
HALL-OF-FAME COMPETITIVE COEVOLUTIONARY ALGORITHMS FOR OPTIMIZING
OPPONENT STRATEGIES IN A NEW GAME

Mariela Nogueira1, Juan M. Gálvez, Carlos Cotta, Antonio J. Fernández-Leiva
1University of Computers Science in Cuba, University of Málaga in Spain
Email: 1mnogueira@uci.cu, {ccottap|afdez}@lcc.uma.es

KEYWORDS
Coevolution, RTS game, Genetic Algorithm, Artificial Inte-
lligence

ABSTRACT

This paper describes the application of competitive coevo-
lution as a mechanism of self learning in a two-player real
time strategy (RTS) game. The paper presents this (war)
RTS game, developed by the authors as an open-source tool,
and describes its (built-in) coevolutionary engine developed
to find winning strategies. This engine applies a competitive
coevolutionary algorithm that uses the concept of Hall-of-
Fame to establish a long-term memory that is employed in
the evaluation process. An empirical analysis of the perfor-
mance of two different versions of this coevolutionary algo-
rithm is conducted in the context of the RTS game. More-
over, the paper also shows, by an example, the potential of
this coevolutionary engine as a prediction tool by inferring
the initial conditions (i.e. army configuration) under which a
battle has been executed when we know the final result.

INTRODUCTION

Artificial Intelligence (AI) implementation represents a chal-
lenge in game development, and a deficient game AI surely
decreases the satisfaction of the player. Game AI has been
traditionally coded manually which causes well-known prob-
lems such as loss of reality, sensation of artificial stupidity,
and predictable behaviors, among others; to overcome them
a number of advanced AI techniques have recently been pro-
posed in the literature, and coevolution, a biologically in-
spired technique based on the interaction between different
species, represents one of the most interesting techniques.
Coevolution has been shown to be successful on a number
of applications but it also has a number of drawbacks Fi-
cici and Bucci (2007), Watson and Pollack (2001). In con-
sequence several alternatives have already been proposed to
alleviate the inherent problems of the process; for instance,
the integrative techniques such as the so-called Pareto Co-
evolution De Jong and Pollack (2004), Jong (2007), de Jong
(2004), Ficici and Pollack (2000) that proffers the integra-
tion between coevolution with Evolutionary Multi-Objective
Optimization; also the application of evolutionary game the-
ory to the study of coevolutionary algorithms Ficici and Pol-
lack (2000), Ficici (2004), Wiegand et al. (2002). However

the primary remedy to cope with the pathologies of coevolu-
tion consists of proposing new forms of evaluating individ-
uals during coevolution Rosin and Belew (1995), and mem-
orization of a number of successful solutions to guide the
search is one of the most employed. Following this idea,
Rosin and Belew (1997) already proposed the use of a Hall-
of-Fame based mechanism as an archive method and, since
then, there have been similar proposals such as those de-
scribed in de Jong (2004), Jaskowski and Krawiec (2010),
Jong (2007), Yang et al. (2009).
Coevolutionary systems are usually based on two kinds of
interactions: one in which different species interact symbi-
otically (i.e. the cooperative approach) and other in which
species compete among them (i.e. the competitive approach).
In the cooperation, an individual is decomposed in different
components that evolve simultaneously and the fitness de-
pends on the interaction between these components; in the
competition, an individual competes with other individuals
for the fitness value and, if necessary, will increase its fitness
at the expense of its counterparts, decreasing their fitness,
as happens in a competitive game Johnson et al. (2004). This
latter approach resembles an arms race in which the improve-
ment of some individuals causes the improvement in others,
and viceversa. Moreover, coevolutionary arms races can in
principle lead to the discovery of complex, original behav-
iors that can make the game dramatically more interesting
and challenging Dziuk and Miikkulainen (2011). Several
experiments have shown significants results in the applica-
tion of coevolutionary models in competitive environments
to study the emergence of strategies in simple and complex
games Angeline and Pollack (1993), Sims (1994), Johnson
et al. (2004), Avery et al. (2008a), Smith et al. (2010).
This paper deals with the application of competitive coevo-
lution (CC) as a self learning mechanism in RTS games. As
a first contribution, the paper presents robotWars, a RTS war
game available as open-source, that has been developed by
the authors of this paper to be used as a tool to do research on
CC methods. As a second contribution, the paper describes
the evolutionary engine built-in inside robotWars; this en-
gine consists of a competitive coevolutionary algorithm that
uses in the evaluation process a Hall-of-Fame that acts as a
long-term memory mechanism; from this engine, we devise
two different variants that are used to automatically produce
game strategies to govern the behavior of the army in the
game that can also beat its opponent counterpart. Finally,
we show (through an example) that the coevolutionary en-



