
Memetic Algorithms and Memetic Computing

Optimization: A Literature Review

Ferrante Neri∗

Department of Mathematical Information Technology, P.O. Box 35 (Agora), 40014

University of Jyväskylä, Finland, Tel +358-14-260-1211, Fax +358-14-260-1021

Carlos Cotta

Departamento de Lenguajes y Ciencias de la Computación, Escuela Técnica Superior de
Ingenieŕıa Informática, Universidad de Málaga, Campus de Teatinos, 29071 Málaga,

Spain

Abstract

Memetic Computing is a subject in computer science which considers com-
plex structures such as the combination of simple agents and memes, whose
evolutionary interactions lead to intelligent complexes capable of problem-
solving. The founding cornerstone of this subject has been the concept of
Memetic Algorithms, that is a class of optimization algorithms whose struc-
ture is characterized by an evolutionary framework and a list of local search
components.

This article presents a broad literature review on this subject focused
on optimization problems. Several classes of optimization problems, such
as discrete, continuous, constrained, multi-objective and characterized by
uncertainties, are addressed by indicating the memetic “recipes” proposed
in literature. In addition, this article focuses on implementation aspects
and especially the coordination of memes which is the most important and
characterizing aspect of a memetic structure. Finally, some considerations
about future trends in the subject are given.

Key words: Memetic Computing, Evolutionary Algorithms, Memetic

∗Corresponding author
Email addresses: ferrante.neri@jyu.fi (Ferrante Neri ), ccottap@lcc.uma.es

(Carlos Cotta)

Preprint submitted to Swarm and Evolutionary Computation November 23, 2011



Algorithms, Computational intelligence Optimization

1. Introduction

According to the philosophical theory of Richard Dawkins, see [42], hu-
man culture can be decomposed into simple units namely memes. Thus a
meme is a “brick” of the knowledge that can be duplicated in human brains,
modified, and combined with other memes in order to generate a new meme.
Within a human community, some memes are simply not interesting and then
will die away in a short period of time. Some other memes are somewhat
strong and then, similar to an infection, will propagate within the entire
community. The memes can also undergo slight modifications or combine
with each other thus generating new memes which have stronger features
and are more durable and prone to propagation. An example of this concept
is in the gossip propagation within human communities. Some gossips are,
de facto, more interesting than others and persist over time reaching all the
individuals of the community. In addition, gossips can be subject to slight
(or sometimes major) modifications. Sometimes these modifications make
these gossips more interesting and thus more durable and capable to propa-
gate. This example of life-time learning is also interesting in order to note a
major difference between the evolution and transmission of memes and that
of their biological counterpart, i.e., genes. The latter are not modified during
the life-time of the individual, and are transmitted as they were inherited (of
course, genetic information is mixed during sexual reproduction and can be
subject to mutation as well, but this is a different process not alike to life-
time learning). On the contrary, the former are much more plastic and to
some extent adhere to a Lamarckian model of evolution, which also explains
their comparatively faster rate of adaptation with respect to biological genes.

This charming interpretation of human culture inspired Moscato and Nor-
man in late ’80s, see [143], to define Memetic Algorithms (MAs). In their
early definition, MAs were a modification of Genetic Algorithms (GAs) em-
ploying also a local search operator for addressing the Travelling Salesman
Problem (TSP). While in optimization the employment of hybrid algorithms
was already in use, a novel and visionary perspective to optimization algo-
rithms in terms of memetic metaphor has been given in [141]. After their
earliest definition, MAs have been looked at in a sceptical way by the com-
puter science community. A massive diffusion, in scientific papers, of MAs
occurred only ten years after their definition. One important reason is the

2



diffusion of the No Free Lunch Theorem (NFLT), see [228]. The NFLT proves
that the average performance of any pair of algorithms A and B across all
possible problems is identical. Thus, if an algorithm performs well on a
certain class of problems, then it necessarily pays for that with degraded
performance on the set of all remaining problems, as this is the only way
that all algorithms can have the same performance averaged over all func-
tions. Strictly speaking, the proof of NFLT is made under the hypothesis
that both the algorithms A and B are non-revisiting, i.e., the algorithms
do not perform the fitness evaluation of the same candidate solution more
often than once during the optimization run. Although this hypothesis is de
facto not respected for most of the computational intelligence optimization
algorithms, the concept that there is no universal optimizer had a significant
impact on the scientific community.

For decades, researchers in optimization attempted to design algorithms
having a superior performance with respect to all the other algorithms present
in literature. This approach is visible in many famous texts published in those
years, e.g., [64]. After the NFLT diffusion, researchers in optimization had
to dramatically change their view about the subject. More specifically, it has
become important to understand the relationship between the components
of the proposed algorithm A and a given optimization problem f . Thus, the
problem f became the starting point for building up a suitable algorithm.
The optimization algorithm needs to specifically address the features of the
problem f .

Since MAs were not proposed as specific optimization algorithms, but as a
broad class of algorithms inspired by the diffusion of the ideas and composed
of multiple existing operators, the community started showing an increas-
ing attention towards these algorithmic structures as a general guideline for
addressing specific problems. MAs have been successfully applied, in recent
years, to solve complex real-world problems and displayed a high perfor-
mance in a large number of cases. For example, in [86] an ad-hoc Differential
Evolution (DE) is implemented for solving the multisensor fusion problem;
in [187] DE based hybrid algorithm is designed to address an aerodynamic
design problem; in [50], an optimization approach is given with reference to
the study of a material structure; in [23, 154] a computational intelligence
approach is designed for a control engineering problem while in [158, 157] a
medical application for Human Immunodeficiency Virus (HIV) is addressed;
in [213] a DE based hybrid algorithm is implemented to design a digital
filter for paper production industry; in [208] a parallel memetic approach

3



is proposed for solving large scale problems; in [164] an aerodynamic design
problem is considered for the application of the meta-Lamarckian learning; in
[160] MC is applied for atomic and molecular structural problems; in [77, 205]
the crucial problem of balance between global and local search is analyzed
in the context of multi-objective optimization; in [160] a novel class of struc-
tured population for MAs, namely Cellular MAs, is defined. Scheduling and
planning problems are solved in [74, 113, 206]. In [1] a memetic approach
is proposed for a neural network training in the context of a medical appli-
cation. Other examples of memetic approaches are given in [170, 111] for
robust design and in [207, 208] for a NP-hard problem.

In order to properly address the question What is a MA?, it is important
to mention the definition of MA related to its implementation features [71].
In this case, MAs are defined in the following way.

Memetic Algorithms are population-based metaheuristics com-
posed of an evolutionary framework and a set of local search
algorithms which are activated within the generation cycle of the
external framework.

The development of modern techniques which are still inspired by the
cultural diffusion but do not fall within the definition of MAs suggested the
concept of Memetic Computing (MC). The latter is a broad subject defined in
[165], where MC is defined as “...a paradigm that uses the notion of meme(s)
as units of information encoded in computational representations for the
purpose of problem solving”. In other words, part of the scientific commu-
nity tried to extend the concept of meme for problem solving, see [154], to
something broader and more innovative. The fact that ad-hoc optimization
algorithms (that is, knowledge-augmented or problem-specific algorithms)
can efficiently solve given problems is a well-known result from literature.
On the other hand, the ultimate goal in artificial intelligence is the genera-
tion of autonomous and intelligent structures. In computational intelligence
optimization, the goal is the automatic detection of the optimal optimiza-
tion algorithm for each fitness landscape, or, in other terms, the on-line (i.e.,
during run-time) automatic design of optimization algorithms. MC can be
seen then as a subject which studies complex structures composed of simple
modules (memes) which interact and evolve adapting to the problem in order
to solve it. This view of the subject leads to a more modern definition of MC
given in [149].

4



Memetic Computing is a broad subject which studies complex and
dynamic computing structures composed of interacting modules
(memes) whose evolution dynamics is inspired by the diffusion of
ideas. Memes are simple strategies whose harmonic coordination
allows the solution of various problems.

In order to better highlight the difference between MAs and MC, it can
be thought that with the term MA we refer to algorithms having some spe-
cific features, i.e., population, generational structure, local search within the
generation. On the other hand, MC is a subject which studies algorithmic
structures composed of multiple operators. For example, an algorithm which
perturbs a single solution by means of adaptively coordinated multiple search
operators is not an MA but still is a MC approach. In this light, MAs should
be seen as a cornerstone and founding subset of MC. The main difference be-
tween the two concepts (MC and MA) is the algorithmic philosophy behind
them. While MA is an optimization algorithm, an MC approach is a linked
collection of operators without any prefixed structure but with the only aim
of solving the problem.

This article gathers and summarizes the main research results in the field
of MAs and MC optimization. This literature review is structured in three
macro-sections. Section 2 shows the structure of a classical MA. Section 3
gives a literature review of MA/MC implementations in order to address spe-
cific problem features, such as constrained problems, high computational cost
and multi-objective problems. Section 4, at an abstract level, discusses the
results in terms of implementation features for the coordination of multiple
components. Finally, Section 5 gives the conclusion of this work.

2. General Structure of Memetic Algorithms

In order to define the notation used in this article, let us consider a
solution x, i.e., a vector of n design variables (x1, x2, . . . , xi, . . . , xn). Each
design variable xi can take values from a domain Di (e.g., an interval [xL

i , x
U
i ]

if variables are continuous, or a certain collection of values otherwise). The
Cartesian product of these domains for each design variable is called the
decision space D. Let us consider a set of (either deterministic or stochastic)
functions f1, f2, . . . , fm defined in D and returning some values. Under these
conditions, the most general statement of an optimization problem is given

5



by the following formulas:

max /min fm m = 1, 2, . . . ,M
subject to gj (x) 6 0 j = 1, 2, . . . , J

hk (x) = 0 k = 1, 2, . . . , K
xL
i 6 xi 6 xU

i i = 1, 2, . . . , n

(1)

where gj and hk are inequality and equality constraints, respectively.
If m = 1 the problem is single-objective, while for m > 1 the problem is

multi-objective. The particular structure of the functions gj and hk in each
particular problem determines its constrainedness, which is often related to
the hardness of its resolution. Finally, the continuous or combinatorial nature
of the problem is given by the fact that D is a discrete or dense set. In other
words, all the problems considered in this article can be considered as specific
cases of the general definition in equations (1).

MAs address the problem in (1) by means of a specific algorithmic struc-
ture which can be seen as an iterated sequence of the following operations,
aimed at having a population (pool) of tentative solution converge (i.e.,
evolve from an initial high-diversity, scattered state to a low-diversity, more
homogeneous state) towards an optimal (or quasi-optimal) solution:

1. Selection of parents: Selection aims to determine the candidate so-
lutions that will survive in the following generations and be used to
create new solutions. Selection for reproduction often operates in re-
lation with the fitness (performance) of the candidate solutions; Here,
performance typically amounts to the extent to which the solution max-
imizes/minimizes the objective function(s) fm (although in some cases
fitness may be measured by means of a different guiding function, re-
lated to the objective function but not identical, e.g., in the SAT prob-
lem the objective function is binary –satisfied/unsatisfied– yet the most
common fitness function is maximizing the number of satisfied clauses).
High quality solutions have thus more chances to be chosen. For exam-
ple, roulette-wheel and tournament selections can be applied. Selection
can also be done according to other criteria such as diversity. In such a
case, only spread out individuals are allowed to survive and reproduce.
If the solutions of the population are sufficiently diversified, selection
can also be carried out randomly.

2. Combination of parents for offspring generation: Combination aims to
create new promising candidate solutions by blending existing solutions

6



(parents), a solution being promising if it can potentially lead the op-
timization process to new search areas where better solutions may be
found.

3. Local improvement of offspring: The goal of local improvement is to
improve the quality of an offspring as far as possible. Candidate solu-
tions undergo refinement which correspond the life-time learning of the
individuals in the original metaphor of MAs.

4. Update of the population: This step decides whether a new solution
should become a member of the population and which existing solu-
tion of the population should be replaced. Often, these decisions are
made according to criteria related to both quality and diversity. Such
a strategy is commonly employed in methods like Scatter Search and
many Evolutionary Algorithms. For instance, a basic quality-based up-
dating rule would replace the worst solution of the population while a
diversity-based rule would substitute for a similar solution according to
a distance metric. Other criteria like recency (age) can also be consid-
ered. The policies employed for managing the population are essential
to maintain an appropriate diversity of the population, to prevent the
search process from premature convergence (i.e., too fast convergence
towards a suboptimal region of the search space), and to help the al-
gorithm to continually discover new promising search areas.

As mentioned above, MAs blend together ideas from different search
methodologies, and most prominently ideas from local search techniques and
population-based search. Indeed, from a very general point of view a ba-
sic MA can be regarded as one (or several) local search procedure(s) acting
on a pool pop of |pop| > 2 solutions which engage in periodical episodes of
cooperation via recombination procedures. This is shown in Algorithm 1.

