An Analysis of Hall-of-Fame Strategies in
Competitive Coevolutionary Algorithms for
Self-Learning in RTS Games

Mariela Nogueira, Carlos Cotta, and Antonio J. Fernandez-Leiva

University of Computers Science, Havana, Cuba
University of Mélaga, Malaga, Spain
mnogueira@uci.cu,{ccottap, afdez}@lcc.uma.es

Abstract. This paper explores the use of Hall-of-Fame (HoF) in the
application of competitive coevolution for finding winning strategies in
RobotWars, a two-player real time strategy (RTS) game developed in
the University of Malaga for research purposes. The main goal is test-
ing different approaches in order to implement the concept of HoF as
part of the self learning mechanism in competitive coevolutionary algo-
rithms. Five approaches were designed and tested, the difference between
them being based on the implementation of HoF as a long or short-term
memory mechanism. Specifically they differ on the police followed to
keep the members in the champions’ memory during an updating pro-
cess which deletes the weakest individuals, in order to consider only the
robust members in the evaluation phase. It is shown how strategies based
on periodical update of the HoF set on the basis of quality and diversity
provide globally better results.

Keywords: coevolution, RTS game, game’s strategy, evaluation pro-
cess, memory mechanism

1 Introduction

Artificial Intelligence (AI) implementation represents a challenge in game devel-
opment: a deficient game Al surely decreases the satisfaction of the player. Game
AT has been traditionally coded manually, causing well-known problems such as
loss of reality, sensation of artificial stupidity, and predictable behaviors, among
others; to overcome them a number of advanced Al techniques have recently
been proposed in the literature. Coevolution, a biologically inspired technique
based on the interaction between different species, represents one of the most
interesting techniques to this end.

Coevolutionary systems are usually based on two kinds of interactions: one in
which different species interact symbiotically (i.e. the cooperative approach) and
other in which species compete among them (i.e. the competitive approach). In
cooperation-based approaches, an individual is typically decomposed in different
components that evolve simultaneously and the fitness depends on the interac-
tion between these components; in competition-based approaches, an individual

2 An Analysis of the HoF used in CC Algorithms

competes with other individuals for the fitness value and, if appropriate, will
increase its fitness at the expense of its counterparts, whose fitnesses decrease.
This latter approach resembles an army race in which the improvement of some
individuals causes the improvement in others, and vice versa.

This paper deals with the application of competitive coevolution (CC) as a
self learning mechanism in RTS games. As a first contribution, the paper ana-
lyzes the performance of different approaches in order to apply the concept of
Hall-of-Fame (HoF') defined by Rosin and Belew in [1] as a long-term memory in
competitive coevolutionary algorithms; the analysis is conducted in the context
of the real-time strategy (RTS) game RobotWars. The goal is to produce auto-
matically game strategies to govern the behavior of an army in the game that
can also beat its opponent counterpart. As a second contribution this work pro-
poses alternatives for optimizing two key aspects in the implementation of the
HoF, which are, the diversity of the solutions, and the growth of the champions’
memory.

This paper is organized as follows. Next, —and given that we focus in this work
on exploring different variants of HoF as an evaluation and memory mechanism
in competitive coevolutionary settings— we present an overview of competitive
coevolution in games. In Section 3 we explain the game which is our arena
for competitive coevolution. Section 4 describes ours variants for implementing
a Hall-of-Fame based competitive coevolutionary algorithm. In Section 5 we
analyze the results obtained by each variants in many experiments. And finally
in Section 6 we closure this investigation.

2 Background on Competitive Coevolution in Games

Coevolution has been shown to be successful on a number of applications but
it also has a number of drawbacks [2]. The primary remedy to cope with the
inherent pathologies of coevolution consists of proposing new forms of evaluating
individuals during coevolution [1], and memorization of a number of successful
solutions to guide the search is one of the most employed. Following this idea, [3]
already proposed the use of a Hall-of-Fame (HoF') based mechanism as an archive
method and, since then, there have been similar proposals such as those described
in [4], [5] and [6]. According to [7] the question of how to actually use the memory
in the coevolution tends to fall into two areas: inserting individuals from memory
into the coevolution, or evaluating individuals from the populations against the
memory. Precisely, our investigation fits to this latter area, we have implemented
different variants of Hall-of-Fame for controlling evaluation process in a CC
algorithm, which tries to find wining strategies for the game RobotWars.
Several experiments have showed significants results in the application of
coevolutionary models in competitive environments; for example the study de-
scribed in [8] on competitive fitness functions in the Tic Tac Toe game, the
application of simple competitive models for evolving strategies in a pursuit-
evasion game [9], or the evolution of both morphology and behaviors of artificial
creatures through competition in a predator-prey environment [10]. Competi-

