Finding an evolutionary solution to the game of
MasterMind with good scaling behavior

Juan J. Merelo, Antonio M. Mora!, Carlos Cotta, Antonio J. Ferndndez-Leiva?

! Dept. Computer Architecture and Technology + CITIC
University of Granada
(jmerelo|amorag)@geneura.ugr.es
2 Dept. of Computer Sciences and Languages
University of Malaga
(ccottapl|afdez)@lcc.uma.es

Keywords: MasterMind, oracle games, puzzles, evolutionary algorithms, pa-
rameter optimization

Abstract. The main research issue in the game of MasterMind is to find
a method that minimizes the number of turns needed to find the solution.
But another venue is to find a method that scale well when the size of the
search space is increased. In this paper we will present a method that uses
evolutionary algorithms to find fast solutions to the game of MasterMind
that scale better with problem size than previously described methods;
this is obtained by just fixing one parameter. We prove its scalability by
testing it over a wide range of MasterMind problem sizes.

1 Introduction and state of the art

MasterMind [2] is a puzzle in which one player A hides a combination of k
symbols and length ¢, while the other player B tries to discover it by playing
combinations using the same alphabet and length. The answers from player A to
every combination include the number of symbols in the combination that are in
the correct position and the number of colors that have been guessed correctly.
Player B then xplays a new combination, until the hidden one is found. The
objective of the game is to play repeatedly minimizing the number of turns
needed to find the solution.

Most MasterMind algorithms so far [3,4] use the concept of eligible, pos-
sible or consistent combinations: those that, according to responses by player
A, could still be the hidden combination or, in other words, those that match
the played combinations as indicated by the answer. Exhaustive methods [2,
5] would eliminate all non-consistent solutions and play a consistent one, while
non-exhaustive methods would sample the set of consistent solutions and play
one of them. Those solutions are guaranteed to reduce the search space at least
by one, but obviously different combinations have a different reduction capabil-
ity. This capability is reflected by a score. However, scores are heuristic; there is

no rigorous way of scoring combinations. To compute these scores, every com-
bination is compared in turn with the rest of the combinations in the set; the
number of combinations that get every response (there is a limited amount of
possible responses) is noted. Eventually this results in a series of partitions in
which the set of consistent combinations is divided by its distance (in terms of
common positions and colors) to every other. From this a set of combinations
with the best score is obtained; one of the combinations of this set is chosen
deterministically (using lexicographical order, for instance) or randomly. In this
paper we use most parts, proposed in [6], which takes into account only the
number of non-zero partitions.

Currently, the state of the art was established by Berghman et al. in [3].
They obtained a system that is able to find the solution in an average number of
moves that is, for all sizes tested, better than previously published. The number
of evaluations was not published, but time was. In both cases, their solutions were
quite good. However, there were many parameters that had to be set for each size
and no systematic method to set them, starting with the first guess and the size
of the consistent set, as well as population size and other evolutionary algorithm
parameters. In this paper we will try to adapt our previously published Evo
method by reducing the number of parameters without compromising too much
on algorithm performance, based on the fact that even as you can find a good
solution using only a sample of the consistent set size as proved in [3, 4], different
set sizes do have an influence on the outcome. When you reduce the size to the
minimum it is bound to have an influence on the result, in terms of turns needed
to win and number of evaluations needed to do it. The effect of the reduction
of this sample size will decrease the probability of finding, and thus playing, the
hidden combination, and also the probability of finding the combination that
maximally reduces the search space size when played. However, in this paper we
will prove that good solutions can be found by using a small sample size and,
what is more, a common set size across all MasterMind problem sizes.

In the next section we will present the experiments carried out and its results
for sizes from £ =4,k =8 to £ =7,k = 10.

2 An evolutionary method for playing MasterMind

This paper uses the method called, simply, Fvo [7-10], which has been released as
open source code at CPAN (http://search.cpan.org/dist/Algorithm-MasterMind/)
and is an evolutionary algorithm that has been optimized for speed and to ob-
tain the solution in the minimal number of evaluations possible. An evolutionary
algorithm [11] is a Nature-inspired search and optimization method that, mod-
eling natural evolution and its molecular base, uses a (codified) population of
solutions to find the optimal one. Candidate solutions are scored according to
its closeness to the optimal solution (called fitness) and the whole population
evolved by discarding solutions with the lowest fitness and making those with
the highest fitness reproduce via combination (crossover) and random change
(mutation).

Evo, which is explained extensively in [10] searches consistent combinations
until a prefixed amount of them has been found. It uses Most Parts score to assess
consistent combinations, and the distance to consistency for non-consistent ones,
so that the fitness directs search towards finding consistent solutions with better
score. The algorithm continues until a pre-fixed number of consistent solutions
have been found or until this number does not vary for a number of generations
(set to three throughout all experiments).