Let us analyze this template. First of all, the Initialize procedure is
responsible for producing the initial set of |pop| solutions. Traditional evolu-
tionary algorithms usually resort to simply generating |pop| solutions at ran-
dom (systematic procedures to ensure a good coverage of the search space are
sometimes defined, although these are not often used). Opposed to this, it
is typical for MAs to attempt to use high-quality solutions as starting point.
This can be done either using a more sophisticated mechanism (for instance,
some constructive heuristic) to inject good solutions in the initial population

7



function BasicMA (in P : Problem, in par: Parameters): Solution;
begin

pop ← Initialize(par, P );
repeat

newpop1 ← Cooperate(pop, par, P );
newpop2 ← Improve(newpop1, par, P );
pop← Compete (pop, newpop2);
if Converged(pop) then

pop← Restart(pop, par);
end

until TerminationCriterion(par);
return GetNthBest(pop, 1);

end

Algorithm 1: A Basic Memetic Algorithm

[203], or by using a local-search procedure to improve random solutions (see
Algorithm 2).

function Initialize(in par: Parameters, in P : Problem):
Bag{Solution};
begin

pop← ∅;
for j ← 1 to par.popsize do

i← RandomSolution(P );
i← LocalSearch (i, par, P );
pop← pop ∪ {i};

end

return pop;
end

Algorithm 2: Injecting high-quality solutions in the initial population.

As for the TerminationCriterion function, it typically amounts to check-
ing a limit on the total number of iterations, reaching a maximum number
of iterations without improvement, having performed a certain number of
population restarts, or reaching a certain target fitness.

The procedures Cooperate and Improve constitute the core of the MA.
Starting with the former, its most typical realization arises from the use of two
operators for selecting solutions from the population and recombining them.

8



Table 1: Parameters used in the algorithmic description of MAs

parameter interpretation
popsize size of the population (number of solutions in pop)
numop number of operators used
numapps array of size 1..numop indicating the number of times

each operator is applied in the main loop.
arityin array of size 1..numop indicating how many input solu-

tions are required by each operator.
arityout array of size 1..numop indicating how many output so-

lutions are produced by each operator.
op array of size 1..numop comprising the actual operators
preserved number of solutions in the current population that are

preserved when a restart is made.

function Cooperate (in pop: Bag{Solution}, in par: Parameters, in P :
Problem): Bag{Solution};
begin

lastpop← pop;
for j ← 1 to par.numop do

newpop← ∅;
for k ← 1 to par.numappsj do

parents← Select (lastpop, par.arityinj);
newpop← newpop ∪ ApplyOperator (par.opj , parents, P );

end

lastpop← newpop;
end

return newpop;
end

Algorithm 3: The pipelined Cooperate procedure.

Of course, this procedure can be easily extended to use a larger collection of
variation operators applied in a pipeline fashion [142]. As shown in Algorithm
3, this procedure comprises numop stages, each one corresponding to the
iterated application of a particular operator opj that takes arityinj solutions
from the previous stage, generating arityoutj new solutions.

As to the Improve procedure, it embodies the application of a local search
procedure to solutions in the population. Notice that in an abstract sense

9



a local search method can be modelled as a unary operator (we adhere here
to a strict definition of local search as a procedure for iteratively exploring
the surroundings/neighborhood of a certain solution at any given time step),
and hence it could have been included within the Cooperate procedure above.
However, local search plays such an important role in MAs that it deserves
separate treatment. Indeed, there are several important design decisions
involved in the application of local search to solutions, i.e., to which solutions
should it be applied, how often, for how long, etc. See also next section.

Next, the Compete procedure is used to reconstruct the current popula-
tion using the old population pop and the population of offspring newpop2.
Using the terminology commonly used by the evolution strategy [185, 190]
community, there exist two main possibilities for this purpose: the plus strat-
egy and the comma strategy. The non-elitist nature of the latter makes
it less prone to stagnation [3], being the ratio |newpop|/|pop| ≃ 6 a cus-
tomary choice [4]. The generation of a large number of offspring can be
somewhat computationally expensive if the fitness function is complex and
time-consuming though. A suitable alternative in this context is using a plus
strategy with a low value of |newpop|, an elitist variant which is strongly re-
lated to the so-called steady-state replacement strategy in GAs [225]. While
this option usually provides a faster convergence to high-quality solutions,
premature convergence to suboptimal regions of the search space can take
place, and hence corrective measures may be required. This leads to the
last component of the template shown in Algorithm 1, namely the restarting
procedure.

First of all, it must be decided whether the population has degraded
or has not, using some measure of information diversity in the population
(e.g., average Hamming distance or Shannon’s entropy [41] in the discrete
case, or some dispersion measure in the continuous case). Once the diversity
indicator provides a value below a suitable threshold, the population can be
regarded as degenerate and the restart procedure is called. Again, this can
be implemented in a number of ways. A very typical strategy is to keep
a fraction of the current population, generating new (random or heuristic)
solutions to complete the population, as shown in Algorithm 4. The term
random-immigrant strategy [32] has been coined to describe this procedure.
Alternatively, a strong or heavy mutation operator can be activated in order
to drive the population away from its current location in the search space,
e.g., see [21, 22, 53, 54].

On the basis of the definitions of MA and MC reported above, while an

10



function Restart (in pop: Bag{Solution}, in par: Parameters, in P :
Problem): Bag{Solution};
begin

newpop← ∅;
for j ← 1 to par.preserved do

i← GetNthBest(pop, j);
newpop← {i};

end

for j ← par.preserved+ 1 to par.popsize do

i← RandomSolution(P );
i← LocalSearch (i, par, P );
newpop← {i};

end

return newpop;
end

Algorithm 4: The Restart procedure.

algorithmic characterization of MA can be given, any MC specific outline
would be restrictive. In other words, while MA is a class of optimization
algorithms having specific implementation features, MC is a subject and an
implementation philosophy. On one hand, the concept of MC appears ex-
cessively vague as all the computer science implementations if not most of
the natural sciences and engineering can be seen as a subset of MC. If we
look at MC in a sceptical way, it may appear as an empty box or a label to
put on every single human thought. On the other hand, the importance of
MC is in the unifying role taken and the novel perspective that MC suggests
to computer science community. MC considers algorithms as evolving struc-
tures composed by cooperative and competitive operators. This perspective
suggests the automatic generation of algorithms by properly combining the
operators (memes). We may think that a computational device stores a set
of operators and combines (some of) them according to a certain criterion
to efficiently address a problem. This will be a firther step with respect to
adaptive and self-adaptive systems in MAs, see Section 4, and compose the
next level of computational intelligence.

11



3. Memetic Computing Specific Implementations

This section gives a literature review about MA/MC implementations
for various classes of optimization problems. More specifically the present
section is divided into the following subsections:

• MAs in discrete optimization

• MAs in continuous optimization

• MAs in multimodal optimization

• MAs in constrained optimization

• MAs in multi-objective optimization

• MAs in the presence of uncertainties

3.1. MAs in discrete optimization

Discrete optimization is the search for the configuration with highest per-
formance (optimal solution) among a set of finite candidate configurations.
There are several ways to describe a discrete optimization problem. In its
most general form, it can be defined as a collection of problem instances,
each being specified by a pair (S, f) [176], where S is the a finite set of can-
didate configurations, defining the decision space; f is the cost or objective
function, given by a mapping f : S → Q.

Unlike continuous problems, discrete optimization can in principle be
solved by enumeration, i.e., by exhaustively counting and evaluating all the
candidate solutions. In addition, discrete problems cannot utilize the gradi-
ent for searching the directions as a minimum distance between two solutions
is set.

Discrete problems and more specifically the Travelling Salesman problem
(TSP) have been the earliest application domains for MAs, see [143]. Im-
plementations of hybrid algorithms were in use even before the term MA
was coined. In [14] an early attempt to hybridize an evolutionary framework
with local search for solving the TSP has been presented. Subsequently, still
with reference to the TSP, in [66] a visionary approach which theorizes the
integration of extra components and especially crossover techniques within
an evolutionary framework is presented. A similar approach is given in [83].
Another related technique, which can also be considered as an early memetic

12



approach is the so called genetic edge recombination, see e.g., [123]. More re-
cently, actual MAs (which fit in the definition above) have been implemented
to address the TSP; in [55, 56, 131], the role and effect of local search within
evolutionary algorithms is extensively studied. Large scale TSP is studied
in [129]. Comparative studies about the performance of MAs on TSP are
reported in [126, 127, 128, 136].

Other combinatorial problems have also been tackled by MAs; for ex-
ample in [130, 134] the Quadratic Assignment Problem (QAP), in [132] and
[135] the Graph Bi-partitioning Problem, in [227] the supply chain problem,
and in [51] the communication spanning tree.

The solution of an optimization problem in a discrete space (as well as for
continuous problems) must be achieved by efficiently balancing the exploita-
tion and exploration. Exploitation is the action, performed by the algorithm,
of intensively analyzing a portion of the decision space in order to quickly
enhance upon the best current solution while exploration is the action which
leads to the detection of a candidate solution located in an unexplored ar-
eas of the decision space. The dual concept of exploitation and exploration
covers two fundamental and complementary aspects of any effective search
procedure. This concept is at the basic of optimization and has been termed
under the names intensification and diversification, respectively, introduced
within the Tabu Search (TS) methodology [61].

MA implementations for discrete optimization problems essentially tend
to combine searchers for exploring the entire decision space and searchers
which focus on portions of the decision space. Local search in MAs for
discrete optimization performs an intensive exploitation of the search space
attempting to enhance the performance by slightly modifying some design
variables. The problem of how often and how the local search is implemented
is a fundamental task which has been addressed in the literature in various
ways. For example, in [70] an analysis of the frequency and application point
of the local search, in the context of continuous optimization, is carried out.
This analysis has been extended in [107] for combinatorial optimization prob-
lems and introduced the concept of sniff (or local/global ratio) for balancing
genetic and local search.

Another crucial point in combinatorial optimization is the choice of neigh-
borhood while performing the local search. An heuristic procedure for per-
forming the fitness landscape analysis and thus the neighborhood (and local
search) selection is reported in [133]. The selection of the most convenient
neighborhood structures within local search is investigated in [99].

13



3.2. MAs in continuous optimization
When a MA is designed two of the most relevant features to take into

account are 1) the cost of local search; 2) the underlying search landscape. In
order to come up with efficient memetic solvers, in continuous optimization,
these features must be tackled differently with respect to the discrete case.

Regarding the cost of local search, in many combinatorial domains it is
frequently possible to compute the fitness of a perturbed solution incremen-
tally, e.g., let x be a solution and let x′ ∈ N (x) be a neighboring solution;
then the fitness f(x′) can be often computed as f(x′) = f(x) + ∆f(x, x′),
where ∆f(x, x′) is a term that depends on the particular perturbation done
on x and is typically efficient to compute (much more efficiently that a full
fitness computation). For example, in the context of the TSP and the 2-opt
neighborhood, the fitness of a perturbed solution can be computed in con-
stant time by calculating the difference between the weights of the two edges
added and the two edges removed. This is much more difficult in the context
of continuous optimization problems, which are often non-linear and hard to
decompose as the sum of linearly-coupled terms. Hence local search usually
has to resort to full fitness computations.

Concerning the underlying search landscape, it should be observed that
the interplay among the different search operators used in memetic algo-
rithms (or even in simple evolutionary algorithms) is a crucial issue for
achieving good performance in any optimization domain. When tackling
a combinatorial problem, this interplay is a complex topic since each oper-
ator may be based on a different search landscape. It is then essential to
understand these different landscape structures and how they are navigated;
this concept is also known ad the “one operator, one landscape” view and is
expressed in depth in [85]. In the continuous domain the situation is some-
what simpler, in the sense that there exists a natural underlying landscape
in D (typically D = Qn), namely that induced by distance measures such as
Euclidean distance. In other words, in continuous optimization, the set of
points which can be reached by the application of unary operators to a start-
ing point may be represented by closed spheres of radius ǫ. On the contrary,
the set of points reachable by recombination operators (recall for example
the BLX−α operator) can be visualized by means of a hypercubes within
the decision space. The intuitive imagery of local optima and basins of at-
traction naturally fits here, and allows the designer to exert some control on
the search dynamics by carefully adjusting the intensification/diversification
properties of the operators used.

14



These two issues mentioned above have been dealt in the literature on
memetic algorithms for continuous optimization in different ways. Starting
with the first one (the cost of local search), it emphasizes the need for care-
fully selecting when and how local search is applied (obviously this is a general
issue, also relevant in combinatorial problems, but definitely crucial in con-
tinuous ones). This decision-making is very hard in general [106, 202], but
some strategies have been put forward in previous works. A rather simple one
is to resort to partial Lamarckianism [75] by randomly applying local search
with probability pLS < 1. Obviously, the application frequency is not the
only parameter that can be adjusted to tune the computational cost of local
search: the intensity of local search (i.e., for how long is local improvement
attempted on a particular solution) is another parameter to be tweaked. This
adjustment can be done blindly (i.e., prefixing a constant value or a varia-
tion schedule across the run), or adaptively. For example, Molina et al. [139]
define three different solution classes (on the basis of fitness) and associate
a different set of local-search parameters for each of them. Related to this,
Nguyen et al. [161] consider a stratified approach, in which the population
is sorted and divided into n levels (n being the number of local search appli-
cations), and one individual per level is randomly selected. This is shown to
provide better results than random selection. We refer to [5] for an in-depth
empirical analysis of the time/quality tradeoffs when applying parameterized
local search within memetic algorithms. This adaptive parameterization has
been also exploited in so-called local-search chains [140], by saving the state
of the local-search upon completion on a certain solution for later use if the
same solution is selected again for local improvement. Let us finally note
with respect to this parameterization issue that adaptive strategies can be
taken one step further, entering into the realm of self-adaptation.