gine built-in into robotWars can also be used as a predictive
model to guess what has happened in already finished battles
and whose conditions were not known at the time.

GAME DESCRIPTION

This section is devoted to robotWars1, our arena for cooper-
ative evolution; robotWars is a test environment that allows
two virtual players (i.e. game AIs) to compete in a 3 di-
mensional scenario of a RTS war game, and thus it is not
a standard game itself in the sense that no human players
intervene interactively during the game; however it is a per-
fect scenario to test the goodness and efficacy of (possibly
hand-coded) strategies to control the game AI and where the
human player can influence the game by setting its initial
conditions. To provide a good 3D simulation, the game was
programmed with Ogre3D.
In robotWars, two different armies (each of them controlled
by a virtual player - i.e. a game AI) fight in a map (i.e.
the scenario) that contains multiple obstacles and has lim-
ited dimensions. Each army consists of a number of different
units (including one general), in the initial configuration both
armies have identical number of units, and the army that first
wipes out the rival general is considered the winner. The
game is executed in turns and in each turn one army is al-
lowed to send, separately, one order to each of its constituent
units (i.e. each unit can received a different order to be exe-
cuted).
Virtual players are internally coded as a 4 dimension matrix
where the first dimension has 7 different values correspond-
ing to the type of unit(i.e. general, infantry, chariot, air force,
antiaircraft, artillery, cavalry), the second dimension to ob-
jective closeness (i.e. a binary value: 0 if the unit is closer to
the enemy general than to its mate general, and 1 otherwise),
the third dimension to numeric advantage (i.e. are there, in
a nearby space2, more mate units than rival units? A binary
answer:yes/no), and the fourth dimension to health (i.e. an
amount that indicates the health level of the army as high,
medium or low, respect to the numbers of living units). Each
position of the matrix acts as a gen and stores one of the fol-
lowing 5 actions: attack3, advance, recede, crowd together,
or no operation.
The whole matrix represents a strategy that controls, deter-
ministically, the behavior of an army during the game. For a
specific type of unit there are 12 possible different states (i.e.
2×2×3, all the possible value combinations considering the
last three dimensions of the matrix), and basically, in a spe-
cific turn of the game each unit of the army will execute the
action stored in the state in which the unit perceives that it
is. Note that all the units (irrespective of their type) are man-
aged by the same controller, and in any instant of the game,

1http://www.lcc.uma.es/∼afdez/robotWars
2Each unit u placed in a position (xu, yu, zu) in the map has its own

visual range that embraces any position (x, y, z) that is placed to a maxi-
mum distance τ of its own position; this means that each unit only receives
information that is perceived inside its visual range.

3This action starts the combat against the nearest enemy.

the team behavior will be the result of summing up all the
action taken by each of its constituent units. Note however
that this does not mean all the units execute the same action
because the action to be executed by a unit will depend on its
particular situation in the match and its specific category.

Figure 1: A simple map without obstacles

Figure 2: A map with obstacles

robotWars includes two interesting tools: the Battle genera-
tor, that allows a human to generate different scenarios for
the game by changing the topologies and structures of the
armies; two types of army formation are initially allowed:
testudo or tortoise formation, in which the units are placed
as a homogeneous block and the general is positioned in its
center, and band or guerrilla formation, in which the units
are dispersed in the battle scenario; Figure 1 shows a very
simple scenario with an army initially positioned in tortoise
formation (red) and the other in guerrilla formation (blue);
also the green cell represents a walkable area, and the letter
G points out the general position. Figure 2 shows a map with
obstacles which are symbolized by gray cells. The other tool,
the Battle simulator, receives as entry two different game AIs
and a map (that includes not only the orographic features of
the terrain but also the topologies and structure of the two
armies) over which a game will be run and provides a deter-
ministic simulation of a war between the two armies. There
are a number of configurable parameters such as maximum
number of iterations or initial army formation for example.
Figure 3 shows a screenshot of a battle in the game.

