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Abstract— This paper presents a statistical parameter anal-
ysis of the ant colony optimization algorithm that was imple-
mented to solve the bi-criteria military path-finding problem.
Three parameters have been studied using analysis of variance
(ANOVA) in order to identify their influence in the results and
the most suitable values for them: number of ants, number
of iterations and exploration/exploitation factor. In addition, a
mean analysis has been performed in order to complete the
conclusions obtained. The study has yielded optimal values for
the parameters under study, and some internal relationships
between them have been identified.

I. INTRODUCTION

Many metaheuristic or optimization algorithms need some
parameters to be set in order to obtain good solutions.
Usually, those values are ‘calculated’ in an empirical (or
heuristical) way. However, the best way is to apply some
statistical methods to obtain them and, in addition, a detailed
statistical analysis of the influence of every parameter has to
be made, so that the designer should pay most attention to the
parameter presenting values that yield the statistically most
significant performance changes.

In order to determine the most important parameters, and
to establish the most suitable values for such parameters (thus
obtaining an optimal operation), the ANOVA (ANalysis Of
the VAriance) [1] method has been used in this work. This
statistical tool, based on the analysis of the mean variance, is
widely used to obtain the significance and relative importance
of the parameters with respect to results, as well as suitable
values for them [2].

This paper extends previous research on the military unit
path-finding problem, which could be defined as finding the
best path for a military unit, from an origin to a destination
point in the battlefield, keeping a balance between route
speed and safety, considering the presence of enemies (which
can fire against the unit) and taking into account realistic
properties and restrictions. Both the speed and the safety of
the path are the two main criteria that a commander should
take into account inside a battlefield when the unit he leads
must to accomplish a mission (i.e. reach a target place).

To solve this problem we designed a Multi-Objective
Ant Colony Optimization Algorithm (MOACO [3]), named
hCHAC (presented in [4], [5], [6]). It is an Ant Colony
System, a type of ACO [7], [8] which allows to control the
balance between search exploration and exploitation. This
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algorithm has been adapted to deal with two objectives (see
[9] for an overview of multi-objective optimization).

Thus, in this work, we use statistical analysis and methods
such as ANOVA, to search for the best set of parameter
values for the hCHAC algorithm. The rest of the paper is
structured as follows: A brief problem and hCHAC algorithm
description is shown in section II. The parameters to study
are presented in section III. Section IV contains the basis
of the statistical method ANOVA. The statistical analysis
is commented in section V (experimental setup and conclu-
sions) and finally, in section VI the conclusions and the future
work in this line are exposed.

II. PROBLEM AND METHODOLOGY

A. Problem Definition

The problem is modelled considering that the unit has a
level of energy (health) and a level of resources, which are
consumed when it moves along the path, so the problem
objectives are adapted to minimize resource and energy
consumption. The battlefield is modelled as a grid of hexag-
onal cells with a cost in resources, which represents the
difficulty of going through it, and a penalization and a cost in
energy, which means the unit depletes its human resources
or vehicles suffer damage when crossing over the cell (no
combat casualties). Both costs depend on the cell type.
Besides, moving between cells with different heights also
costs resources (more if it goes up), and falling in a weapons
impact zone depletes energy. Figure 1 shows an example of
real world battlefield and the information layer associated to
it, which has been created using a custom-made application.

B. hCHAC Features

hCHAC means Compañı́a de Hormigas ACorazadas (Ar-
mored Ant Company) with the prefix ’hexa’ due to the grid
topology [4]. It is an Ant Colony System (ACS) [8] adapted
to deal with several objectives, that is, a Multi-objective Ant
Colony Optimization algorithm (MOACO) [9], [3]. In these
algorithms, the problem is transformed into a graph where
each node corresponds to a cell in the map and an edge
between two nodes is the connection between neighbor cells
in the map. Every edge has two weights associated which
are the costs in resources and energy that going through that
edge causes to the unit.

