we should expect further
increments when population size increases; we should also
look for parallelization strategies that avoid these problems.

The second issue we will study is the cause of this improve-
ment; an obvious first factor will be raw computing power, but,
as mentioned above, we are dealing with a complex dynamic
system which is bound to have influence in the algorithm
dynamics, resulting in different number of evaluations to
solution. Results are sown in Figure 4, which roughly show
the same pattern as Figure 3 with a decrease in the number
of evaluations up to E4R1 but an increase for E6R2 and
E8R2. The decrease, anyways, is less dramatic than running
time, which implies that parallel execution explain part of the
improvement in running time for the first 3 configurations, and
all of it for the two later experiments. Even as the algorithm is
doing more evaluations, some of them are being executed in
parallel, resulting in less time. From this we can conclude that,
in general, SofEA runs efficiently in parallel environments
and could be used profitably with several, possibly distributed,
clients to improve running time of a sequential evolutionary
algorithm. This option becomes increasingly interesting when
evaluation time becomes bigger in relation to communication
time.

Fig. 5. Boxplot of number of sleeping periods for different client configu-
ration.

However, it is also interesting to know why these running
times are achieved and we will look at two of the factors
that cause the clients to perform less that would be expected
of them. The first one is the number of periods in which

2188



Fig. 6. Boxplot of the number of conflicts, that is, attempts to update an
individual that has been already evaluated (by another client). Denomination
is the same as in Figure 3.

the clients sleep due to lack of chromosomes. Figure 5
shows for four different (and representative) configurations the
number of sleeps the clients incur when there is absolutely no
chromosome in a state they can work with. In this case it
is plotted for evaluators which sleep when there is no new
chromosome. As we can see, there is an increase from the
single-couple-of-clients scenario E1R1 to the case in which
there are 4 clients. Comparing this figure with Figure 3, that
shows that average running time is around 60 seconds, we
can see that, out of that time, on average about 20 seconds are
spent sleeping; if we could reduce that wasted time the running
time of the whole system could be increased even more; it
is not a simple task, however, since increasing the initial
amount of chromosomes would imply dealing initially with
too many random chromosomes and increasing the number of
chromosomes created by the reproducer each step would also
increase the time it takes to process them, increasing the risk
of starvation which leads to increased sleep time. However,
by looking at the right hand side of the figure, which increases
the number of reproducers, we can see that the evaluators are
kept working, even if there is triple number of evaluators than
of reproducers, to the point that sleeping time is less than
10 seconds; however, taking into account that they run for a
shorter time, the percentage of time kept sleeping is bigger
than in the cases with a single reproduction client.

Be as it may, these configurations have other problems,
mainly related to the fact that its throughput is much higher, so
they run the risk of having two clients simultaneously process-
ing the same individual. The number of evaluator conflicts are
shown in Figure as a rate, that is, number of already evaluated
individuals over the total number of evaluated individuals. For

obvious reasons E1R1 is not shown in this graph, but we find
an increase of conflicts as we increase the number of clients
or –expressed in another way– as the number of individuals
covered approaches or exceeds the base population, In the
case of E9R3, when the number of individuals processed
simultaneously is equal to the base population, the number
of conflicts can be up to 60%. This is, in part, due to a
design decision: every individual includes a random number
and CouchDB returns block-size individuals from a generated
random number up. When population size is relatively big,
there is very little chance that the individuals returned are
the same (but it is not negligible, as shown in the E2R1
case). However, that probability increases with the number of
clients, to the point that when the clients additively process a
high percentage of the base population overlapping is almost
assured.

Despite these drawbacks, the fact that speed-up is achieved
anyways shows that, in principle, SofEA could be used for
distributed evolutionary computation experiments with differ-
ent number of clients, as soon as these number of clients is
set up following a few rules of thumb, such as:

• There should be more evaluators than reproducers; of
course, this will depend on the difference of speed
between evaluation and reproduction but, in general,
reproduction will be faster.

• There should never be more simultaneous evaluations
than the base population.

• The block size for evaluators and reproducers should be
kept as small as reasonably possible.

At any rate, we have proved that an efficient and scalable
evolutionary algorithm can be designed and implemented
using CouchDB as its foundation.