HALL-OF-FAME BASED COMPETITIVE COEVOLU-
TIONARY ALGORITHM (HofCC)

Our objective is to apply competitive coevolution techniques
to automate the generation of victorious strategies for the
game. According to the strategies encoding explain in the



Figure 3: Screenshot of robotWars game

previous section, the search space is 57×2×2×3 = 584, which
is really huge, and precisely this forms the basis for bases the
employment of metaheuristic techniques.
Our RTS game incorporates a competitive coevolutionary al-
gorithm that uses a long-term memory to keep the winning
strategies found in each coevolutionary step; more specifi-
cally, each army (i.e. player) maintains its own Hall-of-Fame
(HoF) Rosin and Belew (1995) in which its own winning
strategies (with respect to the set of winning strategies of its
opponent) found in each coevolutionay step will be saved.
More recent studies continue exploring in the use of HoF
Lichocki et al. (2008), Avery et al. (2008b) as a long-term
memory mechanism, and although each author can propose
their own implementation, the original idea of the method re-
mains. Algorithm 1 shows schema of the said algorithm with
our implementation of HoF. A strategy is considered winning
if it achieves a certain score (see below) when it deals with
each of the strategies belonging to the set of winning strate-
gies of its opponent (i.e. the rival Hall-of-Fame). The initial
objective is to find a winning strategy of player 1 with re-
spect to player 2 (i.e. the initial opponent) so that the HoF of
player 2 is initially loaded with some strategies (randomly or
manually initialized: line 2). Then a standard evolutionary
process tries to find a strategy for player 1 that can be con-
sidered as victorious (lines 7-13). A strategy is considered
winning if its fitness value is above a certain threshold value
φ (line 14) that enables the tuning of the selective pressure of
the search process by considering higher/lower quality strate-
gies; in case of success (line 14), this strategy is added to the
HoF of player 1 (line 16) and the process is initiated again but
with the players’ roles interchanged (line 17); otherwise (i.e.
no winning strategy is found) the search process is restarted
again. If after a number of coevolutionary steps no winning
strategy is found the search is considered to be stagnated and
the coevolution finishes (see while condition in line 4). At
the end of the whole process we obtain as a result two sets
of winning strategies associated respectively to each of the
players.
With respect to the evaluation of candidates for a specific
player p (where p ∈ {player 1, player 2}), the fitness of a

specific strategy is computed by addressing it with each of
the (winning) strategies in the Hall-of-Fame of its opponent
player (note that the Hall-of-Fame acts as a long-term mem-
ory by keeping all the winners found previously and all of
them are also used in the evaluation process). Given a spe-
cific strategy s its fitness is computed as follows:

fitness(s) =

∑k
j=1(psj + extrass(j)

k
(1)

where k ∈ N is the cardinality of the opponent HoF (i.e.
number of opponent winning strategies found so far), psj ∈ <
returns φ points if strategy s beats strategy hj belonging to
the opponent HoF (i.e. victorious case), φ2 in case of a draw,
and 0 if hj wins to strategy s; Also:

extrass(j) = c−nturnsj + c ∗∆healthsj + c ∗∆Alivesj
(2)

where c ∈ N is a constant, nTurnsj ∈ N is the number of
turns spent on the game to achieve a victory of s over its op-
ponent hj (0 in case of draw or defeat), ∆healthsj ∈ N is
the difference between the final health of the army (i.e. sum
of the health of all its living units) controlled by strategy s at
the end of the match and the corresponding health of the en-
emy army, and ∆Alivesj is its equivalent with respect to the
number of living units at the end of the combat. This fitness
definition was formulated based on our game experience, and
it values the victory above any other result.