In every iteration, the ants separately build a complete path
(solution), between origin and destination points (if possible),
by travelling through the graph. To guide this movement they
use a State Transition Rule (STR) which combines two kinds
of information: pheromone trails (learnt information) and
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Fig. 1. Example Map (45x45 cells). The image on the right-hand side
is a real world picture showing a lake surrounded by some hills and lots
of vegetation. On the left-hand side it is shown its associated information
layer, where it can be seen the types corresponding to the same hexagons
in the other image. The different shades in the same color models height
(light color) and depth (dark color). There are two enemies labelled with
’E’, an origin point (in the top-left corner of the images) labelled with ’O’
and a destination point (in the bottom-right) labelled with ’D’. These labels
are black on the image at right and white on the left.

heuristic knowledge. ACSs are used to have better control
in the balance between exploration and exploitation by using
the characteristic parameter q0.

As previously said, the problem has two independent
objectives to minimize. These objectives are named f , min-
imization of the resources consumed in the path (fast path
or speed maximization) and s, minimization of the energy
consumed in the path (safe path or safety maximization).

hCHAC uses two pheromone matrices (τf ,τs) and two
heuristic functions (ηf ,ηs) (one per objective), a single
colony, and two STRs: (Combined State Transition Rule,
CSTR), similar to the one proposed in [10] and (Dominance
State Transition Rule, DSTR), which ranks neighboring cells
according to how many (of the neighbors) they dominate.
These rules use the parameter λ ∈ (0,1), which is user-
defined, and sets the importance of the objectives in the
search (which one has higher priority and how much). If
the user decides to search for a fast path, λ will take a value
close to 1, on the other hand, if he wants a safe path, it has
to be close to 0. This value is constant during the algorithm
for all ants, so hCHAC searches always in the same zone of
the space of solutions (the zone related to the chosen value
for λ). The local and global pheromone updating formulae
are based in the MACS-VRPTW algorithm proposed in [11],
[12], with some changes due to the use of two pheromone
matrices. Finally, there are two evaluation functions (used to
assign a global cost value to every solution found) named
Ff (minimization of resources consumption) and Fs (mini-
mization of energy consumption).

There is one Heuristic Function per objective which try
to guide the search considering the key factors for each
objective. They assign a value to every edge in the graph
that includes the heuristic knowledge of the problem, so that
for edge (i,j) they are:

ηf (i, j) =
ω

f

f

R(i, j)
+

ωd
f

d(j, T )
+

(
ω

h
f · H(j)

)
(1)

ηs(i, j) =
ωs

s

E(i, j)
+

ωd
s

d(j, T )
+

(
ω

h
s · H(j)

)
(2)

In Equation 1, R(i,j) is the cost in resources when moving
from node i to node j, d is the Euclidean distance between
two nodes (T is the target node of the problem) and H is
the visibility of a cell, which is a score (between 0 and 1),
being 1 when the cell is hidden to all the enemies (or to
all the cells in a radius when there are no enemies) and
decreasing exponentially when it is not (it depends on the
number of enemies or cells in a radius, if there are no
enemies, which can see the cell). ω

f
f , ωd

f and ωh
f are weights

to assign relative importance to the terms in the formula. In
this case, the most important term is the distance to target
point because, when searching for the fastest path, a straight
path will be better. The cost in resources is also important,
but less so; and finally the visibility has a small influence,
because it is disregarded almost completely in the case of
trying to follow the fastest path.

In Equation 2, E(i,j) is the cost in energy of moving
from node i to node j (but it only depends on j), d and
H are the same as the previous formula. ωs

s , ωd
s and ωh

s are
again weights to assign relative importance to the terms in
the formula, but in this case the main factor is visibility,
following by cost in energy (both are to be considered in a
safe path), and a little the distance to target point.

The Combined State Transition Rule (CSTR) is similar
to the pseudo-random-proportional rule used in ACS, but
adapted to deal with a two objectives problem by combining
the heuristic and pheromone information of both of them
(Equations 3 and 4).

In that rule, q0 ∈ [0,1] is the standard ACS parameter
and q is a random value in [0,1]. τf , τs and ηf , ηs as well
as the λ parameter are the previously commented. α and β

are the usual (in ACO algorithms) weighting parameters for
pheromone and heuristic information respectively, and Ni is
the current feasible neighborhood for the node i.

This state transition rule works as follows: when an ant
is building a solution path and is placed at one node i, a
random number q in [0,1] is generated, if q ≤ q0 the best
neighbor j is selected as the next node in the path (Equation
3). Otherwise, the algorithm decides which node is the next
by using a roulette wheel considering P(i,j) as probability
for every feasible neighbor j (Equation 4).