V. CONCLUSIONS, DISCUSSION AND FUTURE WORK

In this paper we have shown how SofEA, a distributed
evolutionary algorithm that uses as back-end the CouchDB
object store, can be used to create a framework for dis-
tributed scalable systems. The system is asynchronous and
is parallelized at the algorithm level, putting evaluation and
reproduction in different computing nodes. We have explored
the client configuration space showing that there are certain
configurations that allow for a better speed-up; speed-ups
of up a to a third of the sequential (actually, single pair)
configuration can be achieved in simple problems.

We have also examined the hurdles for even better speed
up: clients falling out of lockstep so that one of them does
not produce enough individuals for the others to work on and
making it going to sleep and overlapping of the chromosomes
that are going to be evaluated producing conflicts and wasting
the time spent by one of the clients evaluating them. However,
these situations are predictable in a way and can be overcome
by judiciously setting up the number of clients following a
few rules of thumb.

Since both these obstacles are the result of design decisions,
it could be argued that other options could be examined. For
instance, the simple fact of decreasing the time the client

2189



goes to sleep could improve this. This can be examined, of
course, but one possible outcome is that the number of periods
could be increased. In fact, we tested one configuration in
which the second evaluator started one second after the first,
to avoid them working on the same population. However, this
did not lead to any improvement, results being statistically
undistinguishable. A possibly better option could be to change
dynamically the block size; if less than the initial block size
are available, this is a signal that the supply is going down and
might eventually halt. The problem with this is that, even if the
sleep time is decreased, the number of requests are increased,
leading to the same or more running time. However, this is a
venue that might be interesting to pursue.

The source of evaluation conflicts, on the other hand, comes
from the fact that we do not keep tabs of which individuals
in the database have been sent. Doing so would imply first
sorting, which has to be done via a (slow) map function since
CouchDB uses a single key and we already use it for avoiding
repetitions of an individual, and also having a stored cursor
keeping tabs of which one has been sent; but that would also
imply using some timeout mechanism just in case unreliable
clients do not return evaluation, so this method for the time
being is discarded. Another option would be to just use bigger
populations, but that slows down the algorithm and also the
operation of the database, so it is a path that we will try to
avoid for the time being.

The experiments done here open a good amount of possibil-
ities. The client type is decided beforehand; since the clients
are served from the database, some intelligence could be added
to it so that it is able to decide which clients are needed the
most, even during the execution of the algorithm. If too many
non-evaluated chromosomes are present, an evaluator can be
served; else, a reproducer. The type of the client can even be
changed in running time, and its parametrization too. Even
different algorithms could be run in each one of them.

It would be interesting to test also the system with more
heavy-duty problems, such as MMDP or p-Peaks. These imply
a higher number of evaluations, but also a fitness function that
takes longer to evaluate. Since it also needs a bigger population
(in the canonical GA case, at least), we might overcome some
of the hurdles found in this paper and achieve better speedups.

There is also some room for optimization of the CouchDB
server by reducing the number of heavy-duty requests. Even-
tually, we expect to achieve speeds for the single clients
system that are competitive with those achieved by a sequential
system. Other features of the system, such as the _changes
feed (a stream of all changes made to the database), could be
used to make the algorithm more reactive to changes in the
population, since this feed contains all changes made to the
database; this would also include the creation of clients using
node.js or other event-based systems.

ACKNOWLEDGMENTS

This work is supported by projects NEMESIS (TIN2008-
05941) and TIN2011-28627-C04-02 and TIN2011-28627-
C04-01,awarded by the Spanish Ministry of Science and

Innovation and P08-TIC-03903 awarded by the Andalusian
Regional Government.

REFERENCES

[1] J. Atienza, M. Garcı́a, J. González, and J.-J. Merelo-Guervós, “Jenetic:
a distributed, fine-grained, asynchronous evolutionary algorithm using
Jini,” in Proc. JCIS 2000 (Joint Conference on Information Sciences),
P. P. Wang, Ed., vol. I, 2000, pp. 1087–1089, http://citeseer.nj.nec.com/
atienza00jinetic.html.

[2] Martina Gorges-Schleuter, “ASPARAGOS: An asynchronous parallel
genetic optimization strategy,” in Proceedings of the Third International
Conference on Genetic Algorithms, J. D. Schaffer, Ed. Morgan
Kaufmann Publishers, 1989.