Algorithm 1: HofCC()
1 nCoev ← 0;A← player1;B ← player2; φ← thresholdvalue;
2 HoFA ← ∅;HoFB ← INITIALOPPONENT();
3 pop← EVALUATE(HOFB); // Evaluate initial population
4 while nCoev < MaxCoevolutions ∧NOT (timeout) do
5 pop←RANDOMSOLUTIONS(); // pop randomly initialized
6 i← 0;
7 while (i < MaxGenerations) ∧ (fitness(best(pop)) < φ) do
8 parents←SELECT (pop);
9 childs← RECOMBINE (parents, pX );

10 childs← MUTATE (childs, pM );
11 pop← REPLACE(childs);
12 pop← EVALUATE(HOFB);
13 end while
14 if fitness(best(pop)) ≥ φ then //winner found!
15 nCoevolutions← 0; // start new search
16 HoFA ← HoFA ∪ {best(pop)}
17 temp← A;A← B;B ← temp; // interchange players’

roles
18 else
19 nCoev ← nCoev + 1; // continue search
20 end if
21 end while

EXPERIMENTS AND ANALYSIS

For the experiments we have considered two maps (with and
without obstacles respectively), 4 possible combinations of
the two types of formation (i.e. tortoise vs. guerrilla, tortoise
vs. tortoise, guerrilla vs. tortoise, and guerrilla vs. guer-
rilla), and two possible initial predefined strategies, offensive
or random, to be charged initially in the HoF of player 2



-see Line 2 in Algorithm 1). The offensive strategy was pre-
programmed and basically executes the action of attacking
when the unit perceives that it is in an advantageous state;
otherwise, it executes the action of going back (i.e. retreat-
ing). And random strategy selects a random action (from the
five predefined actions) for each cell of the action matrix. In
summary, 16 distinct battle scenarios were considered.
In addition, two variants of the HofCC algorithm were used:
the first version of the algorithm (version A) uses the maxi-
mum size for the matrix of strategies as described in Section
and thus reserves memory for storing the behavior (i.e. the

action to be done) of all types of military units under all types
of possible situations (i.e. states), even though not all types
of units form part of the army; the consequence is that ge-
netic operators can be acting on genes that will not have an
influence on the fitness evaluation. The second version (ver-
sion B) is an optimized version that considers, for the genetic
search, only those units that are actually in the army, so the
genetic operators act on the 100% of the useful genes that
might influence the results, and surely expedites the search
process (this is important to alleviate in certain form the com-
putation cost associated to both coevolution and the Hall-of-
Fame based evaluation process).
We only show the graphs for four battles, the other results are
collected and analyzed in a table at the end of this section.
Note that we use the colors red and blue to distinguish the
armies.

CONFIGURATION OF THE EXPERIMENTS

For the experiments we have used a steady-sate genetic al-
gorithm (GA - see Lines 7-13 in Algorithm 1) with the aim
of finding a winning strategy with respect to a set of strate-
gies (stored in the HoF of the opponent) that were consid-
ered winning in previous stages of the coevolutionary al-
gorithm; this GA employed binary tournament for selec-
tion, Bernoulli crossover, it-flip mutation, elitist replacement,
MaxCoevolution = 15, Maxgenerations = 300, popu-
lation size was set to 100, and standard values for crossover
and mutation probabilities were used (pX = .9 and pM =
1/nb respectively where nb is the number of genes); and
φ = 2000 so that a strategy that defeats all the strategies
in the HoF of its opponent is surely considered as victori-
ous, although others can also be. The choice of these values
is due to a previous analysis of the mean fitness reached by
individuals in the competitions. We also set the constant c
in Equation (2) to 200, a representative value of the range
of scores that were obtained from the battle simulator after
executing a number of games.
Note that a strategy is wining only within the proposed battle
scenario and that we do not expect to find a global optimal
strategy for a generic scenario. Our analysis has been guided
by the following indicators:

• Best fitness in each coevolution: displays the best strate-
gies and possible stagnation produced in the coevolu-
tionary steps.

• Number of generations used in each coevolution: repre-
sents the number of iterations that are required to find a
winning strategy. It helps to identify whether the prob-
lem’s difficulty increases as best solutions are obtained,
or if it remains stable.