The other implemented rule is the Dominance State Transi-
tion Rule (DSTR), which is based on the dominance concept
of multi-objective problems (see reference [9]). It is defined
as follows (a dominates b):

a ≺ b if :
∀i ∈ 1, 2, ..., k | Ci(a) ≤ Ci(b) ∧ ∃j ∈ 1, 2, ...k | Cj(a) < Cj(b)

(5)

where a and b are two different vectors of k values (one per
objective) and C is a cost function for every component in
the vector. If it intends to minimize the cost and Equation 5
is true, then b is dominated by a.

Therefore, in our problem there are two cost functions to
evaluate the dominance between edges because they have
assigned pheromone and heuristic information, which are
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If (q ≤ q0)
j = arg max

j∈Ni

{
τf (i, j)

α·λ
· τs(i, j)

α·(1−λ)
· ηf (i, j)

β·λ
· ηs(i, j)

β·(1−λ)
}

(3)

Else

P (i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τf (i, j)
α·λ

· τs(i, j)
α·(1−λ)

· ηf (i, j)
β·λ

· ηs(i, j)
β·(1−λ)

∑
u∈Ni

τf (i, u)
α·λ

· τs(i, u)
α·(1−λ)

· ηf (i, u)
β·λ

· ηs(i, u)
β·(1−λ)

if j ∈ Ni

0 otherwise

(4)

combined in each function using the same parameters as in
CSTR formulae (Equations 3 and 4).

Cf (i, j) = τf (i, j)
α·λ

· ηf (i, j)
β·λ (6)

Cs(i, j) = τs(i, j)
α·(1−λ)

· ηs(i, j)
β·(1−λ) (7)

In addition, there is a function which uses the concept
presented in Equation 5 (which uses Equations 6 and 7 as
cost functions):

D(i, j, u) =

⎧⎨
⎩

1 if (i, j) ≺ (i, u)

0 otherwise
(8)

Finally, the dominance state transition rule is showed in
Equations 9 and 10. In this rule, Ni is again the current
feasible neighborhood for the node i. The rule chooses
the next node j in the path (when an ant is placed at
node i) considering the number of neighbors dominated for
every one. So it works like the previous CSTR, but taking
into account a dominance-based criteria for the max or the
probability roulette wheel.

As previously said, this rule applies multi-objective prob-
lem concepts which allow to compare nodes without using
an aggregative expression which combines information of
both objectives. The DSTR tends to be more ’exploratory’
(usually there will be some nodes with the same value for
P ), so it is necessary to use parameter values which tends
to exploitation in order to balance the search.

There are two Evaluation Functions (one per objective,
again) which are used to assign a global cost value to every
solution found by each ant. They consider not only the cost
in resources or energy of every edge in the path, but the
visibility of the cells too:

Ff (Sp) =
∑

n∈Sp

[R(n − 1, n) + ω
h
F,f · (1 − H(n))] (11)

Fs(Sp) =
∑

n∈Sp

[E(n − 1, n) + ω
h
F,s · (1 − H(n))] (12)

where Sp is the solution path to evaluate and n is a node in
that path. ωh

F,r and ωh
F,e are weights related to the importance

of visibility of the cells in the path. In Equation 11 its
importance will be small, since it is less important to hide in
a fast path; and it will be high in Equation 12 for the opposite
reason. The other terms are the same as in Equations 1, 2.

Since hCHAC is an ACS, there are two levels of
pheromone updating, local and global, which update two
matrices at each level. The equations for Local Pheromone

Updating (performed when a new node j is added to the path
that an ant is building) at time t are:

τ t
x(i, j) = (1 − ρ) · τ t−1

x (i, j) + ρ · τ0,x (13)

where x = f, s, ρ in [0,1] is the common evaporation factor
and τ0,x, τ0,s are the initial amounts of pheromone in every
edge for every objective, respectively:

τ0,f =
1

(nc · MR)
(14)

τ0,s =
1

(nc · ME)
(15)

with nc as the number of cells in the map to solve, MR

as the maximum amount of resources going through a cell
may require, and ME as the maximum cost in energy going
through a cell may produce (in the worst case).