As to what the exploitation/exploration balance regards, it is typically
the case that the population-based component is used to navigate through the
search space, providing interesting starting points to intensify the search via
the local improvement operator. The diversification aspect of the population-
based search can be strengthened in several ways, such as for example using
multiple subpopulations [147], or diversity-oriented replacement strategies.
The latter are common in scatter search [62] (SS), an optimization paradigm
closely related to memetic algorithms in which the population (or reference
set in the SS jargon) is divided in tiers: entrance to them is gained by solution
on the basis of fitness in one case, or diversity in the other case. Additionally,
SS often incorporated restarting mechanisms to introduce fresh information

15



in the population upon convergence of the latter. Diversification can be also
introduced via selective mating, as it is done in CHC (Cross generational
elitist selection, Heterogeneous recombination, and Cataclysmic mutation)
[48]. A related strategy was proposed by Lozano et al. [116] via the use
of negative assortative mating: after picking a solution for recombination,
a collection of potential mates is selected and the most diverse one is used.
Other strategies range from the use of clustering [193] (to detect solutions
likely within the same basin of attraction upon which it may not be fruitful to
apply local search), or the use of standard diversity preservation techniques in
multimodal contexts such as sharing or crowding. It should be also mentioned
that sometimes the intensification component of the memetic algorithm is
strongly imbricated in the population-based engine, without resorting to a
separate local search component. This is for example the case of the so-called
crossover hill climbing [84], a procedure which essentially amount to using a
hill climbing procedure on states composed of a collection of solutions, using
crossover as move operator (i.e., introducing a newly generated solution in the
collection –substituting the worst one– if the former is better than the latter).
This strategy was used in the context of real-coded memetic algorithms in
[116]. A different intensifying strategy was used by [35], by considering an
exact procedure for finding the best combination of variable values from
the parents (a so-called optimal discrete recombination, see also [36]). This
obviously requires the objective function is amenable to the application of
an efficient procedure for exploring the dynastic potential (set of possible
children) of the solutions being recombined. We refer to [115] for a detailed
analysis of diversification/intensification strategies in hybrid metaheuristics
(in particular in memetic algorithms).

3.3. MAs in multimodal optimization

In some cases, it may be required to detect multiple local optima rather
than only the global optimum. This problem is usually indicated as mul-
timodal optimization problem. Obviously, this situation occurs only when
there is a continuous landscape because in discrete optimization there is no
absolute concept of local optimum. MC approaches have been used in various
contexts to address this issue. Although this is not the focus of this survey,
it is worthwhile mentioning a few memetic approaches which have been pro-
posed in literature. For example, in [46] a memetic approach composed of
sequential threshold operation, global and local search allows the detection
of multiple optima under fitness constrains. In [182] a heuristic mapping

16



is proposed in order to promote the multiple convergence within a unique
evolutionary cycle. By means of a similar logic, in [222] a memetic swarm
intelligence approach is used for multimodal optimization. For an extensive
survey on multimodal optimization see [40].

3.4. MAs in large scale optimization

Optimization problems, both discrete and continuous, when characterized
by a high number of variables are known as large scale optimization problems,
or briefly Large Scale Problems (LSPs).

The detection of an efficient solver for LSPs can be a very valuable
achievement in applied science and engineering since in many applications a
high number of design variables may be of interest for an accurate problem
description. For example, in structural optimization an accurate description
of complex spatial objects might require the formulation of a LSP; similarly
such a situation also occurs in scheduling problems, see [121]. Another im-
portant example of a class of real-world LSPs is the inverse problem chemical
kinetics studied in [94, 95].

Several memetic approaches have been largely applied in order to solve
LSPs. This fact is due to the fact that a single search logic might easily
turn into stagnation or premature convergence. On the other hand, a proper
coordination of multiple search operators can compensate the limits of the
others and thus allow the overcome of a critical algorithmic situation char-
acterized by no improvements. For example, in [162] a MA which integrates
a simplex crossover within the DE framework has been proposed in order to
solve LSPs, see also [163]. In [232], on the basis of the studies carried out in
[15, 16, 18], a DE for LSPs has proposed. The algorithm proposed in [232]
performs a probabilistic update of the control parameter of DE variation
operators and a progressive size reduction of the population size. Although
the theoretical justifications of the success of this algorithm are not fully
clear, the proposed approach seems to be extremely promising for various
problems. In [155], a memetic algorithm which hybridizes the self-adaptive
DE described in [16] and a local search applied to the scale factor in order
to generate candidate solutions with a high performance has been proposed.
Since the local search on the scale factor (or scale factor local search) is
independent on the dimensionality of the problem, the resulting memetic al-
gorithm offered a good performance for relatively large scale problems, see
[155]. By combining the latest two philosophies, Caponio et al. [24] propose
a MA which integrates the potential of the scale factor local search within

17



the self-adaptive DE with automatic reduction of the population size in order
to guarantee a high performance, in terms of convergence speed and solution
detection, for large scale problems. In a similar way, multiple strategies for
DE control parameter update and population size reduction are combined in
[17].

In [234], a DE framework with self-adaptively coordinated multiple muta-
tion strategies, see [181], is hybridized in a memetic fashion with the multi-
trajectory search proposed in [214]. The resulting algorithm appears very
promising for handling LSPs.

Finally, another memetic approach, used for handling LSPs, is by means
of structured populations. One example is given in [224] where multiple
DE search strategies are reproduced within a ring topology by means of
a simple and natural randomized adaptation throughout the islands of the
structured populations. In this scheme, the scale factor of the most successful
islands is inherited by the other islands after a perturbation which prevents
from premature convergence. A more efficient scheme for handling LSPs is
proposed in [223] where the premature convergence is achieved by means of
the cooperative/competitive application of two simple mechanisms: the first,
namely shuffling, consists of randomly rearranging the individuals over the
sub-populations; the second consists of updating all the scale factors of the
sub-populations.

3.5. MAs in constrained optimization

When MAs are applied to constrained optimization problems, the inte-
gration of algorithmic components in the memetic framework to handle the
constraints becomes fundamental. In [68] a MA composed of a GA frame-
work and a gradient based local search integrates the constraint violation
criterion proposed in [43] : (i) the feasible individual is preferred over the
infeasible one; (ii) for two feasible individuals, the individual with better fit-
ness is preferred; and (iii) for two infeasible individuals, the individual with
lower constraint violation is preferred. Their experimental results indicated
that MA outperformed conventional algorithms in terms of both quality of
solution and the rate of convergence. The same set of rules has been used
to handle the constraints in [89], where, in the context of multi-objective
optimization, a MA which makes use of a local search strategy based on the
interior point method, has been proposed.

In [195] a MA composed by an evolutionary framework and Sequential
Quadratic Programming (SQP) employs the constraint violation procedure

18



described in [184]. In [109], an MA containing an adaptive penalty method
and a line search technique is proposed. An agent based MA in which four
local search algorithms were used for adaptive learning has been proposed in
[7]. The algorithms included random perturbation, neighborhood and gradi-
ent search methods. Subsequently, another specialized local search method
was designed to deal with equality constraints, see [8]. The constraints were
handled again using the rules proposed in [43].

In [114] a memetic co-evolutionary differential evolution algorithm where
the population was divided into two sub-populations has been proposed. The
purpose of one sub-population is to minimize the fitness function, and the
other is to minimize the constraint violation. The optimization was achieved
through interactions between the two sub-populations. No penalty coefficient
has been used in the method while a Gaussian random number was used
to modify the individuals when the best solution remained unchanged over
several generations.

Some domain-specific applications are solved by means of MAs for con-
straint optimization, see [10, 13, 58, 178]. Boudia and Prins [13] considered
the problem of cost minimization of a production-distribution system. A re-
pair mechanism was applied for constraint satisfaction. Park et al. [178] com-
bined a GA framework with a tunnel-based dynamic programming scheme
to solve highly constrained non-linear discrete dynamic optimization prob-
lems arising from long-term planning. The infeasible solutions were repaired
by randomly sampling part of the solutions and replacing some of the pre-
vious variables (regenerate partial characters). The algorithm successfully
solved reasonable sized practical problems which cannot be solved by means
of conventional approaches. A multistage capacitated lot-sizing problem was
solved by the memetic algorithm proposed in [10] using heuristics as local
search and standard recombination operators. Gallardo et al. [58] propose a
multilevel MA for solving weighted constrained satisfaction problems, based
on the integration of exact techniques within the MA for recombination pur-
poses, and the use of upper coordination level involving the MA and an
incomplete branch and bound derivate (beam search) – see also [57].

Some other studies, instead of dealing with conventional candidate solu-
tions, require the encoding of mixed continuous/integer variables or the in-
clusion of boolean variables, see [183]. Within this class of problems, mixed
representations of the constrained Vehicle Routing Problems (VRPs) have
been extensively studied in literature and several MA implementations have
been proposed, see [179, 180]. Multi-compartment vehicle routing problems

19



and cumulative vehicle routing problems are studied in [49, 159], respectively.
Other examples of related work are given in [72, 73, 122, 124].

3.6. MAs in multi-objective optimization

In order to tackle multi-objective optimization problems, a well designed
algorithm should capable to detect a set of points representative of the Pareto
front being well sparse over it. Multi-Objective MAs (MOMAs) attempt
to obtain this result properly hybridizing evolutionary operators and local
search. In order to pursue this aim, the selection mechanism, i.e., that mech-
anism that chooses which solutions should be retained and which discarded,
must be well designed. A first important feature of the selection mechanism
is that within a set of solutions, those that dominate the others should be
chosen. However, dominance relation alone leaves many pairs of solutions
incomparable. For this reason, the employment of only the dominance rela-
tion may not be able to define a single best solution in a neighborhood or in
a tournament.

There are mainly two big families of multi-objective solvers (regardless
of their memetic nature) and can be classified in the following way: 1) algo-
rithms that do not combine the objective functions and perform the selection
by means of a dominance based criterion; 2) algorithms that make use of
combinations of objectives for selecting new individuals.

The first category is based on the dominance sorting defined in [64] and
consists of a dominance-based ranking of all the solutions of a population.
This mechanism has been employed by popular evolutionary algorithms for
multi-objective optimization, see [33, 44, 45].

In MOMAs the selection criterion involves not only the evolutionary
framework but also the local search components. In [92, 93] a greedy local
search method based on dominance relation is proposed. This mechanism
simply allows the acceptance of a newly generated neighbor solution if it
dominates the current solution. In population-based Pareto local search, see
[2, 9, 177], the neighborhood of each solution of the current population is
explored, and if no solution of the population weakly dominates a generated
neighbor, the neighbor is added to the population. Lust and Jaszkiewicz [117]
propose a method to speed-up local search algorithms based on dominance
sorting. In [25] a dominance criterion is integrated into the evolutionary
framework and multiple local search components such as Simulated Anneal-
ing and Rosenbrock Algorithm. In addition, Caponio and Neri [25] propose
the cross dominance adaptation as a criterion to coordinate global and local

20



search on the basis of the principles explained in [78]. These approaches have
the advantage of not requiring extra parameters for performing their imple-
mentation. On the other hand, this criterion does not allow a control on
the solution spread in proximity of the Pareto front. This drawback imposes
the employment of extra components which guarantee the population spread
(in terms of fitness values), see e.g., [52, 92]. In addition, while dominance
allows a good ranking when few objectives are involved, it is often unreliable
when the problem handles many simultaneous objectives. In the latter case,
it is likely to have sets solutions which do not dominate each other and thus
the algorithm cannot perform an efficient selection.

The second category is based on the idea that if a ranking amongst the
objectives can be performed then the multiple objectives can be combined to
generate a single-objective optimization problem. The ranking is performed
by associating to each objective a weight value. The functions combining
the objectives are usually indicated as aggregation functions. When this
approach is employed the algorithm obviously does not detect a Pareto front
but only one solution. However, this drawback can be overcome by the use of
multiple aggregation functions defined by various weight vectors. A scheduled
variation of weight parameters is employed in [215, 233]. A deterministic
updated of the weight parameters to generate a repulsion among solution
and thus dispersion in proximity of the Pareto front is proposed in [175, 69].
A meta-evolution of the weights is presented in [67]. A randomized weight
update, similar to a random walk local search, is proposed in [192] while a
fully random update is presented in [76, 79]. The employment of multiple
set of weight parameters allows a natural dispersion of the solutions and
thus, unlike dominance based sorting methods, no additional components
are required. In addition, several speed-up techniques may easily be used in
local search based on aggregation functions. On the other hand, this category
of methods has the drawback that the selection of a proper set of weights
must be performed. In order to overcome this problem, some research is
focused on the automatic selection of the weights, see [80].

3.7. MAs in the presence of uncertainties

Uncertainties in optimization problems are very common in real-world
applications due to the presence of measurement devices and approximation
models. A fitness function contains uncertainties if the variable “time” takes
place in the fitness evaluation of a solution. In other words, if for a given
candidate solution x, the fitness calculation f (x) can return different values

21



in different moments, then the fitness function f is said to be affected by
uncertainties. In the survey proposed in [81] the sources of uncertainties are
categorized as 1) uncertainties due to approximation 2) uncertainties due to
robustness 3) uncertainties due to noise 4) uncertainties due to time-variance.
In this section the same categorization will be employed.