• Equality percentage of genes: it allows us to know
whether the new strategies adopted by the search al-
gorithm suffer a continuous readjustment and massive
variation of their genes, or if instead they are the result
of changes produced on small sets of genes in the strate-
gies found in previous coevolutionary steps.

In what follows, due to limitations of space, we only show
the results obtained in 4 scenarios and will focus mainly on
the first indicator mentioned. In any case, at the end of the
section a summary of the results is provided.

RESULTS OF VERSION A

Figures 4 and 5 show the performance of the best fitness
achieved by each army during the coevolution, using as ini-
tial enemy strategy the offensive (Fig. 4) and the random
(Fig. 5). The battles were fought on the map shown in Figure
1. The red bar represents the best solutions found by an army
(red army) and blue bars identifies the other army. The black
line located on the 2000 fitness points represents the thresh-
old at which the solutions are classified as winning strategies.
When a solution exceeds this line, the next bar has a different
color, which means that this army found a winning strategy,
and the other army now tries to find, in the next coevolution-
ary step, another strategy that can beat the winners (including
the current champion) encountered by the rival in the previ-
ous steps of the coevolutionary algorithm. A sequence of
candidates represented by bars of equal color (where none
of them exceeds the threshold that identifies a winning solu-
tion) means that the search does not progress as no winning
strategy can be found.

Figure 4: Version A: Offensive intial strategy; Best fitness

In these scenarios, the red army has less difficulties for find-
ing winning strategies whereas the blue army, on the other



Figure 5: Version A: Random intial strategy; Best fitness

hand, has serious problems and requires an increasing num-
ber of coevolutionary steps to confront the new strategies
proposed by the red army. In principle, observing the ease
with which the red army finds a winning strategy, we can de-
cide that the tortoise formation can provide advantages over
the guerrilla formation, in this type of map (i.e. open and
unobstructed).
Regarding the percentage of equality between the solutions,
the analyzed data (graphs not shown for reasons of space)
showed that solutions never exceed 30% of equality. In gen-
eral, we observe that the solutions of the blue army made
more drastic genetic modifications which clearly can be in-
terpreted as an attempt to explore alternative regions in the
search space, although finally this was a frustrated attempt.
Regarding the average number of game turns needed in each
battle, an analysis was done for each scenario. As shown
in Equation (2), the fitness function rewards those solutions
which require fewer game turns for beating the opponent, and
those which also generate fewer casualties in relation to the
number of dead units of its rival army. The result of this anal-
ysis was that the new strategies found require fewer turns to
defeat the opponent. In the two initial strategy options (offen-
sive and random) both armies tend to minimize the number
of turns used for each new strategy encountered.
We also analyzed the difference between the number of units
which survive at the end of battles in each of the armies. We
note that in the case of setting an offensive initial strategy all
these differences were positive, which means that all winning
solutions have more survivors than their corresponding op-
ponent strategies. This is a logical result because all winning
solutions tend to reach victory by means of the destruction
of all units of the rival, although the reality is that the victory
can be obtained without necessarily destroying all the oppo-
nent’s units (for example, by simply destroying its general).
In this way it is perfectly possible and correct to find solu-
tions with negative differences favorable to the opponent. In
fact, we have seen that despite all differences being positive,
in general this difference tends to decrease in the new strate-
gic solutions, which means that as strategies are refined it be-

comes more difficult to find solutions to overcome the rival
without affecting the integrity of the units, forcing these so-
lutions to sacrifice an increasingly larger number of units to
achieve the desired military victory. This decrease in the dif-
ference between surviving units denotes some convergence
towards more strategic results, where solutions are more bal-
anced between them. This balance tends to make zero the
difference between the number of casualties suffered by both
armies during the battles.
On the other hand, for the case of setting a random initial
strategy, we observed that both armies found strategic solu-
tions which generated a greater number of casualties on the
opponent in every coevolutionary step. And this continues
being a positive outcome because it is interpreted as the find-
ing of more and more effective strategies that achieve victory
generating further damage to the opponent.