The equations for Global Pheromone Updating at time t

are:

τ t
x(i, j) = (1 − ρ) · τ t−1

x (i, j) + ρ/Fx (16)

where x = f, s again. Only the solutions inside the Pareto
set (non-dominated solutions) will be updated when all ants
have finished building paths in every iteration. This update
depends on the cost of the solution found by the ant, given
by the evaluation functions (Equations 11 and 12).

III. PARAMETERS TO CONSIDER

Subsection (II-B) shows the formulae in which the param-
eters of the algorithm take part: α and β weight the terms in
the state transition rules, ρ which is used in the pheromone
update formulae, q0, the typical proportion factor of ACS
algorithms, and λ a user defined value.

Their influence on the algorithm behaviour (from the
search point of view) is:

• α: sets the importance of the pheromone trails (high
value means higher exploration component).

• β: sets the importance of the heuristic information (high
value means higher exploitation component).

• λ: sets the priority of each one of the two objectives.
• ρ: sets the evaporation rate of the trails (high values

means more exploration).
• q0: controls the balance between exploration and ex-

ploitation in the search.

Many works have analyzed the best values for the basic
parameters in traditional ACO algorithms (α, β and ρ), from
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If (q ≤ q0)

j = arg max
j∈Ni

⎧⎨
⎩

∑
u∈Ni

D(i, j, u) ∀j �= u

⎫⎬
⎭ (9)

Else

P (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ ∑

u∈Ni

D(i, j, u)

⎞
⎠ + 1

∑
k∈Ni

⎛
⎝

⎛
⎝ ∑

u∈Ni

D(i, k, u)

⎞
⎠ + 1

⎞
⎠

if j ∈ Ni ∧ j �= u ∧ k �= u

0 otherwise

(10)

Dorigo et al. [13] to more recent works [14]. All of them are
in agreement in using α=1, β=2 and ρ=0.1 as default values,
so we also consider those values in our experiments.

On the other hand, λ is a new parameter introduced in
some bi-criteria ACOs (as hCHAC is) to set the importance
of one objective over the other, so its influence is well known
[15] (and chosen by the user).

The last parameter (q0) is the only one (of the previously
commented) to be considered in this study, because its value
can drive the search by introducing a high exploration level
(search in many different zones of the space of solutions, but
yielding worse solutions), or considering a high exploitation
level (improving the solutions, but in a smaller zone of the
space), besides it is very flexible, and so, less predictable
to set a good value for it. In addition, there are two extra
parameters to take into account in an ACO algorithm: the
Number of Iterations (NIts), which usually introduces an
extra exploitation component (the solutions can be improved
more times), and the Number of Ants (NAnts), which corre-
sponds to an increasing in the exploration component (they
can explore more areas of the space of solutions). So these
are the three parameters to be analyzed in this paper.

IV. THE ANALYSIS OF VARIANCE

The theory and methodology of ANOVA was mainly
developed by R.A. Fisher during the 1920s [1], [16]. ANOVA
examines the effects of one or several quantitative or quali-
tative variables (called factors) on one quantitative response,
and is applied when the relation between factors and response
needs to be assessed. It is essentially a method of analyzing
the variance to which a response is subject, dividing it
into the various components corresponding to the sources
of variation, which can be identified.

The ANOVA method allows us to determine whether a
change in the responses is due to a change in a factor or
due to a random effect. Thus it is possible to determine the
variables with greatest effect on the method that is being
evaluated. The basic assumptions made to apply this statistics
tool satisfactorily [17] are that the observations obtained
should be mutually independent, distributed according to
a normal distribution, have the same variance (σ2), and
averages that can be expressed as a linear combination of
certain unknown parameters.

With ANOVA, it is tested a null hypothesis which con-
siders that all of the population means are equal against
the alternative hypothesis that there is at least one mean
that is not equal to the others. Once the sample mean and
variance for each level (value) of the main factor are founded,
and using these values, two different estimations of the
population variance are yielded. The first one is obtained by
finding the sample variance of the nk sample means from
the overall mean. This variance is referred to as the variance
among the means. The second estimation of the population
variance is found by using a weighted average of the sample
variances. This variance is called the variance within the
means.

