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1 Introduction

We introduce the first model for the computational complexity analysis of decision problems
that arise in population-based metaheuristic design. In particular our hardness results could
be linked to the practical difficulties of designing multiparent recombination metaheuristics in
Evolutionary Algorithms and the path relinking recombination mechanisms that use multiple
“elite” solutions in Scatter Search and other memetic algorithms. We expect that the new
formalization will provide insights that will help to create more mathematically well founded
exact or heuristic recombination algorithms aimed to solve a variety of associated combinatorial
optimization problems. This has the similar spirit than the addition of behaviors had for
parameterizing recombination operators [1], which we can now see as a instantiation of a more
systematic and generic pattern for recombination design based on this new formulation of the
problem. An NP -hard combinatorial optimization problem known as Min Feature Set
(MFS) problem perfectly casts the issues involved in multiparent recombination algorithm
design. In this paper we discuss it within its parameterized complexity membership.

Recombination is undoubtedly the major component of population-based metaheuristics.
While its intuitive rôle has been always clear (to combine the “information” present in a set
of solutions to create new solutions), the guidelines for designing practical recombination op-
erators have experienced a remarkable evolution. First of all, nowadays it is increasingly more
accepted that instead of directly manipulating the syntactic units used to encode solutions,
the operator must extract relevant information from these solutions and recombine it (with
independence of whether solutions are encoded on the basis of these particular information
pieces or not). The Min Traveling Salesman (Min TSP) is a good example of this situa-
tion (the relevant information pieces would be “edges”). We will refer to these relevant “pieces
of information” as features. These features of the solutions are also known as “attributes” in
the Tabu Search and Scatter Search literature. We note, however, that in most of the cases
where the original problem is intractable, these features of the solutions generally correspond
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to predicates computable in polynomial-time on the size of the instance of the original problem.

After having identified the relevant features (let us suppose we managed to find all features
of a set of parent solutions in polynomial-time), the next and obviously important step is
deciding how we can use this information. While blind recombination operators that randomly
shuffle the set of features were more typical in the past, the addition of problem-domain
knowledge to guide the process is becoming increasingly popular. The terms hybrid GAs and
more generally memetic algorithms (MAs) [8] have been coined to denote these methods that
use smarter reproductive operators and periods of single-agent optimization.

2 Smart Multiparent Recombination

There exist a plethora of mechanisms to create smart recombination operators, e.g., [12]
but, up to this paper and to the best of our knowledge, no formalization and complexity results
for some of the decision problems involved in multi-parent recombination have been reported.
For instance, suppose we have a number of kpar ≥ 3 tours from a relatively large population of
size Pop À kpar. Let us also suppose that kpar−1 of them have lengths values which are below
the population’s average length value, but one has a value well above average (to strengthen
the argument we can even suppose that it is actually the longest tour in the population).
While the preservation of edges/features present in all m parents can still make some sense,
we notice that the preservation of edges/features present in the best kpar − 1 parents and
not present in the worst tour, seems also a valuable heuristic. Analogously, the avoidance of
a feature present in the worst tour and not present in the other kpar − 1 tours is certainly
another appealing heuristic for recombination. Associated behaviors can be usefully inferred
to guide the recombination. Behaviors can be understood as a description of a preferred search
direction within solution space or a model of what a good solution should have.

The previous example clearly depicts the existence of a more general problem: given a set
of parent solutions, find the selection of an optimal set of features to avoid and to preserve.
This problem already appears when we have parents that can be categorized in two different
classes. A natural measure of optimality is the cardinality of the set, since we expect that kpar

is already a small number in comparison with the size of the instance, then we only expect to
make a valid inference if the number of chosen features is also small.