RESULTS OF VERSION B

For analyzing the results obtained with version B of the al-
gorithm, Figures 6 and 7 show the behavior of the best fit-
ness found in each coevolution for both types of initial enemy
strategy (offensive and random), respectively. These battles
took place in the same scenario that we saw previously for
Figures 4 and 5.

Figure 6: Version B: Offensive intial strategy; Best fitness

In conclusion we do not see any detail that shows an im-
provement in the succession of coevolution returned by this
version of the algorithm. Specifically, there is a very simi-
lar sequence of coevolution between the results obtained by
both versions (A and B), and they coincide even in the army
which reached stagnation (the blue one) because it cannot
overcome the opponent strategy.
In the case of equality percentage among the solutions noth-
ing unusual was appreciated, although the percentages in the
version B were lower due to the more drastic changes which
were made in the genotype of the solutions found; this might
even be interpreted as a greater difficulty for algorithm B to
find winning solutions.



Figure 7: Version B: Random intial strategy; Best fitness

SUMMARY OF THE RESULTS FROM BOTH VER-
SIONS

In summary, using version B we note that the armies are able
to find more refined solutions, and sometimes solutions that
tip the scales of victory over the army which in version A was
considered a loser are found. In general, version B produced
a fitness evolution very similar to that of version A, although
sometimes it adds an extra level of coevolution which pro-
vides a new solution that was not found by A. This shows
that the way to model the solutions in version B where the
genes are only destined to represent the behavior of military
units which actually participate in the battle, makes genetic
operators more accurate and effective, which likely results in
a greater ability to explore solutions that version A could not
reach. This conclusion was somewhat expected, because the
adaptation of the strategy matrix to the context of the battle
reduces the complexity of the problem, and thus reduces the
number of possible solutions, discarding those solutions that
really were useless, and this issue has a significant impact on
the effectiveness of version B with respect to that shown by
version A.
Tables 1 and 2 summarize the results obtained by both algo-
rithms when they were executed on the 16 scenarios initially
considered in the experiments (see Section ). Each battle is
identified by the initial opponent strategy adopted (first row),
the armies formation (columns 1 and 2), the map where the
battle was executed (i.e. Map 1 - without obstacles -, or Map
2 - with obstacles), and the winner army (red, or blue).
Observe that the blue army was affected the most because it
stagnated (i.e. did not find better solutions) in 24 out of 32
cases. If we examine the results with respect to the initial
enemy strategies, we observe that the blue army failed in 14
out of 16 cases when the initial strategy is offensive; however,
when the initial strategy is random the results are more than
compensated. This indicates that the selection of the initial
opponent has a strong influence on the results.
From an orography point of view, and considering the two
battles between tortoise and guerrilla formations, the tor-

Table 1: Algorithm HofCC (Version B): Summary of the re-
sults

Formation Initial Offensive Initial Random

Blue army Red army Map 1 Map2 Map 1 Map2

Tortoise Tortoise Red Red Blue Blue

Tortoise Guerrilla Red Red Red Blue

Guerrilla Tortoise Blue Red Blue Red

Guerrilla Guerrilla Red Red Red Red

Table 2: Algorithm HofCC (Version B): Summary of the re-
sults

Formation Initial Offensive Initial Random

Blue army Red army Map 1 Map2 Map 1 Map2

Tortoise Tortoise Red Red Blue Red

Tortoise Guerrilla Red Red Red Red

Guerrilla Tortoise Blue Red Blue Red

Guerrilla Guerrilla Red Red Red Red

toise formation tends to dominate in Map 1, which is com-
pletely free of obstacles, whereas in Map 2, which has a more
complex topology, the guerrilla formation is the dominant;
this result forms the idea that this type of formation are more
suitable for fighting in areas with more obstacles.