In some applications, the actual fitness function can be unavailable through-
out the entire optimization process or, due to its excessive computational
cost, can be replaced by an approximation model. When the fitness value
is computed by an approximation model a slightly different value than the
actual fitness is expected. In addition, an approximation procedure can be
adjusted over the optimization time and alternated with the actual fitness
thus resulting in multiple fitness values for a single candidate solution. In
this sense, the employment of approximation models introduces an uncer-
tainty in the landscape. In order to face this difficulty, in [60, 87] the Inexact
Pre-Evaluation (IPE) framework is proposed. IPE uses the expensive func-
tion in the first few generations and then uses the model almost exclusively
while only a portion of the elites are evaluated with the expensive function
and are used to update the model. This mechanism has been integrated
into a hierarchical distributed algorithm [191]. This idea has been expanded
such that each layer may use different solvers, within a memetic framework
employing a gradient based search [88]. In [82] the Controlled Evaluations
(CE) framework has been proposed. This framework monitors the model
accuracy using cross-validation: a memory structure containing the previ-
ously evaluated vectors is split into two sets which are then used to train the
approximation model. In [59], in the context of expensive multi-objective op-
timization, a memetic approach integrated fuzzy logic for alternating real and
approximated fitness evaluation has been proposed. Another widely used op-
tion is a memetic approach employing the Trust Region (TR), i.e., a portion
of the decision space where the approximation model can be reliably used,
see [12, 34, 186]. In [167, 168], memetic frameworks combining an EA as a
global search, where at each generation every non-duplicated vector in the
population is refined using a TR, has been proposed. In [210, 211] the authors
proposed a TR memetic framework which uses quadratic models and cluster-
ing. Zhou et al. [235] proposed a memetic framework which occasionally uses
an inaccurate model capable to detect proposing solutions, see [171]. Lim
at el. [110] have recently proposed a framework composed of an ensemble of
approximation models as well smoothing models. Other approaches, namely
model-adaptive frameworks, have been proposed [209, 211, 212]. Similar to

22



the approach in [171], model-adaptive frameworks employ a set of candidate
models which are automatically selected by a supervising system.

Robust parameters of a system are those parameters which lie in a region
of the parameter hyperspace characterized by similar system responses. In
other words, if a robust parameter is slightly perturbed, the system response
only slightly varies. Robust optimization is a field of optimization theory
which aims to detecting robust parameters. Reversely, if a parameter is
not robust, small parameter variations can result into large variation of the
system response. Very close solution, ideally identically can give very dif-
ferent system response and thus in robust optimization, identical solutions
can be characterized by very different fitness values. In order to address
these problems, in [204] an algorithm for robust optimization of digital fil-
ters where the uncertainty in performance is due to material imperfections
has been proposed. In [194] the problem of optimizing a robust aircraft con-
trol system using a memetic algorithms is studied. Still in the context of
aircraft design, a surrogated based approach, i.e., an approximation model,
for computationally expensive optimization problems is proposed in [169].
The robust control design of a control system for an electric motor is pro-
posed in [150] by applying a surrogate assisted model. Other examples of
memetic robust design, regarding multi-objective optimization, are given in
[172, 173, 200]. [112] addressed the problem of robust optimization when no
a-priori information about the distribution of uncertainties is known. The
problem of robust design in constrained multi-objective optimization is an-
alyzed by means of a MA in [63]. In the latter work, micro-populations act
as local search within the decision space. In [19] a robust airline scheduling
problem where the goal was to obtain a fleet assignment which accounts for
flight re-timing and aircraft rerouting has been proposed. Another robust
scheduling problem, i.e., the stochastic capacitated vehicle routing problem,
is addressed in [201].

The noise in optimization is a typical condition which plagues real-world
applications and occurs every time measurements concur to the fitness value
computation. These measurements can be physical instruments, like shown in
[23], or computational devices which contain uncertainties, such as a Neural
Network, see e.g., [229]. Some examples of memetic frameworks addressing
noisy landscapes are given in the following. Kim and Abraham [91] com-
bine a bacteria foraging algorithm with a real-coded evolutionary algorithm
for addressing a control engineering design problem. The noise is handled
by re-sampling and filtering. In order to tackle noisy problems by means of

23



memetic frameworks, several algorithmic solutions have been proposed in the
literature. In [138] MA based on differential evolution where the scale factor
was adjusted with a line search is proposed and combined with an adaptive
resampling technique. In [6] the authors considered the noisy pattern recog-
nition problem of inexact graph matching, that is, determining whether two
images match when one is corrupted by noise. Ozcan and Mohan [174] stud-
ied the problem of matching an input image to one from an available data
set. The difficulty being that the input image may be partially obscured,
deformed and so on which results in a noisy optimization problem. In [39], a
resampling technique is integrated within a MA which uses a self-organizing
map (SOM) as a local search. The algorithm was designed to solve the VRP
with emphasis on noisy data. In [151, 152] the authors tackled the prob-
lem of training a neural network used for controlling resource discovery in
peer-to-peer (P2P) networks. In order to face this kind of problem, a di-
versity based adaptation is proposed. A similar approach was used in the
hierarchical optimization problem proposed in [153].

Time-variance occurs when the fitness values of (at least some of) the
points depend on time. This situation can be visualized as a landscape
which is not stationary but moves over time, twisting and changing shape.
This fact obviously implies that the position of the optima varies with time
and thus, when the optima are detected, the algorithm should be able to
follow the basins of attraction to find and locate them anew. It should be
remarked that while the three previous categories the uncertainties are due
to an erroneous estimation of the fitness value in a point, in time-variant
problems the actually fitness value of a solution varies over time. In order
to tackle this class of problems, in [216, 217, 218] a MA combining a bi-
nary evolutionary framework with the variable local search (VLS) operator
to track optima in dynamic (time-variance) problems has been proposed. In
[221] a MA based on Particle Swarm Optimization (PSO) for dynamic opti-
mization problems has been proposed. This modified PSO employs multiple
techniques for handling the time-dependence. Moser and Hendtlass [146]
combined the Extremal Optimization algorithm (EO) [11] and a determin-
istic local search. Due to its structure, EO naturally adapts to changing
environments and thus is a promising background for this class of problems.
Another variant, employing the Hooke-Jeeves Algorithm, has been proposed
in [144]. A comparative study on this sub-field is reported in [145]. In [47], a
MC approach based on the scatter search framework for dynamic and highly
constrained problems. In [96], in the context of dynamic multiobjective prob-

24



lems, a multi start system is achieved by accelerating the convergence of the
algorithm. This aim is pursued by means of a modified gradient capable to
predict the changes in the Pareto set. Wang et al. [220] proposed a MA
for dynamic optimization which used a binary representation where at each
generation the elite was refined by a local search algorithm and added and
updated while the fitness landscape changes.

4. Coordination of the Algorithmic Components

When a MA or, more generally, a MC approach is designed, it is im-
mediately clear that the final result is an algorithm composed of several
parts. These parts can be called memes by following the metaphor, opera-
tors if a low level design is performed, or evolutionary framework and local
search algorithms if a classical MA is considered. Regardless of the specific
algorithmic implementation, a crucially important problem, if not the most
important problem in MC is to determine how the memes interact during the
optimization process. In order to clarify the tendencies in literature Ong et.
al. proposed a classification of adaptive MAs in [166]. By revisiting and up-
dating this classification, the coordination of the memes has been performed
in one of the following ways:

1. Adaptive Hyper-heuristic, see e.g., [20, 37, 90, 95], where the coordi-
nation of the memes is performed by means of heuristic rules

2. Meta-Lamarckian learning, see e.g., [97, 108, 160, 164], where the suc-
cess of the memes biases their activation probability, thus performing
an on-line algorithmic design which can flexibly adapt to various opti-
mization problems

3. Self-Adaptive and Co-Evolutionary, see e.g., [105, 199, 230], where the
memes, either directly encoded within the candidate solutions or evolv-
ing in parallel to them, take part in the evolution and undergo recom-
bination and selection in order to select the most promising operators

4. Fitness Diversity-Adaptive, see e.g., [23, 26, 156, 157, 158, 208, 213],
where a measure of the diversity is used to select and activate the most
appropriate memes

25



The first category includes those algorithms in which the memes are co-
ordinated by means of a prefixed scheme or schedule. These schemes can
be randomized or deterministic. In a randomized scheme the memes can be
randomly activated one by one or in a sequence by applying a success rule,
see [31, 38]. Regarding deterministic schemes, a typical implementation is
a schedule which subdivides a given budget to each meme, e.g., in [95]. A
slightly more complex hyper-heuristic approach is the choice function, see
[90]. This approach rewards the most promising meme(s) by reiterating its
(their) application. When the memes stop being successful, the application
of other memes is tried. A further example of choice function approach is
given in [20] where a tabu list is employed to classify the success of the memes
and their activation schedule.

Meta-Lamarckian learning is an extension and an evolution of the hyper-
heuristic MAs and especially the choice functions and constitutes a fairly
general and flexible framework for algorithmic design, see [164]. More specifi-
cally, a basic meta-Lamarckian learning strategy was proposed as the baseline
algorithm for comparison. This basic strategy is a simple random coordina-
tion of memes without any adaptation. Then, the decision space is decom-
posed into sub-areas for the separate optimization of each sub-area. This
approach assumes that different optimizers are suitable for different prob-
lems and thus each sub-area requires a different meme. In order to choose a
suitable meme at each decision point, the strategy gathers knowledge about
the ability of the memes to search on a particular region of the search space
from a database of past experiences archived during the initial search. The
memes identified then form the candidate memes that will compete, based on
their rewards, to decide on which meme will proceed with the local improve-
ment. In this way, memes with different specializations are coordinated and
harmonically work jointly to solve the whole optimization problem. Two
selection strategies, both based on the roulette wheel selection, have been
tested for the meme selection, see [164, 166]. It is worthwhile mentioning
that besides Lamarckian and Meta-Lamarckian systems characterized by a
change of the solution after the application of the non-evolutionary memes
(i.e., local search components), Baldwinian systems also exist. In the lat-
ter approaches, the solutions are not modified after the employment of local
search, see [65, 231], and the local search biases somehow the evolutionary
search. For example, while the solution is not modified the fitness can take
into account (by means of a penalization factor) the potential of the geno-
type when the local search is applied. Although Lamarckian systems are more

26



commonly used, in some cases the application of a Baldwinian approach ap-
peared to be preferable. A memetic approach which is closely related to the
Meta-Lamarckian learning is the so called algorithmic concept of ensemble.
This algorithmic structure considers a pool of operators, search logics, con-
straint handling techniques etc., see e.g., [230], and selects the most suitable
one on the basis of a trial and error scheme. For example, in [119], a DE
framework with an ensemble of mutation strategies and parameter setting
is proposed. In [118] the ensemble logic has been applied in the context of
Evolutionary Programming.

The third category relies on the evolutionary principles for the meme
development and selection. In Self-Adaptive MAs, each solution is com-
posed of its genetic and memetic material. Thus, the memes are directly
encoded into the solutions and their action is associated to the hosting solu-
tion. For example, the local search algorithms encoded into memetic material
attempt to improve the genotype of the hosting solution or, more generally,
specify the meme that will be used to perform local search in the neighbor-
hood of the solution, see [99, 101]. By mean of the application of a self-
adaptive logic multiple memes evolve during the optimization process. For
this reason, the term Multimeme Algorithm has been used in this context, see
[98, 99, 101, 103, 104]. Co-Evolutionary MAs are conceptually similar to self-
adaptive MAs but are implemented in a different way. The memetic material,
composed of multiple memes, evolve in a population separated from the pop-
ulation of solutions. Populations of genes and memes evolve separately and
simultaneously and their solutions are linked, see [196, 197, 198, 199]. In an-
other related algorithmic scheme, namely Self-Generating MAs, a grammar
is used to specify the employment and coordination of local search [100, 102].

The Fitness Diversity-Adaptive MAs automatically perform the meme
coordination by analyzing the population status. In these adaptive systems,
fitness diversity is used in order to estimate the population diversity, see
[103, 208]. Fitness diversity is the spread of the fitness values within a pop-
ulation of individuals. The employment of the fitness diversity is done con-
sidering that for multi-variate problems the measure of genotypical distance
can be excessively time- and memory-consuming and thus the adaptation
might require an unacceptable computational overhead. Obviously, fitness
diversity could not give an efficient estimation of population diversity, since
it can happen that very different points take the same fitness values, e.g., if
the points lay in a plateau. However, this fact does not affect the decision
mechanism of the adaptive system for the following reasons: when the diver-

27



sity is low one or more explorative local searchers, e.g., Nelder-Mead Simplex
[148], are activated in order to offer an alternative search logic, and possibly
to detect new promising search directions and increase the diversity. If this
mechanism fails and the algorithm keeps losing diversity and converging to
some areas of the decision space an exploitative local search algorithm, e.g.,
Rosenbrock Algorithm [188], attempts to quickly perform the exploitation of
the most promising basin of attraction and thus quickly complete the search.
If the fitness diversity is low, the candidate solutions in the population have
a similar performance. This fact can mean either that the solutions are con-
centrated within a small region of the decision space, or that the solutions
are distributed over one or more plateaus or over two or more basins of at-
traction having a similar performance. It can easily be visualized that all
the listed situations are undesirable and that the activation of an alternative
search move can increase the chances to detect “fresh” genotypes. In other
words, although the Fitness Diversity Adaptation (FDA) does not guarantee
a proper estimation of the population diversity, it is an efficient way to esti-
mate the correct moment of the evolution which would benefit from a local
search application.

A problem when FDA is employed is how to measure the diversity of
the population. The first example of FDA in MC has been proposed in [23]
which has also been used in [158]. Another diversity metric, more sensitive
and capable to handle flat landscapes has been proposed in [157]. Some
other metrics for DE frameworks have been proposed in [26, 213]. Another
diversity metric with reference to a chemical engineering problem has been
proposed in [94]. A comparative analysis of the diversity metrics has been
reported in [156] where the conclusion has been that a proper choice in terms
of diversity metric should be carried out on the basis, not only of the problem
features but also the framework features. For example, an efficient diversity
metric for Evolution Strategy (ES) would likely be inadequate to measure
the diversity of DE. This consideration can be seen as a consequence of the
NFLT.