The estimations which ANOVA offers are based on the
value of statistical F:

F =
ST

SR

(17)

where ST is the sum of the squares of the observations
according to the levels (values) of all the factors and SR

is the sum of the squares according to each level, both of
which are divided by the number of degrees of freedom (DF).
F is compared with the F-Snedecor distribution [18] with
the appropriate number of degrees of freedom, to obtain a
significance value (Sig. Level). If this level is lower than 0.05,
then the influence of the factor is statistically significant at
the confidence level of 95%.

Besides the ANOVA method, an analysis of the mean val-
ues is performed to decide the most suitable values for each
parameter. In those cases where evaluating the difference of
means between two groups is necessary, statistical t-Student
tests are used, as these can be used even on small samples.
This method calculates a value p that represents the error
probability if the null hypothesis is accepted, that is, the error
probability supposing that there is no difference between the
levels of the observations in the population.

V. STATISTICAL ANALYSIS OF HCHAC

A. Experimental Setup

In this section, the ANOVA statistical tool is applied to
determine whether the influence of a change in the parameter
values (levels) is significant in the costs of the solutions
yielded, to establish the most suitable values for these
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parameters (in order to obtain the best solutions as possible),
and to design a general set which yields good results in maps
with different configurations and associated difficulty.

hCHAC has been used to find the best path in several maps
[15], [4], [5], obtaining the following values heuristically:
α=1, β=2, ρ=0.1, and q0=0.4, which are their usual values
except for q0, which usually takes the value 0.1; in our case,
that makes the exploration component higher. The value for
λ is usually chosen by the user, in order to set the priority
of each one of the objectives. In this work it has been set as
λ=0.5, so both objectives have the same relevance.

A 1-Factor ANOVA have been applied, considering as
factor the configuration set of parameters, taking into account
as levels all the possible combinations of values of the three
parameters to analyze. They are shown in Table I.

The study includes two algorithms/methods: hCHAC using
the Combined State Transition Rule (CSTR) and hCHAC
using the Dominance-Based State Transition Rule (DSTR)
on two maps:

• PG Map: realistic Map based on an scenario of the
Panzer GeneralTMgame modelled using our application.
There are two enemies watching and firing against the
unit.

• VM Map: map designed for training where there are
mountains, valleys and two enemy units on watch.

Each method have been run 15 times, in each map and con-
sidering every one of the parameter configurations (levels of
the factor). Several dependent variables have been extracted
from the Pareto set as objects of the ANOVA method:

• Ff /Fs Fast: the cost in resources/energy corresponding
to the fastest solution (the solution with the smallest
cost in resources).

• Ff /Fs Safe: the cost in resources/energy corresponding
to the safest solution (the solution with the smallest cost
in energy).

• Ff /Fs Mean: the average cost in resources/energy of all
the solutions in the Pareto Set.

• SolsPS: the number of solutions in the Pareto Set.

TABLE I

LEVELS OF THE FACTOR OF ANOVA

Level q0 NIts NAnts Level q0 NIts NAnts

1 0.1 800 20 16 0.4 2200 20
2 0.1 800 50 17 0.4 2200 50
3 0.1 800 80 18 0.4 2200 80
4 0.1 1500 20 19 0.8 800 20
5 0.1 1500 50 20 0.8 800 50
6 0.1 1500 80 21 0.8 800 80
7 0.1 2200 20 22 0.8 1500 20
8 0.1 2200 50 23 0.8 1500 50
9 0.1 2200 80 24 0.8 1500 80

10 0.4 800 20 25 0.8 2200 20
11 0.4 800 50 26 0.8 2200 50
12 0.4 800 80 27 0.8 2200 80
13 0.4 1500 20
14 0.4 1500 50
15 0.4 1500 80

B. Results of the Statistical Analysis

The results of apply the 1-Factor ANOVA to the sets of
solutions yielded by each method (CSTR and DSTR), in each
map, are considered to determine their importance and the
most suitable parameter value. The tables shown are those
given by the SPSS (v.14) program.

The ANOVA tables show, for each source of the experi-
ment, the number of degrees of freedom (DF), the sum of
squares (SS), the mean of the squares (MS), the value of
the statistical F and its significance level (Sig.); if the latter
is smaller than 0.05, then the factor effect is statistically
significant at the level of confidence of 95%, but we also
consider that the value of F must be greater than 4.5-5 as
a criteria of relevance. These significant factors and their
significance levels are highlighted in boldface in the tables.
We also support our analysis by using Figure 2, where the
means for the experiments made using all the levels of the
configuration factor are shown.