SIMULATION OF THE BATTLE OF CARRHAE

This section is devoted to showing, by an example, how the
HofCC engine can also be used to argue (or guess) what
could have happened initially to obtain a certain final result.
Here we consider the Battle of Carrhae, an historical battle
that took place in the year 53 B.C. near the town of Car-
rhae; it was an important battle between the Parthian Em-
pire and the Roman Republic. The Parthian Spahbod Surena
decisively defeated a Roman invasion force led by Marcus
Licinius Crassus. It was the first of the battles between the
Roman and Persian empires, and one of the most crushing
defeats in Roman history. Table 3 shows some data (i.e.
statistics) associated with this battle4.
We have modeled three virtual scenarios for the battle where
we considered a map free of obstacles as we assume that
these should have weight in the strategic decisions. The red
army represents the Roman army whereas the blue army rep-
resents the Parthian army (less numerous than the Roman in-
fantry but more powerful). The real types of soldiers em-
ployed in the Battle (i.e. legionaries, cavalry, horse archers,
etc) were adapted to our game by an intuitive mapping of the

4en.wikipedia.org/wiki/Battle of Carrhae, April 2012.



Table 3: Dates of The Battle of Carrhae

Roman Empire Parthian Empire
Strength Strength
35,000 legionaries
4,000 cavalry,
4,000 light infantry

9,000 horse archers,
1,000 cataphracts

Casualties and losses Casualties and losses
20,000 dead,
10,000 captured,
10,000 escaped

∼ 100

type of units built-in inside robotWars, and for the simulation
we respected the ratio between the number of units belonging
to both armies. Version B of HofCC algorithm was applied
in three different scenarios for the battle (shown in Figure 8).

(a) Map 1 (b) Map 2

(c) Map 3

Figure 8: Battle of Carrhae: Scenarios for the simulation

In the first simulated battle (Map 1 in Figure 8) the romans
have infantry units with displacement velocity and shot scope
set by default, whereas as the Parthian army makes mainly
use of cavalry units. Figures 9 and 10 show the results, in
terms of best fitness value found in each evaluation, found
by considering first an offensive initial opponent strategy, and
second a random one, respectively. Observe in Figure 9 that
the fitness evolution resembles the historical reality.
In the case of random strategy, the Romans find a victory in
the second turn of coevolution, perhaps as a consequence of
an imperfection in the strategic defensive formation of the
Parthian cavalry that has its general completely unprotected.
After this, the blue army takes total control of the battle and
the Romans are not able to find a winning strategy, and here,
the fitness evolution resembles the historical reality.
In the second map we reduced the number of Parthian units
(from 14 to 10) given as result a ratio of 3 to 1 (in favor
to the Romans); even in these circumstances the Parthians
won the battle as the fitness evolution was quite similar to the
results shown previously. In the simulation of this game, the

Figure 9: Best fitness with ofensive initial strategy

Parthian army executed approaches towards the Roman units
followed by quick attacks carried out from a certain distance
to avoid a direct confrontation with the Roman infantry units.
This scenario represents with certain accuracy the historical
events that really happened.
In the third scenario, we imposed a ratio of 5 to 1 by reduc-
ing by even more the number of Parthian units. However, in
this case, the Parthian cavalry was insufficient for beating the
Roman army that easily got the victory.

Figure 10: Best fitness with random initial strategy

CONCLUSIONS AND FUTURE WORK

This paper has dealt with the employment of competitive co-
evolution (CC) in RTS games. We have first presented a new
RTS game called robotWars that can be used as a platform
for researching with CC. We have also described a coevo-
lutionary algorithm that has been implemented in the game
described and that has experimentally shown promising re-
sults for searching winning strategies in this game.
We have also shown, through an example, the ability of the
coevolutionary algorithm to reason about historical events
according to known results. In the future we plan to inves-
tigate if this ability can be extrapolated to show a predic-



tive capacity, even in other areas outside the game arena that
consider complex scenarios (with emergent properties for in-
stance).
We have also identified some weaknesses on which we must
work to improve our coevolutionary model. For this, let us
begin by exploring the use of the Hall-of-Fame, which has
the great advantage that it very easy to implement, also en-
sures an evaluation mechanism that takes into account pre-
vious champions (i.e. a memory mechanism), and favors
the transitivity between the strategies of the hall. However,
these benefits can be dulled by the efficiency of the algorithm
which is negatively affected when the size of the hall grows.