5. Conclusion and Future Trends in Memetic Computing

A further step of MC, or more generally of Computational Intelligence,
consists of generating more “intelligent” systems capable to recognize the
problem features and select/design a suitable solver. In our case this aim
means that an algorithmic meta-structure performs an on-line design of the

28



optimization algorithm. This goal is ambitious and, although a topic of
discussion, has not been addressed yet. An early attempt of modelling a
system capable to automatically generate MC approaches for given problems
is described in [137] but no actual implementation is given.

However, the importance of MC is in leaving a general definition which
allows to counterbalance a tendency reported in literature during the lat-
est years. New optimization algorithms are often proposed in literature and
these algorithms are usually inspired by the most diverse physical and biolog-
ical phenomena and are presented as new paradigms and/or as modification
of other computational paradigms. This approach led to a focus loss about a
fundamental fact: all the optimization algorithms are the alternating combi-
nation of operators belonging to two groups, i.e. generation mechanisms of
trial solution(s) and selection criteria for choosing which solutions should be
retained for the following step. In this sense, the division of the field into dis-
joint sub-fields, such as Genetic Algorithms, Evolution Strategies, Differential
Evolution, Particle Swarm Optimization, etc., should be overcome in favour
of a more flexible view which sees all the optimization algorithms simply as
a combination of operators concurring to the detection of the optimum.

In other words, the adoption of a MC view of optimization is the basics
for the automatic generation of algorithms and for moving a further step
toward the intelligence of machines. A remaining problem that will need to
be addressed is how the candidate algorithms can be quickly and efficiently
tested and subsequently how the algorithmic design should be performed.
This will likely be one of the main technological questions for the next decade.

Acknowledgements

F. Neri is supported by the Academy of Finland, Akatemiatutkija 130600,
Algorithmic Design Issues in Memetic Computing. C. Cotta is supported by
Spanish MICINN under project NEMESIS (TIN2008-05941) and ANYSELF
(TIN2011-28627-C04-01), and by Junta de Andalućıa under project TIC-
6083.

References

[1] Abbass, H. A., 2002. An evolutionary artificial neural networks ap-
proach for breast cancer diagnosis. Artificial Intelligence in Medicine
25 (3), 265–281.

29



[2] Angel, E., Bampis, E., Gourves, L., 2004. A dynasearch neighborhood
for the bicriteria traveling salesman problem. In: Gandibleux, X., et al.
(Eds.), Metaheuristics for Multiobjective Optimisation. Vol. 535 of Lec-
ture Notes in Economics and Mathematical Systems. Springer-Verlag,
pp. 153–176.

[3] Bäck, T., 1996. Evolutionary Algorithms in Theory and Practice. Ox-
ford University Press, New York NY.

[4] Bäck, T., Hoffmeister, F., 1991. Adaptive search by evolutionary al-
gorithms. In: Ebeling, W., Peschel, M., Weidlich, W. (Eds.), Models
of Self-organization in Complex Systems. No. 64 in Mathematical Re-
search. Akademie-Verlag, pp. 17–21.

[5] Bambha, N. K., Bhattacharyya, S. S., Teich, J., Zitzler, E., 2004. Sys-
tematic integration of parameterized local search into evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computation 8 (2), 137–
155.

[6] Bärecke, T., Detyniecki, M., 2007. Memetic algorithms for inexact
graph matching. In: [28], pp. 4238–4245.

[7] Barkat Ullah, A. S. S. M., Sarker, R., Cornforth, D., Lokan, C., 2009.
AMA: A new approach for solving constrained real-valued optimization
problems. Soft Computing 13 (8–9), 741–762.

[8] Barkat Ullah, A. S. S. M., Sarker, R., Lokan, C., 2009. An agent-based
memetic algorithm (AMA) for nonlinear optimization with equality
constraints. In: CEC 2009. IEEE Press, Trondheim, Norway, pp. 70–
77.

[9] Basseur, M., 2006. Design of cooperative algorithms for multi-objective
optimization: application to the flow-shop scheduling problem. 4OR:
A Quarterly Journal of Operations Research 4 (3), 255–258.

[10] Berretta, R., Rodrigues, L. F., 2004. A memetic algorithm for a multi-
stage capacitated lot-sizing problem. International Journal of Produc-
tion Economics 87 (1), 67 – 81.

30



[11] Boettcher, S., Percus, A. G., 1999. Extremal optimization: Methods
derived from co-evolution. In: Banzhaf, W., et al. (Eds.), GECCO
1999. Morgan Kaufmann, pp. 825–832.

[12] Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon,
V., Trosset, M. W., 1999. A rigorous framework for optimization of
expensive functions by surrogates. Structural Optimization 17 (1), 1–
13.

[13] Boudia, M., Prins, C., 2009. A memetic algorithm with dynamic popu-
lation management for an integrated production-distribution problem.
European Journal of Operational Research 195 (3), 703 – 715.

[14] Brady, R. M., 1985. Optimization Strategies Gleaned from Biological
Evolution. Nature 317, 804–806.

[15] Brest, J., Bošković, B., Greiner, S., Žumer, V., Maučec, M. S., 2007.
Performance comparison of self-adaptive and adaptive differential evo-
lution algorithms. Soft Computing 11 (7), 617–629.

[16] Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V., 2006. Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems. IEEE Transactions on Evo-
lutionary Computation 10 (6), 646–657.

[17] Brest, J., Maucec, M. S., 2011. Self-adaptive differential evolution algo-
rithm using population size reduction and three strategies. Soft Com-
puting - A Fusion of Foundations, Methodologies and Applications
15 (11), 2157–2174.

[18] Brest, J., Maučec, M. S., 2008. Population size reduction for the dif-
ferential evolution algorithm. Applied Intelligence 29 (3), 228–247.

[19] Burke, E. K., De Causmaecker, P., De Maere, G., Mulder, J., Paelinck,
M., Berghe, G. V., 2010. A multi-objective approach for robust airline
scheduling. Computers and Operations Research 37, 822–832.

[20] Burke, E. K., Kendall, G., Soubeiga, E., 2003. A tabu search hyper-
heuristic for timetabling and rostering. Journal of Heuristics 9 (6), 451–
470.

31



[21] Burke, E. K., Newall, J., Weare, R., 1996. A memetic algorithm for
university exam timetabling. In: Burke, E. K., Ross, P. (Eds.), Practice
and Theory of Automated Timetabling. Vol. 1153 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin Heidelberg, pp. 241–250.

[22] Burke, E. K., Smith, A. J., 1999. A memetic algorithm to schedule
planned grid maintenance. In: Mohammadian, M. (Ed.), Computa-
tional Intelligence for Modelling, Control and Automation. IOS Press,
pp. 12–127.

[23] Caponio, A., Cascella, G. L., Neri, F., Salvatore, N., Sumner, M.,
2007. A fast adaptive memetic algorithm for on-line and off-line con-
trol design of pmsm drives. IEEE Transactions on System Man and
Cybernetics-part B, special issue on Memetic Algorithms 37 (1), 28–
41.

[24] Caponio, A., Kononova, A., Neri, F., 2010. Differential evolution with
scale factor local search for large scale problems. In: Tenne, Y., Goh,
C.-K. (Eds.), Computational Intelligence in Expensive Optimization
Problems. Vol. 2 of Studies in Evolutionary Learning and Optimization.
Springer-Verlag, Ch. 12, pp. 297–323.

[25] Caponio, A., Neri, F., 2009. Integrating cross-dominance adaptation in
multi-objective memetic algorithms. In: C.-K. Goh, Y.-S. Ong, K. T.
(Ed.), Multi-Objective Memetic Algorithms. Vol. 171 of Studies in
Computational Intelligence. Springer, pp. 325–351.

[26] Caponio, A., Neri, F., Tirronen, V., 2009. Super-fit control adaptation
in memetic differential evolution frameworks. Soft Computing-A Fusion
of Foundations, Methodologies and Applications 13 (8), 811–831.

[27] CEC, 2005. IEEE Congress on Evolutionary Computation 2005. IEEE
Press, Edinburgh, UK.

[28] CEC, 2007. IEEE Congress on Evolutionary Computation 2007. IEEE
Press, Singapore.

[29] CEC, 2008. IEEE Congress on Evolutionary Computation 2008. IEEE
Press, Hong Kong.

32



[30] CEC, 2010. IEEE Congress on Evolutionary Computation 2010. IEEE
Press, Barcelona, Spain.

[31] Chakhlevitch, K., Cowling, P., 2008. Hyperheuristics: Recent devel-
opments. In: Cotta, C., Sevaux, M., Sörensen, K. (Eds.), Adaptive
and Multilevel Metaheuristics. Vol. 136 of Studies in Computational
Intelligence. Springer-Verlag, Berlin Heidelberg, pp. 3–29.

[32] Cobb, H., Grefenstette, J., 1993. Genetic algorithms for tracking chang-
ing environments. In: Forrest, S. (Ed.), ICGA 1993. Morgan Kauf-
mann, San Mateo CA, pp. 529–530.

[33] Coello Coello, C., Van Veldhuizen, D. A., Lamont, G., 2002. Evolu-
tionary Algorithms for Solving Multi-Objective Problems. Kluwer Aca-
demic Publishers.

[34] Conn, A. R., Scheinberg, K., Toint, P. L., 1997. Recent progress in un-
constrained nonlinear optimization without derivatives. Mathematical
Programming 79, 397–414.

[35] Cotta, C., Troya, J., 1999. Optimal discrete recombination: Hybridis-
ing evolution strategies with the A* algorithm. In: Mira, J., Sánchez-
Andrés, J. (Eds.), Engineering Applications of Bio-Inspired Artificial
Neural Networks. Vol. 1607 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin Heidelberg, pp. 58–67.

[36] Cotta, C., Troya, J., 2003. Embedding branch and bound within evo-
lutionary algorithms. Applied Intelligence 18(2), 137–153.

[37] Cowling, P., Kendall, G., Soubeiga, E., 2000. A hyperheuristic ap-
proach to scheduling a sales summit. In: Proceedings of the Third
International Conference on Practice and Theory of Automated
Timetabling. Vol. 2079 of Lecture Notes in Computer Science. Springer,
pp. 176–190.

[38] Cowling, P., Kendall, G., Soubeiga, E., 2001. A hyperheuristic ap-
proach to schedule a sales submit. In: Burke, E., Erben, W. (Eds.),
Selected papers from the Third International Conference on Practice
and Theory of Automated Timetabling III. Vol. 2079 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin Heidelberg, pp. 176–190.

33



[39] Créput, J.-C., Koukam, A., 2008. The memetic self-organizing map
approach to the vehicle routing problem. Journal of Soft Computing
12, 1125–1141.

[40] Das, S., Maity, S., Qu, B.-Y., Suganthan, P., 2011. Real-parameter
evolutionary multimodal optimization: A survey of the state-of-the-
art. Swarm and Evolutionary Computation 1 (2), 71–88.

[41] Davidor, Y., Ben-Kiki, O., 1992. The interplay among the genetic al-
gorithm operators: Information theory tools used in a holistic way. In:
[120], pp. 75–84.

[42] Dawkins, R., 1976. The Selfish Gene. Clarendon Press, Oxford.

[43] Deb, K., 2000. An efficient constraint handling method for genetic al-
gorithms. Computer Methods in Applied Mechanics and Engineering
186, 311–338.

[44] Deb, K., 2001. Multi-objective Optimization using Evolutionary Algo-
rithms. John Wiley and Sons LTD, Chichester, UK, pp. 147–149.

[45] Deb, K., Agrawal, S., Pratab, A., Meyarivan, T., 2000. A fast elitist
non-dominated sorting genetic algorithm for multi-objective optimiza-
tion: NSGA-II. In: [189], pp. 849–858.

[46] Delvecchio, G., Lofrumento, C., Neri, F., Sylos Labini, M., 2006. A
fast evolutionary-deterministic algorithm to study multimodal current
fields under safety level constraints. COMPEL: International Journal
for Computation and Mathematics in Electrical and Electronic Engi-
neering 25 (3), 599–608.

[47] Egea, J. A., Balsa-Canto, E., Garćia, M.-S. G., Ranga, J. R., 2009.
Dynamic optimization of nonlinear processes with an enhanced scatter
search method. Journal of Industrial Chemical Engineering Research
48, 4388–4401.

[48] Eshelman, L., 1991. The CHC Adaptive Search Algorithm: How to
Have Safe Search When Engaging in Nontraditional Genetic Recom-
bination. In: Rawlings, G. J. E. (Ed.), Foundations of Genetic Algo-
rithms. Morgan Kaufmann, pp. 265–283.

34



[49] Fallahi, A. E., Prins, C., Calvo, R. W., 2008. A memetic algorithm
and a tabu search for the multi-compartment vehicle routing problem.
Computers & Operations Research 35 (5), 1725 – 1741.

[50] Fan, X. F., Zhu, Z., Ong, Y. S., Lu, Y. M., Shen, Z. X., Kuo, J.-
L., 2007. A direct first principle study on the structure and electronic
properties of bexzn1-xo. Applied Physics Letter 91 (121121).

[51] Fischer, T., Merz, P., 2007. A memetic algorithm for the optimal com-
munication spanning tree problem. In: Hybrid Metaheuristics 4th In-
ternational Workshop, HM 2007. Vol. 4771 of Lecture Notes in Com-
puter Science. Springer, pp. 170–184.