In multi-parent recombination, we would wish to extract the behavioral pattern from the
features of the other parent solutions in the current population. Subsequently, the recombina-
tion of information is “guided” by this behavioral pattern. For example, rebel , obsequent , and
conciliator behaviors for two-parent recombination have been introduced in [1]. If we consider
two parents A = {0,0,1,0,1} and B = {1,0,1,1,0} (assume that A is a better solution than B),
the recombination using these parents as input and each type of behavior is as follows. The
‘x’ stands for a value that will be decided by a repair-based algorithm aimed at recovering
feasibility:

rebel {1 x x 1 0}
conciliator {x 0 1 x x}
obsequent {0 x x 0 1}

The names have been chosen with reference to the semantics of their preservation of information
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(allele values). The conciliator behavior is an example of a recombination procedure that
respects features present in both parents (every child it produces contains all the gene values
common to its two parents, i.e., those in A ∩ B). It shares the property of being a respectful
recombination as it is also the case of uniform crossover . In this case, since all alleles not in
A∩B have either the value ’0’ or ’1’, the recombination with conciliator behavior is said also to
be transmitting [11] (each gene value in the offspring is present in at least one of its parents).
Note that the first behavior (rebel) bias the construction of descendants away from the best
of the parents. The opposite is true for the second behavior (obsequent). Finally, the third
behavior (conciliator) implies looking for descendants in the region “in between” the parents.
The combined use of these behavior-based recombination operators has provided strong results
for the Min Number Partitioning and seems suitable to be used in connection with MAs.

In some sense, behavior-based recombination can sometimes be seen as a particular case
of multiparent recombination. The reason in some circumstances the behavioral pattern can
specify a complete feasible solution or set of solutions. In addition to the potential use of these
“behavioral” solutions as a source of “preferred” material, the main utility is in providing
meta-information on how to select actual information from the parents. To illustrate the
issue, given parents A and B as above, the rebel behavior can be understood from a multi-
parent recombination process. First, construct all the parents whose Hamming distance with
respect to A (which is assumed to be the best parent) is 1, respecting genes in A ∩B. Assign
to each of them an attractor status. The best parent A is given a repeller status, while the
worst parent B is given an attractor status. Then, identify the minimum cardinality feature
set that can explain the attractor and repeller nature of these parents.

0 0 1 0 1 repeller
1 0 1 0 1 attractor
0 0 1 1 1 attractor
0 0 1 0 0 attractor
1 0 1 1 0 attractor

In this example, a minimum feature set requires columns 1, 4, and 5. Having identified these
features, their values can for instance be copied from B (a more precise definition of the
Feature Set problem will be provided in next section).

No matter this connection, the relevance of finding an optimal feature subset to be regarded
in multi-parent recombination will be more explicit in the next section. The process will be
formalized as a combinatorial optimization problem. Then its complexity will be studied within
the paradigm of parameterized complexity [7]. The main result of this paper is to show that
while the general version of the multiparent recombination problem is not only “classically”
intractable but is parametrically intractable in general, there is some hope that restricted
versions of the problem might be fixed-parameter tractable (FPT). Some implications of this
fact for the applicability of behavior-based recombination as well as for a more rather general
form of multiparent recombination will be discussed.

3 Formalization of the Problem

Let us assume that the recombination operator is given a set of solutions to be recombined
and a set of behavioral patterns. As mentioned above, the main objective of this latter set is
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to provide hints on which information should be taken from each parent as well as to indicate
desirable/undesirable regions of the search space. This latter aspect can be addressed by
assigning a tag to each solution in either set indicating whether it constitutes an attractor
(1) or a repeller (0). The recombination process thus consists of determining which features
are responsible for the attractor/repeller status of each solution. Subsequently, the values
of these features (i.e., whether any of these features should be present or absent from the
descendants) is chosen either matching any of the attracting parents, or avoiding values in
any repellent parent. The first part of this definition of the recombination process perfectly
matches the combinatorial problem known as k-Feature Set, and the decision version is
here reformulated as follows:

• Instance: A set of m examples X = {x(1), x(2), . . . , x(m)}, such that for all i, x(i) =
{x(i)

1 , x
(i)
2 , . . . , x

(i)
n , t(i)} ∈ {0, 1}n+1, and an integer k > 0.

• Question: Does there exist a feature set S, S ⊆ {1, · · · , n}, with |S| = k and such that
for all pairs of examples i 6= j, if t(i) 6= t(j) then exists l ∈ S such that x

(i)
l 6= x

(j)
l ?