ACKNOWLEDGEMENTS

This work is partially supported by Spanish MICINN under
project ANYSELF (TIN2011-28627-C04-01), and by Junta
de Andalucı́a under project P10-TIC-6083 (DNEMESIS).

REFERENCES

Angeline P. and Pollack J., 1993. Competitive environments
evolve better solutions for complex tasks. In Proceed-
ings of the Fifth International Conference on Genetic Al-
gorithms. San Mateo, California, 264–270.

Avery P.; Greenwood G.; and Michalewicz Z., 2008a. Coe-
volving strategic intelligence. In Evolutionary Computa-
tion. CEC 2008.(IEEE World Congress on Computational
Intelligence). IEEE Congress on. IEEE, 3523–3530.

Avery P. et al., 2008b. Coevolving a computer player for
resource allocation games: using the game of Tempo as
a test space. Ph.D. thesis, School of Computer Science
University of Adelaide.

de Jong E., 2004. Towards a bounded Pareto-Coevolution
archive. In Evolutionary Computation, 2004. CEC2004.
Congress on. IEEE, vol. 2, 2341–2348.

De Jong E.D. and Pollack J.B., 2004. Ideal Evaluation from
Coevolution. Evol Comput, 12, no. 2, 159–192. ISSN
1063-6560.

Dziuk A. and Miikkulainen R., 2011. Creating intelligent
agents through shaping of coevolution. In Evolution-
ary Computation (CEC), 2011 IEEE Congress on. IEEE,
1077–1083.

Ficici S., 2004. Solution concepts in coevolutionary algo-
rithms. Ph.D. thesis, Brandeis University.

Ficici S. and Pollack J., 2000. A game-theoretic approach to
the simple coevolutionary algorithm. In Parallel Problem
Solving from Nature PPSN VI. 467–476.

Ficici S.G. and Bucci A., 2007. Advanced tutorial on co-
evolution. In Proceedings of the 2007 GECCO confer-
ence companion on Genetic and evolutionary computa-
tion. ACM, New York, NY, USA. ISBN 978-1-59593-
698-1, 3172–3204.

Jaskowski W. and Krawiec K., 2010. Coordinate System
Archive for Coevolution. In Evolutionary Computation
(CEC), 2010 IEEE Congress on. IEEE, 1–10.

Johnson R.; Melich M.; Michalewicz Z.; and Schmidt M.,
2004. Coevolutionary tempo game. In Evolutionary Com-
putation. CEC’04. Congress on. vol. 2, 1610–1617.

Jong E., 2007. A monotonic archive for pareto-coevolution.
Evolutionary Computation, 15, no. 1, 61–93.

Lichocki P. et al., 2008. Evolving players for a real-time
strategy game using gene expression programming. Mas-
ter’s thesis, Poznan Universtity of Technology.

Rosin C. and Belew R., 1995. Methods for competitive co-
evolution: Finding opponents worth beating. In Proceed-
ings of the Sixth International Conference on Genetic Al-
gorithms. San Francisco, CA, 373–380.

Rosin C. and Belew R., 1997. New methods for competitive
coevolution. Evolutionary Computation, 5, no. 1, 1–29.

Sims K., 1994. Evolving 3D morphology and behavior by
competition. Artificial life, 1, no. 4, 353–372.

Smith G.; Avery P.; Houmanfar R.; and Louis S., 2010. Us-
ing co-evolved RTS opponents to teach spatial tactics. In
Computational Intelligence and Games (CIG), 2010 IEEE
Symposium on. Citeseer, 146–153.

Watson R. and Pollack J., 2001. Coevolutionary dynam-
ics in a minimal substrate. In Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO
2001). Morgan Kaufmann, 702–709.

Wiegand R.; Liles W.; and De Jong K., 2002. Analyzing co-
operative coevolution with evolutionary game theory. In
Evolutionary Computation. CEC’02. Proceedings of the
2002 Congress on. vol. 2, 1600–1605.

Yang L.; Huang H.; and Yang X., 2009. A Simple Coevo-
lution Archive Based on Bidirectional Dimension Extrac-
tion. In Artificial Intelligence and Computational Intelli-
gence, 2009. AICI’09. International Conference on. IEEE,
vol. 1, 596–600.