[52] Fonseca, C., Fleming, P., 1995. An overview of evolutionary algorithms
in multiobjective optimisation. Evolutionary Computation 3 (1), 1–16.

[53] França, P. M., Gupta, J. N. D., Mendes, A. S., Moscato, P., Veltnik,
K. J., 2005. Evolutionary algorithms for scheduling a flowshop manu-
facturing cell with sequence dependent family setups. Computers and
Industrial Engineering 48, 491–506.

[54] França, P. M., Mendes, A. S., Moscato, P., 2001. A memetic algorithm
for the total tardiness single machine scheduling problem. European
Journal of Operational Research 132, 224–242.

[55] Freisleben, B., Merz, P., 1996. A genetic local search algorithm for
solving symmetric and asymmetric traveling salesman problems. In:
1996 IEEE International Conference on Evolutionary Computation,
Nagoya, Japan. IEEE Press, pp. 616–621.

[56] Freisleben, B., Merz, P., 1996. New Genetic Local Search Operators for
the Traveling Salesman Problem. In: [219], pp. 890–900.

[57] Gallardo, J., Cotta, C., Fernández, A., 2007. On the hybridization of
memetic algorithms with branch-and-bound techniques. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B 37 (1), 77–83.

[58] Gallardo, J. E., Cotta, C., Fernández, A. J., 2009. Solving weighted
constraint satisfaction problems with memetic/exact hybrid algo-
rithms. Journal of Artificial Intelligence Research 35, 533–555.

35



[59] Gaspar-Cunha, A., Vieira, A., 2005. A multi-objective evolutionary
algorithm using neural networks to approximate fitness evaluations.
International Journal of Computers, Systems and Signals 6 (1), 18–36.

[60] Giannakoglou, K. C., 2002. Design of optimal aerodynamic shapes us-
ing stochastic optimization methods and computational intelligence.
International Review Journal Progress in Aerospace Sciences 38 (1),
43–76.

[61] Glover, F., Laguna, M., 1997. Tabu Search. Kluwer Academic Publish-
ers.

[62] Glover, F., Laguna, M., Mart́ı, R., 2000. Fundamentals of scatter search
and path relinking. Control and Cybernetics 39 (3), 653–684.

[63] Goh, C.-K., Tan, K. C., 2007. Evolving the tradeoffs between pareto-
optimality and robustness in multi-objective evolutionary algorithms.
In: Yang, S., Ong, Y.-S., Jin, Y. (Eds.), Evolutionary Computation in
Dynamic and Uncertain Environments. Vol. 51 of Studies in Compu-
tational Intelligence. Springer-Verlag, pp. 457–478.

[64] Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Publishing Co., Reading, MA,
USA.

[65] Gong, M., Jiao, L., Zhang, L., 2010. Baldwinian learning in clonal se-
lection algorithm for optimization. Information Sciences 180 (8), 1218–
1236.

[66] Grefenstette, J. J., 1987. Incorporating Problem Specific Knowledge
into Genetic Algorithms. In: Davis, L. (Ed.), Genetic Algorithms and
Simulated Annealing. Research Notes in Artificial Intelligence. Morgan
Kaufmann Publishers, pp. 42–60.

[67] Hajela, P., Lin, C. Y., 1992. Genetic search strategies in multicriterion
optimal design. Structural Optimization 4, 99–107.

[68] Handoko, S., Kwoh, C., Ong, Y., Lim, M., 2008. A study on constrained
ma using ga and sqp: Analytical vs. finite-difference gradients. In: [29],
pp. 4031–4038.

36



[69] Hansen, M., 2000. Tabu search for multiobjective combinatorial opti-
mization: TAMOCO. Control and Cybernetics 29 (3), 799–818.

[70] Hart, W. E., 1994. Adaptive global optimization with local search.
Ph.D. thesis, University of California, San Diego.

[71] Hart, W. E., Krasnogor, N., Smith, J. E., 2004. Memetic evolutionary
algorithms. In: Hart, W. E., Krasnogor, N., Smith, J. E. (Eds.), Recent
Advances in Memetic Algorithms. Springer, Berlin, Germany, pp. 3–27.

[72] Hasan, K., Sarker, R., Essam, D., 2010. Evolutionary scheduling with
rescheduling option for sudden machine breakdowns. In: [30], pp. 1913–
1920.

[73] Hasan, S., Sarker, R., Essam, D., Cornforth, D., 2009. Memetic algo-
rithms for solving job-shop scheduling problems. Memetic Computing
1 (1), 69–83.

[74] Hasan, S. M. K., Sarker, R., Essam, D., Cornforth, D., 2009. Memetic
algorithms for solving job-shop scheduling problems. Memetic Com-
puting Journal 1 (1), 69–83.

[75] Houck, C., Joines, J., Kay, M., Wilson, J., 1997. Empirical investigation
of the benefits of partial lamarckianism. Evolutionary Computation
5 (1), 31–60.

[76] Ishibuchi, H., Murata, T., 1998. Multi-objective genetic local search al-
gorithm and its application to flowshop scheduling. IEEE Transactions
on Systems, Man and Cybernetics - Part C: Applications and Reviews
28 (3), 392–403.

[77] Ishibuchi, H., Yoshida, T., Murata, T., 2003. Balance between genetic
search and local search in memetic algorithms for multiobjective per-
mutation flow shop scheduling. IEEE Transactions on Evolutionary
Computation 7, 204–223.

[78] Ishibuchi, H., Yoshida, T., Murata, T., 2003. Balance between ge-
netic search and local search in memetic algorithms for multiobjective
permutation flowshop scheduling. IEEE Transactions on Evolutionary
Computation 7 (2), 204–223.

37



[79] Jaszkiewicz, A., 2002. Genetic local search for multi-objective combi-
natorial optimization. European Journal of Operational Research 137,
50–71.

[80] Jaszkiewicz, A., 2002. On the performance of multiple objective genetic
local search on the 0/1 knapsack problem. a comparative experiment.
IEEE Transactions on Evolutionary Computation 6 (4), 402–412.

[81] Jin, Y., Branke, J., 2005. Evolutionary optimization in uncertain
environments-a survey. IEEE Transactions on Evolutionary Compu-
tation 9 (3), 303–317.

[82] Jin, Y., Olhofer, M., Sendhoff, B., 2002. A framework for evolutionary
optimization with approximate fitness functions. IEEE Transactions on
evolutionary computation 6 (5), 481–494.

[83] Jog, P., Suh, J., Gucht, D. V., 1989. The Effects of Population Size,
Heuristic Crossover and Local Improvement on a Genetic Algorithm
for the Travelling Salesman Problem. In: 3rd International Conference
on Genetic Algorithms. Morgan Kaufman, pp. 110–115.

[84] Jones, T., 1995. Crossover, macromutation, and population-based
search. In: Eshelman, L. (Ed.), Sixth International Conference on Ge-
netic Algorithms. Morgan Kaufmann, San Mateo CA, pp. 73–80.

[85] Jones, T., 1996. One operator, one landscape. Tech. Rep. #95-02-025,
Santa Fe Institute.

[86] Joshi, R., Sanderson, A. C., 1999. Minimal representation multisensor
fusion using differential evolution. IEEE Transactions on Systems, Man
and Cybernetics, Part A 29 (1), 63–76.

[87] Karakasis, M. K., Giannakoglou, K. C., 2004. On the use of surrogate
evaluation models in multi-objective evolutionary algorithms. In: Pro-
ceedings of the European Conference on Computational Methods in
Applied Sciences and Engineering–ECCOMAS 2004.

[88] Karakasis, M. K., Koubogiannis, D., Giannakoglou, K. C., 2007. Hi-
erarchical distributed evolutionary algorithms in shape optimization.
International Journal of Numerical Methods in Fluids 53 (3), 455–469.

38



[89] Kelner, V., Capitanescu, F., Léonard, O., Wehenkel, L., 2008. A hybrid
optimization technique coupling an evolutionary and a local search al-
gorithm. Journal of Computational and Applied Mathematics 215 (2),
448 – 456.

[90] Kendall, G., Cowling, P., Soubeiga, E., 2002. Choice function and ran-
dom hyperheuristics. In: Proceedings of the Fourth Asia-Pacific Con-
ference on Simulated Evolution and Learning. pp. 667–71.

[91] Kim, D. H., Abraham, A., 2007. A hybrid genetic algorithm and bac-
terial foraging approach for global optimization and robust tuning of
PID controller with disturbance rejection. In: Grosan, C., Abraham,
A., Ishibuchi, H. (Eds.), Hybrid Evolutionary Algorithms. Springer,
pp. 171–199.

[92] Knowles, J., Corne, D., 2000. M-PAES: A memetic algorithm for mul-
tiobjective optimization. In: CEC 2000. IEEE Press, San Diego CA,
pp. 325–332.

[93] Knowles, J., Corne, D. W., 2000. Approximating the nondominated
front using the pareto archived evolution strategy. Evolutionary Com-
putation 8 (2), 149–172.

[94] Kononova, A. V., Hughes, K. J., Pourkashanian, M., Ingham, D. B.,
2007. Fitness diversity based adaptive memetic algorithm for solving
inverse problems of chemical kinetics. In: [28], pp. 2366–2373.

[95] Kononova, A. V., Ingham, D. B., Pourkashanian, M., 2008. Simple
scheduled memetic algorithm for inverse problems in higher dimensions:
Application to chemical kinetics. In: [29], pp. 3906–3913.

[96] Koo, W. T., Goh, C. K., Tan, K. C., 2010. A predictive gradient strat-
egy for multiobjective evolutionary algorithms in a fast changing envi-
ronment. Journal of Soft Computing 2, 87–110.

[97] Korošec, P., Šilc, J., Filipič, B., 2011. The differential ant-stigmergy
algorithm. Information SciencesTo appear.

[98] Krasnogor, N., 1999. Coevolution of genes and memes in memetic al-
gorithms. In: Wu, A. (Ed.), Proceedings of the 1999 Genetic and Evo-
lutionary Computation Conference Workshop Program.

39



[99] Krasnogor, N., 2002. Studies in the theory and design space of memetic
algorithms. Ph.D. thesis, University of West England.

[100] Krasnogor, N., 2004. Self-generating metaheuristics in bioinformat-
ics: The protein structure comparison case. Genetic Programming and
Evolvable Machines 5 (2), 181–201.

[101] Krasnogor, N., Blackburne, B., Burke, E., Hirst, J., 2002. Multimeme
algorithms for proteine structure prediction. In: [125], pp. 769–778.

[102] Krasnogor, N., Gustafson, S., 2004. A study on the use of “self-
generation” in memetic algorithms. Natural Computing 3 (1), 53–76.

[103] Krasnogor, N., Smith, J., 2000. A memetic algorithm with self-adaptive
local search: TSP as a case study. In: [226], pp. 987–994.

[104] Krasnogor, N., Smith, J., 2001. Emergence of profitable search strate-
gies based on a simple inheritance mechanism. In: Spector, L., et al.
(Eds.), GECCO 2001. Morgan Kaufmann, San Francisco, California,
USA, pp. 432–439.

[105] Krasnogor, N., Smith, J., 2005. A tutorial for competent memetic al-
gorithms: model, taxonomy, and design issues. IEEE Transactions on
Evolutionary Computation 9, 474–488.

[106] Krasnogor, N., Smith, J., 2008. Memetic algorithms: The polynomial
local search complexity theory perspective. Journal of Mathematical
Modelling and Algorithms 7 (1), 3–24.

[107] Land, M. W. S., 1998. Evolutionary algorithms with local search for
combinatorial optimization. Ph.D. thesis, University of California, San
Diego.

[108] Le, M. N., Ong, Y. S., Jin, Y., Sendhoff, B., 2009. Lamarckian
memetic algorithms: local optimum and connectivity structure analy-
sis. Memetic Computing Journal 1 (3), 175–190.

[109] Li, X., Liang, X.-M., 26-28 2007. A hybrid adaptive evolutionary algo-
rithm for constrained optimization. In: Third International Conference
on Intelligent Information Hiding and Multimedia Signal Processing.
Vol. 2. pp. 338 –341.

40



[110] Lim, D., Jin, Y., Ong, Y.-S., Sendhoff, B., 2010. Generalizing
surrogate-assisted evolutionary computation. IEEE Transactions on
Evolutionary Computation 14 (3), 329–355.

[111] Lim, D., Ong, Y.-S., Jin, Y., Sendhoff, B., Lee, B. S., 2006. Inverse
multi-objective robust evolutionary design. Genetic Programming and
Evolvable Machines 7 (4), 383–404.

[112] Lim, D., Ong, Y.-S., Lim, M.-H., Jin, Y., 2007. Single/Multi-objective
inverse robust evolutionary design methodology in the presence of un-
certainty. In: Yang, S., Ong, Y.-S., Jin, Y. (Eds.), Evolutionary Com-
putation in Dynamic and Uncertain Environments. Vol. 51 of Studies
in Computational Intelligence. Springer-Verlag, pp. 437–456.

[113] Lim, K. K., Ong, Y.-S., Lim, M. H., Chen, X., Agarwal, A., 2008.
Hybrid ant colony algorithms for path planning in sparse graphs. Soft
Computing - A Fusion of Foundations, Methodologies and Applications
12 (10), 981–994.

[114] Liu, B., Ma, H., Zhang, X., Zhou, Y., 2007. A memetic co-evolutionary
differential evolution algorithm for constrained optimization. In: [28],
pp. 2996 –3002.