This problem can be shown to be NP -complete by a reduction from Vertex Cover [5].
This result would be commonly taken as a synonym of general intractability. However, such
a statement should be regarded very carefully for two related reasons. On one hand, it is
well-known that NP -hardness is often a worst-case scenario loosely related to what could
be called a typical or average situation of solving instances of interest. Secondly, and more
important, it is usually the case that these combinatorial problems have some kind of structural
parameter. A complexity analysis based on this parameter can show that the problem is
indeed perfectly tractable for a certain range of values for this parameter. The paradigm of
parameterized complexity [7] was precisely created for this kind of analysis. This paradigm
establishes a hierarchy of parameterized complexity classes FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆
W [t] ⊆ W [SAT ] ⊆ W [P ] that allows discriminating problems of different complexity according
to the chosen parameter. For example, problems in the FPT class (acronym that stands for
fixed-parameter tractable) have algorithms whose worst-case complexity is O(f(k)nc), where k
is the parameter, f(k) and arbitrary function of k only, and c is a constant. In contrast, the
complexity of solving problems in W [1] is O(f(k)ng(k)), substantially harder in general.

A prototypical example of the FPT class is the case of Vertex Cover: if the size of the
vertex cover is taken as a parameter, this problem can be shown to be in FPT [6], existing
algorithms for solving it in O(1.2852k + kn), i.e., linear in n for fixed k, and polynomial in n
for k ∈ O(log n). This is achieved by combining the results of [3] and the speed-up method of
[9]. Clearly, the k-Feature Set deserves a similar analysis. The next section is devoted to
this. We have recently proved [4] the following claim:

Theorem: The parameterized version of Feature Set in which the number of features
is taken as a parameter is W [2]-complete.

This is bad news for who may wish to implement an exact algorithm to optimally solve
the MFS problem that naturally arises in multiparent recombination. Not only the problem is
NP -hard, under the strong conjecture that W [2] 6= FPT , we can not assume that we can find
a fixed-parameter tractable algorithm for this problem. As a consequence the parameterized
complexity of multiparent recombination is W[2]-hard .
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4 FPT Subclasses of Multiparent Recombination Algorithms

The One-Out Feature Set problem (OOFSP) is a special case of the Feature Set
problem in which the Boolean column vector T = {t(1), t(2), · · · , t(m)} (i.e., the rightmost
column of X) has all identical values in all positions but one. Thus, the One-Out Feature
Set problem models situations in which we have m− 1 solutions that can be “attractors” and
one “repeller” solution or vice versa. We have also been able to prove that:

Proposition 1: The One-Out Feature Set problem is NP -complete and the One-Out
k-Feature Set is W [2]-complete.

We do have some good news, however. To identify amenable subclasses of OOFSP,
let us consider the partitioning of OOFSP instances according to the equivalence relation
MaxRowWeight . This equivalence relation groups into the same equivalence class those prob-
lem instances whose canonical form contains the same maximum number of 1s per row. Now,
the following result hold:

Proposition 2: The subclasses d-MaxRowWeight OOFSP are fixed parameter tractable if
d is bounded by a constant.

The proposition above provides us the description of a tractable subclass of OOFSP, via
reduction to d-Hitting Set. At present the best FPT algorithm for the 3-Hitting Set
problem is a linear time algorithm in the total number of features of complexity O(2.311k +n)
proposed by Niedermeier and Rossmanith [10].

5 Conclusions

We have recently shown that one formalization of the multi-parent recombination problem
is not fixed-parameter tractable unless a very unlikely condition holds. While this result
severely limits the conditions under which we expect to efficiently find an optimal selection of
features to be preserved or avoided from many parent solutions, our results and formalization
encourage more research to find fixed-parameter tractable special cases.

While we have proved that minimum feature-based multiparent recombination is W [2]-
hard in the general case, finding the smallest feature set for behavior-based and/or multiparent
recombination is more amenable whenever the set comprising the parents and the behavioral
solutions contains just one attractor or repeller, and some constraints regarding the number
of 1s per row are respected. Notice also that this FPT result is applicable to standard
multiparent recombination (i.e., without any additional behavioral pattern or partial solution)
if, for instance, we intend to generate solutions away from the worst parent (or, analogously,
towards the best parent). It must also be noted that by computing feature sets, macro-units of
information with context-free meaning are identified, and can be exchanged as a whole. This
is very important when the problem/representation exhibits high epistasis.

Future work will be directed to study the complexity of other parameterized versions of
multi-parent recombination. Other FPT results may allow the use of an arbitrary set of
attractors and repellers. These results may arise from the application of the notion of bounded
treewidth [2] to this problem.
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