[3] B. Bánhelyi, M. Biazzini, A. Montresor, and M. Jelasity, “Peer-to-peer
optimization in large unreliable networks with branch-and-bound and
particle swarms,” Applications of Evolutionary Computing, pp. 87–92,
2009.

[4] M. Nowostawski and R. Poli, “Parallel genetic algorithm taxonomy,” in
Knowledge-Based Intelligent Information Engineering Systems, 1999.
Third International Conference. IEEE, 1999, pp. 88–92.

[5] J. J. Merelo, P. Castillo, J. Laredo, A. Mora, and A. Prieto,
“Asynchronous distributed genetic algorithms with Javascript and
JSON,” in WCCI 2008 Proceedings. IEEE Press, 2008, pp. 1372–
1379. [Online]. Available: http://atc.ugr.es/I+D+i/congresos/2008/CEC
2008 1372.pdf

[6] D. E. Goldberg, “Zen and the art of genetic algorithms,” in ICGA95,
J. D. Schaffer, Ed., George Mason University. San Mateo, California:
Morgan Kaufmann, June 4-7 1989, pp. 80–85.

[7] A. Bollini and M. Piastra, “Distributed and persistent evolutionary
algorithms: a design pattern,” in Genetic Programming, Proceedings
EuroGP´99, ser. Lecture notes in computer science, no. 1598. Springer,
1999, pp. 173–183.

[8] D. Bartholomew, “SQL vs. NoSQL,” Linux Journal, vol. 2010, no. 195,
p. 4, 2010.

[9] D. Crockford, “JavaScript Object Notation (JSON),” July 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4627

[10] H. Yang, A. Dasdan, R. Hsiao, and D. Parker, “Map-reduce-merge:
simplified relational data processing on large clusters,” in Proceedings
of the 2007 ACM SIGMOD international conference on Management of
data. ACM, 2007, pp. 1029–1040.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Communications of the ACM, vol. 51, no. 1, p. 107,
2008.

[12] J. J. Merelo-Guervós, A. Esparcia-Alcázar, A. M. Mora, and J.-A.
Cruz, “Pool-based distributed evolutionary algorithms using an object
database,” in Proceedings EvoApps 12, to be published, 2012.

[13] J.-J. Merelo-Guervós, G. Romero, M. Garcı́a-Arenas, P. A. Castillo, A.-
M. Mora, and J.-L. Jiménez-Laredo, “Implementation matters: Program-
ming best practices for evolutionary algorithms,” in IWANN (2), ser.
Lecture Notes in Computer Science, J. Cabestany, I. Rojas, and G. J.
Caparrós, Eds., vol. 6692. Springer, 2011, pp. 333–340.

[14] S. Talukdar, S. Murthy, and R. Akkiraju, “Asynchronous teams,” Inter-
national Series in Operations Research and Management Science, pp.
537–556, 2003.

[15] B. Hayes-Roth, “A blackboard architecture for control,” Artificial Intel-
ligence, vol. 26, no. 3, pp. 251–321, 1985.

[16] X. Llorà, B. Ács, L. Auvil, B. Capitanu, M. Welge, and D. Goldberg,
“Meandre: Semantic-driven data-intensive flows in the clouds,” Illinois
Genetic Algorithms Laboratory, Tech. Rep. 2008103, 2008.

[17] G. Roy, H. Lee, J. Welch, Y. Zhao, V. Pandey, and D. Thurston, “A
distributed pool architecture for genetic algorithms,” in Evolutionary
Computation, 2009. CEC ’09. IEEE Congress on, May 2009, pp. 1177–
1184.

[18] J. J. Merelo, “Fluid evolutionary algorithms,” in IEEE Congress on
Evolutionary Computation. IEEE, 2010, pp. 1–8.

[19] S. Tiwari, Professional NoSQL. John Wiley & Sons, Inc., 2011.
[20] P. A. Castillo, M. Garcı́a-Arenas, A.-M. Mora, J. L. Jiménez-Laredo,

G. Romero, V. M. Rivas, and J.-J. Merelo-Guervós, “Distributed Evo-
lutionary Computation using REST,” CoRR, vol. abs/1105.4971, 2011.

2190