In spite of the algorithm yields multi-objective solutions,
we analyze them separately in order to apply a 1-Factor
ANOVA. But, since the two objectives are independent,
usually a good fast path corresponds to a very unsafe one
and a safe path to a slow route. This is the reason why the
values are so different in the tables, so it can be seen that
usually the values for the cost in energy (Fs) are very high
in the search for fast paths and the other way round.

Firstly, Table II (top) contains the results of ANOVA
when considering the values yielded for the runs of the
experiments, applying the CSTR method, and using the 27
levels of factor in the PG map. In spite of all the significance
levels are lower than 0.05, there is no value for F greater
than 5, and only for FfMean is greater than 4.5. So it is
the source which has had more variation in its results relating
to the rest of the sources. We made an incremental 1-Factor
ANOVA study in order to find the configuration (the level)
which produces the greatest variation between the different
levels of the factor. It consist on several consecutive ANOVA
tests applied to a set of levels, beginning with the two first

TABLE II

PG MAP - CSTR (TOP) AND DSTR (BOTTOM) METHODS - ANOVA

RESULTS. SUM OF SQUARES (SS), NUMBER OF DEGREES OF FREEDOM

(DF), MEAN OF THE SQUARES (MS), VALUE OF THE STATISTICAL F AND

ITS SIGNIFICANCE LEVEL (SIG.) FOR EACH SOURCE.

Source SS DF MS F Sig.
Ff Fast 1969.27 26 65.24 4.2 0
FsFast 315832.91 26 12147.42 2.97 0
Ff Safe 2641.144 26 101.58 2.22 0
FsSafe 315832.91 26 12147.42 2.97 0
Ff Mean 1620.57 26 62.33 4.72 0
FsMean 135681.72 26 5218.53 3.54 0
SolsPS 243.04 26 9.35 1.83 0.01

Source SS DF MS F Sig.
Ff Fast 5377.74 26 206.84 20.77 0
FsFast 529753.74 26 20375.14 10.87 0
Ff Safe 59292.73 26 2280.49 26.86 0
FsSafe 3062.57 26 117.79 16.51 0
Ff Mean 23193.24 26 892.05 46.57 0
FsMean 91222.74 26 3508.57 4.09 0
SolsPS 66.4 26 2.55 1.41 0.09
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and adding one level each time (incrementing the degrees
of freedom). If there is a great variation in the results of
the test relating to the preceding trial (high value of F), we
consider that the last level of the factor is the most relevant.
So, in our incremental test, we found that the great variations
appears when we consider the last levels: 24,26 and 27, being
the greatest with the last one (F=4.7). This means that the
configuration: q0=0.8, NIts=2200 and NAnts=80, offers the
results with the highest variation relating to the rest of results
for FfMean.

In order to know if this set of values for the parameters is
good, we can look at Figure 2 (top-left) in the correspondent
values (the FfMean line) and notice that this level of the
factor yields the best solutions (in mean). Second, we study
the other state transition rule (DSTR method) on the same
map; results are shown in Table II (bottom). This time most
sources obtain a high value of F, with a significance level
of 0. So we made again the incremental test, but consid-
ering all these sources (FfFast,FsFast,FfSafe,FsSafe

and FfMean). In the test using the two first levels of the
factor, all the sources related to Fs have a high variation,
but this is not too relevant. However, there is a turning
point at level 12, where the variations begin to be significant
for FsSafe (F=8.6) and FfMean (F=6.63). The big gap
in variations appears when level 19 is included: all sources
initially commented take a high F value, being the highest,
the last one, corresponding again to the level 27. At level
19 and above q0=0.8, as seen in (Table I). If we look again
at Figure 2 (bottom-left), we realize that all the best mean
values (for all the sources) correspond to that value (the q0

values are separated by vertical lines).