[115] Lozano, M., Garćıa-Mart́ınez, C., 2010. Hybrid metaheuristics with
evolutionary algorithms specializing in intensification and diversifica-
tion: Overview and progress report. Computers & Operations Research
37 (3), 481 – 497.

[116] Lozano, M., Herrera, F., Krasnogor, N., Molina, D., 2004. Real-coded
memetic algorithms with crossover hill-climbing. Evolutionary Compu-
tation 12 (3), 273–302.

[117] Lust, T., Jaszkiewicz, A., 2010. Speed-up techniques for solving large-
scale biobjective TSP. Computers and Operations Research 37, 521–
533.

[118] Mallipeddi, R., Mallipeddi, S., Suganthan, P. N., 2010. Ensemble
strategies with adaptive evolutionary programming. Information Sci-
ences 180 (9), 1571–1581.

41



[119] Mallipeddi, R., Suganthan, P. N., Pan, Q. K., Tasgetiren, M. F., 2011.
Differential evolution algorithm with ensemble of parameters and mu-
tation strategies. Applied Soft Computing 11 (2), 1679–1696.

[120] Männer, R., Manderick, B. (Eds.), 1992. Parallel Problem Solving from
Nature II. Elsevier, Brussels, Belgium.

[121] Marchiori, E., Steenbeek, A., 2000. An evolutionary algorithm for large
scale set covering problems with application to airline crew scheduling.
In: Scheduling, in Real World Applications of Evolutionary Comput-
ing. Lecture Notes in Computer Science. Springer-Verlag, pp. 367–381.

[122] Marinakis, Y., Marinaki, M., 2010. A hybrid genetic - particle swarm
optimization algorithm for the vehicle routing problem. Expert Systems
with Applications 37 (2), 1446–1455.

[123] Mathias, K., Whitley, D., 1992. Genetic operators, the Fitness Land-
scape and the Traveling Salesman Problem. In: [120], pp. 219–228.

[124] Mendoza, J. E., Castanier, B., Guéret, C., Medaglia, A. L., Velasco, N.,
2010. A memetic algorithm for the multi-compartment vehicle routing
problem with stochastic demands. Computers & Operations Research
37 (11), 1886–1898, metaheuristics for Logistics and Vehicle Routing.

[125] Merelo Guervós, J. J., et al. (Eds.), 2002. Parallel Problem Solving
from Nature VII. Vol. 2439 of Lecture Notes in Computer Science.
Springer-Verlag, Granada, Spain.

[126] Merz, P., 2001. On the performance of memetic algorithms in com-
binatorial optimization. In: Second Workshop on Memetic Algo-
rithms (WOMA II), Genetic and Evolutionary Computation Confer-
ence GECCO 2001. Morgan Kaufmann, pp. 297–345.

[127] Merz, P., 2002. A comparison of memetic recombination operators for
the traveling salesman problem. In: GECCO 2002: Proceedings of
the Genetic and Evolutionary Computation Conference. Morgan Kauf-
mann, pp. 472–479.

[128] Merz, P., 2004. Advanced fitness landscape analysis and the perfor-
mance of memetic algorithms. Evolutionary Computation 12 (3), 303–
326.

42



[129] Merz, P., Fischer, T., 2007. A memetic algorithm for large traveling
salesman problem instances. In: MIC’2007 - 7th Metaheuristics Inter-
national Conference.

[130] Merz, P., Freisleben, B., 1997. A Genetic Local Search Approach to
the Quadratic Assignment Problem. In: Bäck, T. (Ed.), Seventh Inter-
national Conference on Genetic Algorithms. Morgan Kaufmann, San
Mateo, CA, pp. 465–472.

[131] Merz, P., Freisleben, B., 1997. Genetic Local Search for the TSP: New
Results. In: 1997 IEEE International Conference on Evolutionary Com-
putation. IEEE Press, pp. 159–164.

[132] Merz, P., Freisleben, B., 1998. Memetic Algorithms and the Fitness
Landscape of the Graph Bi-partitioning Problem. In: Eiben, A. E.,
Bäck, T., Schoenauer, M., Schwefel, H.-P. (Eds.), PPSN 1998. Vol. 1498
of Lecture Notes in Computer Science. Springer-Verlag, Amsterdam,
The Netherlands, pp. 765–774.

[133] Merz, P., Freisleben, B., 1999. Fitness landscapes and memetic algo-
rithm design. In: Corne, D., Dorigo, M., Glover, F. (Eds.), New Ideas
in Optimization. McGraw-Hill, pp. 245–260.

[134] Merz, P., Freisleben, B., 2000. Fitness landscape analysis and memetic
algorithms for the quadratic assignment problem. IEEE Transactions
on Evolutionary Computation 4 (4), 337–352.

[135] Merz, P., Freisleben, B., 2000. Fitness landscapes, memetic algorithms
and greedy operators for graph bi-partitioning. Evolutionary Compu-
tation 8 (8), 61–91.

[136] Merz, P., Freisleben, B., 2001. Memetic algorithms for the traveling
salesman problem. Complex Systems 13 (4), 297–345.

[137] Meuth, R., Lim, M. H., Ong, Y. S., II, D. C. W., 2009. A proposition
on memes and meta-memes in computing for higher-order learning.
Memetic Computing Journal 1 (2), 85–100.

[138] Mininno, E., Neri, F., 2010. A memetic differential evolution approach
in noisy optimization. Journal of Memetic Computing 2, 111–135.

43



[139] Molina, D., Herrera, F., Lozano, M., 2005. Adaptive local search pa-
rameters for real-coded memetic algorithms. In: [27], pp. 888–895.

[140] Molina, D., Lozano, M., Garćıa-Mart́ınez, C., Herrera, F., 2010.
Memetic algorithms for continuous optimization based on local search
chains. Evolutionary Computation 18 (1), 1–37.

[141] Moscato, P., 1989. On evolution, search, optimization, genetic algo-
rithms and martial arts: Towards memetic algorithms. Tech. Rep. 826,
Caltech Concurrent Computation Program.

[142] Moscato, P., Cotta, C., 2003. A gentle introduction to memetic algo-
rithms. In: Glover, F., Kochenberger, A. (Eds.), Handbook of meta-
heuristics. Kluwer Academic Publishers, pp. 105–144.

[143] Moscato, P., Norman, M., 1989. A competitive and cooperative ap-
proach to complex combinatorial search. Tech. Rep. 790, Caltech Con-
current Computation Program.

[144] Moser, I., Chiong, R., 2009. A Hooke-Jeeves based memetic algorithm
for solving dynamic optimisation problems. In: Corchado, E. (Ed.),
4th International Conference on Hybrid Artificial Intelligence Systems
HAIS 2009. Vol. 5572 of Lecture Notes in Computer Science. Springer,
pp. 301–309.

[145] Moser, I., Chiong, R., 2010. Dynamic function optimisation with hy-
bridised extremal dynamics. Journal of Memetic Computing 2, 137–
148.

[146] Moser, I., Hendtlass, T., 2007. A simple and efficient multi-component
algorithm for solving dynamic function optimisation problems. In: [28],
pp. 252–259.

[147] Mühlenbein, H., Schomisch, M., Born, J., 1991. The parallel genetic
algorithm as function optimizer. In: Belew, R. K., Booker, L. B. (Eds.),
ICGA 1991. Morgan Kaufmann, San Diego CA, pp. 271–278.

[148] Nelder, A., Mead, R., 1965. A simplex method for function optimiza-
tion. Computation Journal Vol 7, 308–313.

44



[149] Neri, F., Cotta, C., Moscato, P., 2012. Handbook of Memetic Algo-
rithms. Vol. 379 of Studies in computational Intelligence. Springer-
Verlag.

[150] Neri, F., del Toro Garcia, X., Cascella, G. L., Salvatore, N., 2008.
Surrogate assisted local search on PMSM drive design. COMPEL: In-
ternational Journal for Computation and Mathematics in Electrical
and Electronic Engineering 27 (3), 573–592.

[151] Neri, F., Kotilainen, N., Vapa, M., 2007. An adaptive global-local
memetic algorithm to discover resources in p2p networks. In: EvoWork-
shops. pp. 61–70.

[152] Neri, F., Kotilainen, N., Vapa, M., 2008. A memetic-neural approach
to discover resources in P2P networks. In: Cotta, C., van Hemert, J.
(Eds.), Recent Advances in Evolutionary Computation for Combina-
torial Optimization. Vol. 153/2008 of Studies in Computational Intel-
ligence. Springer, pp. 113–129.

[153] Neri, F., Mäkinen, R. A. E., 2007. Hierarchical evolutionary algorithms
and noise compensation via adaptation. In: Yang, S., Ong, Y. S.,
Jin, Y. (Eds.), Evolutionary Computation in Dynamic and Uncertain
Environments. Studies in Computational Intelligence. Springer-Verlag,
Ch. 15, pp. 345–369.

[154] Neri, F., Mininno, E., 2010. Memetic compact differential evolution
for cartesian robot control. IEEE Computational Intelligence Magazine
5 (2), 54–65.

[155] Neri, F., Tirronen, V., 2009. Scale factor local search in differential
evolution. Memetic Computing 1 (2), 153–171.

[156] Neri, F., Tirronen, V., Kärkkäinen, T., Rossi, T., 2007. Fitness diver-
sity based adaptation in multimeme algorithms: A comparative study.
In: [28], pp. 2374–2381.

[157] Neri, F., Toivanen, J., Cascella, G. L., Ong, Y. S., 2007. An adap-
tive multimeme algorithm for designing HIV multidrug therapies.
IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 4 (2), 264–278.

45



[158] Neri, F., Toivanen, J., Mäkinen, R. A. E., December 2007. An adap-
tive evolutionary algorithm with intelligent mutation local searchers
for designing multidrug therapies for HIV. Applied Intelligence 27 (3),
219–235.

[159] Ngueveu, S. U., Prins, C., Calvo, R. W., 2010. An effective memetic al-
gorithm for the cumulative capacitated vehicle routing problem. Com-
puters & Operations Research 37 (11), 1877 – 1885.

[160] Nguyen, Q. C., Ong, Y. S., Lim, M. H., 2009. A probabilistic memetic
framework. IEEE Transactions on Evolutionary Computation 13 (3),
604–623.

[161] Nguyen, Q. H., Ong, Y.-S., Krasnogor, N., 2007. A study on the design
issues of memetic algorithm. In: [28], pp. 2390–2397.

[162] Noman, N., Iba, H., 2005. Enhancing differential evolution performance
with local search for high dimensional function optimization. In: Beyer,
H.-G., O’Reilly, U.-M. (Eds.), GECCO 2005. ACM Press, Washington
DC, pp. 967–974.

[163] Noman, N., Iba, H., 2008. Accelerating differential evolution using an
adaptive local search. IEEE Transactions on Evolutionary Computa-
tion 12 (1), 107–125.

[164] Ong, Y. S., Keane, A. J., 2004. Meta-lamarkian learning in memetic
algorithms. IEEE Transactions on Evolutionary Computation 8 (2),
99–110.

[165] Ong, Y.-S., Lim, M.-H., Chen, X., 2010. Memetic computation-past,
present and future. IEEE Computational Intelligence Magazine 5 (2),
24–31.

[166] Ong, Y. S., Lim, M. H., Zhu, N., Wong, K. W., 2006. Classification
of adaptive memetic algorithms: A comparative study. IEEE Transac-
tions On Systems, Man and Cybernetics - Part B 36 (1), 141–152.

[167] Ong, Y.-S., Nair, P. B., Keane, A. J., 2003. Evolutionary optimization
of computationally expensive problems via surrogate modeling. AIAA
Journal 41 (4), 687–696.

46



[168] Ong, Y. S., Nair, P. B., Keane, A. J., Wong, K. W., 2004. Surrogate-
assisted evolutionary optimization frameworks for high-fidelity engi-
neering design problems. In: Jin, Y. (Ed.), Knowledge Incorporation
in Evolutionary Computation. Springer, Berlin, Germany, pp. 307–331.

[169] Ong, Y.-S., Nair, P. B., Lum, K. Y., 2006. Max-min surrogate-assisted
evolutionary algorithm for robust aerodynamic design. IEEE Transac-
tions on Evolutionary Computation 10 (4), 392–404.

[170] Ong, Y.-S., Nair, P. B., Lum, K. Y., 2006. Max-min surrogate-assisted
evolutionary algorithm for robust design. IEEE Transactions on Evo-
lutionary Computation 10 (4), 392–404.

[171] Ong, Y.-S., Zhou, Z., Lim, D., 2006. Curse and blessing of uncertainty
in evolutionary algorithm using approximation. In: CEC 2006. IEEE
Press, pp. 2928–2935.

[172] Ono, S., Hirotani, Y., Nakayama, S., 2009. A memetic algorithm for
robust optimal solution search–hybridization of multi-objective genetic
algorithm and quasi-newton method. International Journal of Innova-
tive Computing, Information and Control 5 (12B), 5011–5019.

[173] Ono, S., Yoshitake, Y., Nakayama, S., 2009. Robust optimization us-
ing multi-objective particle swarm optimization. Artificial Life and
Robotics 14 (2).

[174] Ozcan, E., Mohan, C. K., 1998. Steady state memetic algorithm for
partial shape matching. In: Porto, W. V. (Ed.), 7th International Con-
ference on Evolutionary Programming. Vol. 1447 of Lecture Notes In
Computer Science. Springer-Verlag, pp. 527–536.

[175] P., C., A., J., 1998. Pareto simulated annealing - a metaheuristic
technique for multiple-objective combinatorial optimisation. Journal
of Multi-Criteria Decision Analysis 7, 34–47.