Evo incorporates a series of methods to decrease the amount of evaluations
needed to find the solution, including endgames which makes the evolutionary
algorithm revert to exhaustive search in the case the search space has been well
characterized (for instance, when we know that the solution is a permutation of
one of the combinations played or when we have discarded some colors, reverting
to a problem of smaller size).

The solutions are quite promising, but the main problem is that the number
of evaluations needed to find the solution increases rapidly with problem size
(fortunately, not as fast as the problem size itself or this solution would not be
convenient) and a new parameter is introduced: the optimal size of the set of
consistent combinations, that is, the number of combinations that the algorithm
tries to find out before it plays one.

What we do in this paper is testing an one size fits all approach by making
the size of the consistent set unchanged for any problem size. This reduces the
algorithm parameter set by one, but since this parameter set has, a priori, a big
influence on result and there is no method to set it other than experimentation,
it reduces greatly the amount of experiments needed to obtain a reasonable
solution.

3 Experiments and results

The experiments presented in this paper extend those published previously,
mainly by [10].

In this paper we will set this size to a minimal value common for all sizes: 10,
that is why we will denominate the method tested Evol0. This value has been
chosen to be small enough to be convenient, but not so small that the scoring
methods are rendered meaningless. This will reduce the parameters needed by
one, leaving only the population size to be set, once, of course, the rest of the
evolutionary algorithm parameters have been fixed by experimentation; these
parameters are set to crossover rate equal to 80%, and mutation and permutation
rate equal to 10%; replacement rate is equal to 75% and tournament size equal
to 7.

For every problem size, a fixed set of 5000 combinations were generated ran-
domly. There is at most a single repetition in the smallest size, and no repetition
in the rest. The sets can be downloaded from http://goo.gl/6yul6; these sets
are the same that have been used in previous papers. A single game is played
for every combination.

4

Table 1. Comparison among this approach (Evo10) and previous results published by
the authors (Evo++) in [10] and Berghman et al. [3].

(a) Mean number of guesses and the standard error of the mean for ¢ = 4,5, the
quantities in parentheses indicate population and consistent set size (in the case of
the previous results).

(=4 =5
=8 K=38 K=9
Berghman et al. 5.618
Evo++ (400,30) 5.15+0.87 (600,40) 5.62 +0.84 (800,80) 5.94 + 0.87
Evol0 (200) 5.209 £+ 0.91 (600) 5.652 £0.818 (800) 6.013 £ 0.875

(b) Mean number of guesses and the standard error of the mean for £ = 6,7, the quantities in
parentheses indicate population and consistent set size (in the case of the previous results).

=6 L=7
K=9 k=10 k=10
Berghman et al. 6.475
Evo++ (1000,100) 6.479 + 0.89
Evol0 (800) 6.504 £ 0.871 (1000) 6.877 £ 0.013 (1500) 7.425 £+ 0.013

(c) Mean number of evaluations and its standard deviationf = 4, 5.

=4 =5
k=38 k=38 k=9
Evo++ 6412 £ 3014 14911 £ 6120 25323 £ 9972
Evo10 2551 £ 1367 7981 £ 3511 8953 £ 3982
(d) Mean number of evaluations and its standard deviationf =
6,7.
=6 =7
K=9 k=10 k=10
Evo++ 46483 £ 17031
Evo1l0 17562 £ 135367 21804 £ 67227 40205 + 65485

The results for this fixed parameter setting are shown in Tables 1(a),1(b),
1(c) and 1(d).

The first of these tables, which represent the average number of moves needed
to find the solution, shows results that are quite similar for boths methods. The
average for Evol0 is consistently higher (more turns are needed to find the
solution) but in half the cases the difference is not statistically significant using
Wilcoxon paired test. There is a significant difference for the two smaller sizes
({ =4,k =8 and ¢ = 5,k = 8), but not for the larger sizes £ = 5,k = 9 and
¢ = 6,7. This is probably due to the fact that, with increasing search space
size, the difference among 10 and other sample size, even if they are in different
orders of magnitude, become negligible; the difference between 10% and 1% of
the actual sample size is significant, but the difference 0.001% and 0.0001% is
not.

However, the difference in the number of evaluations (shown in Tables 1(c)
and 1(d)), that is, the total population evaluated to find the solution is quite
significant, with Evol0 needing from a bit less than half to a third of the total
evaluations for the larger size. This means that the time needed scales roughly
in the same way, but it is even more interesting to note that it scales better for a
fixed size than for the best consistent set size. Besides, in all cases the algorithm
does not examine the full set of combinations, while previously the number of
combinations evaluated, 6412, was almost 50% bigger than the search space size
for that problem. The same argument can be applied to the comparison with
Berghman’s results (when they are available); Evo++ was able to find solutions
which were quite similar to them, but Evol0 obtains an average number of
turns that is slightly worse; since we don’t have the complete set of results, and
besides they have been made on a different set of combinations, it is not possible
to compare, but at any rate it would be reasonable to think that this result is
significant.