TABLE III

VM MAP - CSTR (TOP) AND DSTR (BOTTOM) METHODS - ANOVA

RESULTS. SUM OF SQUARES (SS), NUMBER OF DEGREES OF FREEDOM

(DF), MEAN OF THE SQUARES (MS), VALUE OF THE STATISTICAL F AND

ITS SIGNIFICANCE LEVEL (SIG.) FOR EACH SOURCE.

Source SS DF MS F Sig.
Ff Fast 935.76 26 35.99 4.02 0
FsFast 60280.98 26 2318.5 3.61 0
Ff Safe 242.48 26 9.33 1.49 0.06
FsSafe 1463.53 26 56.29 2.86 0
Ff Mean 341 26 13.12 2.62 0
FsMean 14037.78 26 539.91 3.12 0
SolsPS 27.98 26 1.08 4.12 0

Source SS DF MS F Sig.
Ff Fast 4398.48 26 169.17 19.8 0
FsFast 88656.44 26 3409.86 9.9 0
Ff Safe 21643.78 26 832.45 17.39 0
FsSafe 108870.87 26 4187.34 23.18 0
Ff Mean 10686.67 26 411.03 30.24 0
FsMean 98576.14 26 3791.39 28.35 0
SolsPS 70.84 26 2.73 3.89 0.09

The same analysis has been made in the VM map, but in
this case, there is no interesting results when the algorithm
use the CSTR method (see Table III, up), because no one
of the statistical F’s take an enough high value, which
means there is not great variations in the results of the
experiments. Finally, the test on the VM map using the
DSTR method shows (in Table III, bottom) high values for

F (with a significance level of 0) for all sources, except for
SolsPS . The incremental study highlights that the greatest
variations arise when we introduce levels 19 to 27, being the
highest in the last level. Figure 2 (bottom-right) also shows
better solutions in that zone (note also the last configuration
yields the best results), which in turn implies that the most
appropriate value for q0 is 0.8 in this case.

Once the ANOVA method has been applied and inter-
preted, an analysis of the mean values is performed, by
researching the values of mean and standard deviation for
all the experiments in the two maps (Figure 2, results for
SolsPS have been omitted). The best values marked in the
graphs have been verified using t-Student statistical tests by
comparing the best value for each source (black square) with
the fourth best (not marked) and with the worse of the means.
Significant differences were found at the confidence level of
80% in most the cases between the best and the fourth best
(sometimes 90% or 95%) and always at the confidence level
of 95%-99% in the comparison between the best and the
worst, which means that differences are relevant.

Figure 2 for the PG map shows that four of the sources
(FfFast, FfSafe, FsSafe and FfMean) take their lowest
values in the area correspondent to levels 19 to 27 in CSTR
(top-left), and all of them in the case of DSTR (bottom-left).
This area is related to the value 0.8 for the parameter q0.
Specifically, the best values (black squares) are most of times
yielded for the last configuration. The exceptions occurs in
some of the cases related to the safety objective (FsFast

and FsMean cost), when the best solution is not chosen
depending on the value of Fs, so they have less relevance
for the conclusions of the work.

If we consider the two other parameters of the study:
NIts should take higher values to get better results (it is
reasonable). The exceptions occur in the safety objective
(Fs), because it has not been assigned the highest priority. On
the other hand, NAnts is more difficult to analyze, because
increasing the number of ants means a higher exploration
component, which works great if q0 takes high values (pro-
motes the exploitation). The exception appears when q0 takes
a low value (0.1), where sometimes increasing the number
of ants yields a worse solution. The reasons for this are
explained in section V-C.

As seen in Figure 2 for the VM map, the situation is
similar to the previous one. Four of the sources (FfFast,
FfSafe, FsSafe and FfMean) take their best values in
levels 19 to 27 in CSTR (q0=0.8) and FsFast and FsMean

for q0=0.1. Regarding the values for the two other param-
eters, the situation is the same as in the other map. Again,
t-Student statistical tests have been applied, getting the same
results as before (the differences between the results of the
experiments are anew relevant).