[176] Papadimitriou, C. H., Steiglitz, K., 1982. Combinatorial optimization:
algorithms and complexity. Prentice-Hall.

[177] Paquete, L., Chiarandini, M., Stützle, T., 2004. Pareto local optimum
sets in the biobjective traveling salesman problem: An experimental
study. In: Gandibleux, X., Sevaux, M., Sörensen, K., Tkindt, V. (Eds.),

47



Meta-heuristics for Multiobjective Optimisation. Vol. 535 of Lecture
Notes in Economics and Mathematical Systems. Springer-Verlag, pp.
177–199.

[178] Park, Y. M., Park, J. B., Won, J. R., 1998. A hybrid genetic algo-
rithm/dynamic programming approach to optimal long-term genera-
tion expansion planning. International Journal of Electrical Power &
Energy Systems 20 (4), 295–303.

[179] Prins, C., 2004. A simple and effective evolutionary algorithm for the
vehicle routing problem. Computers & Operations Research 31 (12),
1985 – 2002.

[180] Prins, C., 2009. Two memetic algorithms for heterogeneous fleet vehicle
routing problems. Engineering Applications of Artificial Intelligence
22 (6), 916 – 928, artificial Intelligence Techniques for Supply Chain
Management.

[181] Qin, A. K., Huang, V. L., Suganthan, P. N., 2009. Differential evolution
algorithm with strategy adaptation for global numerical optimization.
IEEE Transactions on Evolutionary Computation 13, 398–417.

[182] Qu, B. Y., Suganthan, P. N., Liang, J. J., 2012. Differential evolu-
tion with neighborhood mutation for multimodal optimization. IEEE
Transactions on Evolutionary ComputationTo appear.

[183] Ray, T., Sarker, R., 2007. Genetic algorithm for solving a gas lift opti-
mization problem. Journal of Petroleum Science and Engineering 59 (1-
2), 84 – 96.

[184] Ray, T., Singh, H. K., Isaacs, A., Smith, W., 2009. Infeasibility driven
evolutionary algorithm for constrained optimization. In: Mezura-
Montes, E. (Ed.), Constraint Handling in Evolutionary Optimization.
Studies in Computational Intelligence. Springer, pp. 145–165.

[185] Rechenberg, I., 1973. Evolutionsstrategie: Optimierung technischer
Systeme nach Prinzipien der biologischen Evolution. Frommann-
Holzboog Verlag, Stuttgart.

48



[186] Rodŕıguez, J. F., Renaud, J. E., Watson, L. T., 1998. Trust region aug-
mented Lagrangian methods for sequential response surface approxima-
tion and optimization. ASME Journal of Mechanical Design 120 (1),
58–66.

[187] Rogalsky, T., Derksen, R. W., June 2000. Hybridization of differential
evolution for aerodynamic design. In: Proceedings of the 8th Annual
Conference of the Computational Fluid Dynamics Society of Canada.
pp. 729–736.

[188] Rosenbrock, H. H., 1960. An automatic method for findong the greatest
or least value of a function. The Computer Journal 3 (3), 175–184.

[189] Schoenauer, M., et al. (Eds.), 2000. Parallel Problem Solving from
Nature VI. Vol. 1917 of Lecture Notes in Computer Science. Springer-
Verlag, Paris, France.

[190] Schwefel, H.-P., 1984. Evolution strategies: A family of non-linear op-
timization techniques based on imitating some principles of natural
evolution. Annals of Operations Research 1, 165–167.

[191] Sefrioui, M., Périaux, J., 2000. A hierarchical genetic algorithm using
multiple models for optimization. In: [189], pp. 879–888.

[192] Serafini, P., 1992. Simulated annealing for multiple objective optimiza-
tion problems. In: Tenth International Conference on Multiple Criteria
Decision Making. Vol. 1. pp. 87–96.

[193] Seront, G., Bersini, H., 2000. A new GA-local search hybrid for con-
tinuous optimization based on multi-level single linkage clustering. In:
[226], pp. 90–95.

[194] Shyr, W.-J., 2009. Robust control design for aircraft controllers via
memetic algorithms. International Journal of Innovative Computing,
Information and Control 5 (10A), 3133–3140.

[195] Singh, H., Ray, T., Smith, W., 2010. Performance of infeasibility em-
powered memetic algorithm for CEC 2010 constrained optimization
problems. In: [30], pp. 1–8.

49



[196] Smith, J., 2002. Co-evolution of memetic algorithms: Initial investiga-
tions. In: [125], pp. 537–548.

[197] Smith, J., 2003. Protein structure prediction with co-evolving memetic
algorithms. In: CEC 2003. IEEE Press, Canberra, Australia, pp. 2346–
2353.

[198] Smith, J., 2005. The co-evolution of memetic algorithms for protein
structure prediction. In: Recent advances in memetic algorithms. Vol.
166 of Studies in Fuzziness and Soft Computing. Springer-Verlag, pp.
105–128.

[199] Smith, J. E., 2007. Coevolving memetic algorithms: A review and
progress report. IEEE Transactions on Systems, Man, and Cybernetics,
Part B 37 (1), 6–17.

[200] Song, W., 2009. Multiobjective memetic algorithm and its applica-
tion in robust airfoil shape optimization. In: C.-K. Goh, Y.-S. Ong,
K. T. (Ed.), Multi-Objective Memetic Algorithms. Vol. 171 of Studies
in Computational Intelligence. Springer, pp. 389–402.

[201] Sörensen, K., Sevaux, M., 2009. A practical approach for robust and
flexible vehicle routing using metaheuristics and Monte Carlo sampling.
Journal of Mathematical Modelling and Algorithms 8 (4), 387–407.

[202] Sudholt, D., 2008. Memetic algorithms with variable-depth search to
overcome local optima. In: Ryan, C., Keijzer, M. (Eds.), GECCO 2008.
ACM Press, Atlanta GA, pp. 787–794.

[203] Surry, P., Radcliffe, N., 1996. Inoculation to initialise evolutionary
search. In: Fogarty, T. (Ed.), Evolutionary Computing: AISB Work-
shop. No. 1143 in Lecture Notes in Computer Science. Springer-Verlag,
pp. 269–285.

[204] Tagawa, K., Masuoka, M., Tsukamoto, M., 2005. Robust optimum
design of saw filters with the taguchi method and a memetic algorithm.
In: [27], pp. 2146–2153.

[205] Tan, K., Chiama, S., Mamuna, A., Goha, C., 2009. Balancing explo-
ration and exploitation with adaptive variation for evolutionary multi-
objective optimization. European Journal of Operational Research 197,
701–713.

50



[206] Tan, K. C., Cheong, C. Y., Goh, C. K., 2007. Solving multiobjective
vehicle routing problem with stochastic demand via evolutionary com-
putation. European Journal of Operational Research 177 (2), 813–839.

[207] Tang, J., Lim, M. H., Ong, Y. S., 2006. Parallel memetic algorithm
with selective local search for large scale quadratic assignment prob-
lems. International Journal of Innovative Computing, Information and
Control 2 (6), 1399–1416.

[208] Tang, J., Lim, M. H., Ong, Y. S., 2007. Diversity-adaptive parallel
memetic algorithm for solving large scale combinatorial optimization
problems. Soft Computing-A Fusion of Foundations, Methodologies
and Applications 11 (9), 873–888.

[209] Tenne, Y., 2009. A model-assisted memetic algorithm for expensive op-
timization problems. In: Chiong, R. (Ed.), Nature-Inspired Algorithms
for Optimisation. No. 193 in Studies in Computational Intelligence.
Springer-Verlag, pp. 133–169.

[210] Tenne, Y., Armfield, S. W., 2007. A memetic algorithm using a trust-
region derivative-free optimization with quadratic modelling for opti-
mization of expensive and noisy black-box functions. In: Yang, S., Ong,
Y.-S., Jin, Y. (Eds.), Evolutionary Computation in Dynamic and Un-
certain Environments. Vol. 51 of Studies in Computational Intelligence.
Springer-Verlag, pp. 389–415.

[211] Tenne, Y., Armfield, S. W., 2008. A versatile surrogate-assisted
memetic algorithm for optimization of computationally expensive func-
tions and its engineering applications. In: Yang, A., Shan, Y., Thu Bui,
L. (Eds.), Success in Evolutionary Computation. Vol. 92 of Studies in
Computational Intelligence. Springer-Verlag, pp. 43–72.

[212] Tenne, Y., Armfield, S. W., 2009. A framework for memetic optimiza-
tion using variable global and local surrogate models. Journal of Soft
Computing 13 (8).

[213] Tirronen, V., Neri, F., Kärkkäinen, T., Majava, K., Rossi, T., 2008.
An enhanced memetic differential evolution in filter design for defect
detection in paper production. Evolutionary Computation 16, 529–555.

51



[214] Tseng, L.-Y., Chen, C., 2008. Multiple trajectory search for large scale
global optimization. In: Proceedings of the IEEE Congress on Evolu-
tionary Computation. pp. 3052–3059.

[215] Ulungu, E. L., Teghem, J., Fortemps, P., Tuyttens, D., 1999. MOSA
method: a tool for solving multiobjective combinatorial optimization
problems. Journal of Multi-Criteria Decision Analysis 8, 221–236.

[216] Vavak, F., Jukes, K. A., Fogarty, T. C., 1996. A genetic algorithm with
variable range of local search for tracking changing environments. In:
[219], pp. 376–385.

[217] Vavak, F., Jukes, K. A., Fogarty, T. C., 1997. Adaptive combustion bal-
ancing in multiple burner boiler using a genetic algorithm with variable
range of local search. In: Bäck, T. (Ed.), ICGA 1997. Morgan Kauf-
mann, pp. 719–726.

[218] Vavak, F., Jukes, K. A., Fogarty, T. C., 1998. Performance of a genetic
algorithm with variable local search range relative to frequency of the
environmental changes. In: Koza, J. R. (Ed.), Third Annual Conference
on Genetic Programming. Morgan Kaufmann, pp. 602–608.

[219] Voigt, H.-M., Ebeling, W., Rechenberger, I., Schwefel, H.-P. (Eds.),
1996. Parallel Problem Solving from Nature IV. Vol. 1141 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Germany.

[220] Wang, H., Wang, D., Yang, S., 2009. A memetic algorithm with adap-
tive hill climbing strategy for dynamic optimization problems. Journal
of Soft Computing 13, 763–780.

[221] Wang, H., Yang, S., Ip, W. H., Wang, D., 2010. A particle swarm opti-
mization based memetic algorithm for dynamic optimization problems.
Natural Computing 3 (9), 703–725.

[222] Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q., 2011.
Self-adaptive learning based particle swarm optimization. Information
SciencesTo appear.

[223] Weber, M., Neri, F., Tirronen, V., 2011. Shuffle or update parallel
differential evolution for large-scale optimization. Soft Computing - A

52



Fusion of Foundations, Methodologies and Applications 15 (11), 2089–
2107.

[224] Weber, M., Tirronen, V., Neri, F., 2010. Scale factor inheritance mech-
anism in distributed differential evolution. Soft Computing - A Fusion
of Foundations, Methodologies and Applications 14, 1187–1207.

[225] Whitley, D., Jul. 1987. Using reproductive evaluation to improve ge-
netic search and heuristic discovery. In: Grefenstette, J. (Ed.), 2nd In-
ternational Conference on Genetic Algorithms and their Applications.
Lawrence Erlbaum Associates, Cambridge, MA, pp. 108–115.

[226] Whitley, L. D., et al. (Eds.), 2000. Genetic and Evolutionary Com-
putation Conference – GECCO 2000. Morgan Kaufmann, Las Vegas
NV.

[227] Wolf, S., Merz, P., 2007. A hybrid method for solving large-scale supply
chain problems. In: EvoCOP 2007 - Seventh European Conference on
Evolutionary Computation in Combinatorial Optimization. Vol. 4446
of Lecture Notes in Computer Science. Springer, pp. 219–228.

[228] Wolpert, D., Macready, W., 1997. No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation 1 (1), 67–82.

[229] Yao, X., Liu, Y., 1997. A new evolutionary systems for evolving arti-
ficial neural networks. IEEE Transactions on Neural Networks 8 (3),
694–713.

[230] Yu, E. L., Suganthan, P. N., 2010. Ensemble of niching algorithms.
Information Sciences 180 (15), 2815–2833.

[231] Yuan, Q., Qian, F., Du, W., 2010. A hybrid genetic algorithm with the
baldwin effect. Information Sciences 180 (5), 640–652.

[232] Zamuda, A., Brest, J., Bošković, B., Žumer, V., 2008. High-dimensional
real-parameter optimization using self-adaptive differential evolution
algorithm with population size reduction. In: [29], pp. 2032–2039.

[233] Zhang, Q., Zhou, A., Jin, Y., 2008. RM-MEDA: A regularity model
based multiobjective estimation of distribution algorithm. IEEE Trans-
actions on Evolutionary Computation 12 (1), 41–63.

53



[234] Zhao, S.-Z., Suganthan, P. N., Das, S., 2011. Self-adaptive differential
evolution with multi-trajectory search for large-scale optimization. Soft
Computing - A Fusion of Foundations, Methodologies and Applications
15 (11), 2175–2185.

[235] Zhou, Z., Ong, Y.-S., Lim, M.-H., Lee, B., 2007. Memetic algo-
rithms using multi-surrogates for computationally expensive optimiza-
tion problems. Journal of Soft Computing 11 (10), 957–971.

54