4 Discussion, conclusions and future work

This paper has shown that using a small and fixed consistent set size when play-
ing MasterMind using evolutionary algorithms does not imply a deterioration
of results, while cutting in half the number of evaluations needed to find them.
This makes the configuration of the algorithm shown quite suitable for real-time
games such as mobile apps or web games; the actual time varies from less than
one second for the smallest configuration to a few seconds for the whole game
in the biggest configuration shown; the time being roughly proportional to the
number of evaluations, this is at least an improvement of that order; that is,
the time is reduced by 2/3 for the kK = 6,¢ = 9 problem, attaining an aver-
age of 4.7 seconds, almost one fourth of the time it can take when we try to
achieve the minimum number of turns, 18.6 seconds. This number is closer to
the one published by [3] for this size, 1.284s, although without running it under
the same conditions we cannot be sure. It is in the same ballpark, anyways. The
time needed to find the solution has a strong component in the number of eval-
uations, but it also depends on the consistent set size, that is why the relation
between the time needed (1/4) is smaller than the relation between number of
evaluations (roughly 1/3, see Table 1(d)). This allows also to extend the range
of feasible sizes, and yields a robust configuration that can be used throughout
any MasterMind problem.

As future lines of work, we will try to reduce even more this size and try
to check whether it offers good results for bigger sizes such as £ = 7,k = 11 or
even ¢ = 8,k = 12. Several consistent set sizes will be systematically evaluated,
looking mainly for a reduction in the number of evaluations, and time, needed.
Eventually, what we are looking is for a method that is able to resolve problems
with moderate size, but this will need to be tackled from different points of view:
implementation, middle-level algorithms used, even the programming language
we will be using. We might even have to abandon the paradigm of playing always

consistent solutions to settle, sometimes, for non-consistent solutions for the sake
of speed.

It is also clear than, when increasing the search space size, the size of the
consistent set will become negligible with respect to the actual size of the consis-
tent set. This could work both ways: first, by making the results independent of
sample size (for this small size, at least) or by making the strategy of extracting
a sample of a particular size indistinguishable from finding a single consistent
combination and playing it. As we improve the computation speed, it would be
interesting to take measurements to prove these hypotheses.

Acknowledgements

This work is supported by projects TIN2011-28627-C04-02 and TIN2011-28627-
C04-01 and -02 (ANYSELF), awarded by the Spanish Ministry of Science and
Innovation and P08-TIC-03903 and P10-TIC-6083 (DNEMESIS) awarded by the
Andalusian Regional Government.

References

1. Knuth, D.E.: The computer as Master Mind. J. Recreational Mathematics 9(1)
(1976-77) 1-6

2. Berghman, L., Goossens, D., Leus, R.: Efficient solutions for Mastermind using
genetic algorithms. Computers and Operations Research 36(6) (2009) 1880-1885

3. Runarsson, T.P., Merelo, J.J.: Adapting heuristic Mastermind strategies to evo-
lutionary algorithms. In: NICSO’10 Proceedings. Studies in Computational In-
telligence, Springer-Verlag (2010) 255-267 Also available from ArXiV: http:
//arxiv.org/abs/0912.2415v1.

4. Guervés, J.J.M., Mora, A.M., Cotta, C., Runarsson, T.P.: An experimental study
of exhaustive solutions for the mastermind puzzle. CoRR abs/1207.1315 (2012)

5. Kooi, B.: Yet another Mastermind strategy. ICGA Journal 28(1) (2005) 13-20

6. Cotta, C., Merelo Guervés, J., Mora Garcia, A., Runarsson, T.: Entropy-driven
evolutionary approaches to the Mastermind problem. In Schaefer, R., Cotta, C.,
Kolodziej, J., Rudolph, G., eds.: Parallel Problem Solving from Nature PPSN XI.
Volume 6239 of Lecture Notes in Computer Science., Springer Berlin / Heidelberg
(2010) 421-431

7. Merelo, J., Mora, A., Runarsson, T., Cotta, C.: Assessing efficiency of different
evolutionary strategies playing mastermind. In: Computational Intelligence and
Games (CIG), 2010 IEEE Symposium on. (August 2010) 38-45

8. Merelo-Guervés, J.J., Cotta, C., Mora, A.: Improving and Scaling Evolutionary
Approaches to the MasterMind Problem. In Chio, C.D., Cagnoni, S., Cotta, C.,
Ebner, M., Ekért, A., Esparcia-Alcdzar, A., Guervés, J.J.M., Neri, F., Preuss, M.,
Richter, H., Togelius, J., Yannakakis, G.N., eds.: EvoApplications (1). Volume 6624
of Lecture Notes in Computer Science., Springer (2011) 103-112

9. Merelo-Guervés, J.J., Mora, A.M., Cotta, C.: Optimizing worst-case scenario in
evolutionary solutions to the MasterMind puzzle. In: IEEE Congress on Evolu-
tionary Computation, IEEE (2011) 26692676

10. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer
(2003)