C. Conclusions of the Statistical Analysis

The most interesting configuration supported by the
ANOVA tests results corresponds to factor level 27: q0=0.8,
NIts=2200, NAnts=80, but this should be qualified by doing
an analysis of the values of means (Figure 2). Those values
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Fig. 2. Mean values for all the experiments considering each source for CSTR (top) and DSTR (bottom). The vertical lines divide the values for q0.
(Left) PG Map (Right) VM Map

are the best in most situations, but there are some others
where the best value for q0 is 0.1: those where the safety
has not the highest priority (FsFast and FsMean), and the
CSTR method is used. It is important to remark that both
maps have small safe zones, so it is difficult for solutions
move inside them if the security is not prioritized. In addition,
the CSTR rule promote the exploitation and the value q0 also
controls it. A high value for this parameter boost again the
exploitation, so it is difficult to find the safe zone in the
map and so, the cost in energy (which depends on safety)
is high. So the best solutions in this objective, when using
the CSTR method, are reached for low values of q0 (0.1),
which promote the exploration. On the other hand, the DSTR
method explores in a wider range of zones (solutions), so the
combination with a high value for q0 yields good results for
all the sources.

On the other hand, it is reasonable to consider as many
number of iterations (NIts) as possible, since the solution
can only improve, but the most delicate is the choice of the
best value for the number of ants (NAnts), since it implies
a higher exploration component, so high values works very

well when there is also a higher exploitation factor (high
q0). But in the previously commented exceptional cases,
which yield their best solutions for low values of q0, a low
number of ants is suggested, in order to avoid a very high
exploration component. It means that the parameters q0 and
NAnts are correlated and, in the CSTR method (where there
is an extra exploitation factor), they should take low values
for the sources with less priority and high values otherwise.

It is important to notice that these results also depend on
the map, because its associated ‘difficulty’ (the number of
possible safe and fast solutions) could determine whether a
higher exploitation or exploration component are needed. In
addition, these results also depend on the objectives with a
higher priority (they are be better for these objectives), so
we should take into account the results of the Mean source
with a higher level of relevance. The last factor to consider is
the influence of λ parameter in the results, because this value
drives the search to a determinate zone of the solutions space
(related to the objective with higher priority) and yielding
worse results for the other objective. In this study we use
λ=0.5, to set the same relevance to both objectives.
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Finally, as a summary:

• CSTR method: the best values for the parameters would
be: q0=0.8, NIts=2200, NAnts=80 for the objectives
with higher priority (FfFast and FsSafe), and, in
these maps (which apparently have more possible fast
paths than safe paths), for FfMean. The best for
the safe objective (when it does not have the highest
priority) would be: q0=0.1, NIts=—, NAnts=—, using
a high value in iterations and low in ants, or the other
way around.

• DSTR method: the best values would always be: q0=0.8,
NIts=2200, NAnts=80, and a smaller number of ants if
safety gets a lower priority (FfSafe and FsMean).

As a clarification, these values would yield good perfor-
mance in most maps (if the characteristics and size are close
to these ones), but they should be chosen according to the
difficulty of the map, making a prior study to determine if it
is globally a ‘safe’ or a ‘fast’ map.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have made an statistical analysis of
the influence of the parameters in the performance of a
MOACO algorithm (named hCHAC), which finds the fastest
and safest path (with relative importance set by the user) for a
simulated military unit in a realistic battlefield (real terrains,
enemies, visibility constraints, weapons impact zones). We
have considered two different state transition rules (CSTR
and DSTR), which is equivalent to two different approaches,
and we have run the experiments in two different maps. We
have applied the 1-Factor ANOVA statistical method, and we
have completed the analysis using an analysis of mean (also
applying t-Student test when needed) for all the experiments.

Three parameters have been studied: q0, proportion factor
of ACS, which determines the balance between exploration
and exploitation in the search; the Number of Iterations
(NIts), which usually promotes the exploitation (the solu-
tions can be improved more times); and finally, the Number
of Ants (NAnts), which usually promotes the exploration
(they can explore more areas of the space of solutions).

We have reached some interesting conclusions and some
relations between them have been found (q0 is correlated with
NAnts in some cases when using the CSTR). In addition,
we have identified the best set of values for all of them
in these maps and for the two methods, but we also have
discovered that some of these values depends on the objective
with higher priority and on the features and ’difficulty’ of the
map (the number of possible safe and fast solutions).

Future work will study general parameters such as α, β

and ρ, as well as other parameters particular to our algorithm.
We are also working on a method to automatically compute
the difficulty of a map, so that parameter settings can be
adjusted to it.
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