An Analysis of the HoF used in CC Algorithms 3

tive coevolution continues to be useful nowadays, and has been used heavily in
complex scenarios like those that emerge in strategy games; so, [11] coevolved ar-
tificial intelligent opponents with the objective of training human players in the
context of a game of type capture-the-flag. Also, [12] analyzed the employment
of coevolution for creating a tactical controller for small groups of game entities
in a real-time capture-the-flag game; a representation for generating adaptive
tactics using coevolved Influence Maps was proposed, and the result was the
attainment of an autonomous entity that plays in coordination with the rest
of the team to achieve the team objectives. More recently, [13] explores several
methods for automatically shaping the coevolutionary process, and this is done
by modifying the fitness function as well as the environment during evolution.

Other research that addresses the use of the HoF concept as an evaluation
mechanism in a competitive-coevolutive environment was given by Pawel Li-
chocki in [14]. He implemented the HoF with three useful extensions included:
uniqueness, manual teachers, and Competitive Fitness Sharing [3]. The results
of this work showed that HoF works better than SET (Single Elimination Tour-
nament) [8], but this method was not sufficient to prevent the lack of diversity
in the population. In our variants of HoF the probability of a repeated mem-
ber being inserted in the memory is minimal, because we do coevolutions by
turns of two independent populations, and each coevolutive turn begins with a
new population which evolves until finding an unique champion, or reaching the
maximum number of continuous coevolution without success; and this champion
must defeat all the members of the opponents’ HoF. The use of manual teachers
is also possible in our system: the first coevolutive iteration may be started with
random or offensive —manually defined— strategies..

Another interesting perspective was presented in [15] where the authors using
the game of Tempo as a test space, tried to ease the selection of optimal strategies
by clustering the solutions in the population of a coevolutionary system through
the concept of similarity. This cluster system integrated a long-term memory
that valued the changes produced in the environment to trigger appropriate
coevolution. The game of Tempo has also been used with the aim of improving
the creation of smart agents in [16] and [17].

3 Game Description

This section is devoted to RobotWars!, our arena for competitive coevolution
which will be presented for first time in [18]. RobotWars is a test environment
that allows two virtual players (i.e. game Als) to compete in a 3 dimensional
scenario of a RTS war game, and thus it is not a standard game itself in the
sense that no human players intervene interactively during the game; however it
is a perfect scenario to test the goodness and efficacy of (possibly hand-coded)
strategies to control the game Al and where the human player can influence the
game by setting its initial conditions.

! http://www.lcc.uma.es/~afdez/robotWars

4 An Analysis of the HoF used in CC Algorithms

In RobotWars, two different armies (each of them controlled by a virtual
player - i.e. a game Al) fight in a map (i.e. the scenario) that contains multiple
obstacles and has limited dimensions. Each army consists of a number of different
units (including one general) and the army that first wipes out the enemy general
is considered the winner. Virtual players are internally coded as a 4 dimension
matrix where the first dimension has 7 different values corresponding to the type
of unit (i.e. general, infantry, chariot, air force, antiaircraft, artillery, cavalry), the
second dimension to objective closeness (i.e. a binary value: 0 if the unit is closer
to the enemy general than to its friendly general, and 1 otherwise), the third
dimension to numeric advantage (i.e. are there, in a nearby space, more friendly
units than enemy units? A binary answer:yes/no), and the fourth dimension to
health (i.e. an amount that indicates the health level as high, medium or low).
Each position of the matrix acts as a gen and stores one of the following 5
actions: attack, advance, recede, crowd together, or no operation.

The whole matrix represents a strategy that controls, deterministically, the
behavior of an army during the game. For a specific type of unit there are
12 possible different states (i.e. 2 x 2 x 3, all the possible value combinations
considering the last three dimensions of the matrix), and basically, in a specific
turn of the game each unit of the army will execute the action stored in the state
in which the unit perceives that it is. Note that all the units (irrespective of their
type) are managed by the same controller, and in any instant of the game, the
team behavior will be the result of summing up all the action taken by each of
its constituent units. Note however that this does not mean all the units execute
the same action because the action to be executed by a unit will depend on its
particular situation in the match and its specific category.

4 Hall-of-Fame based Competitive Coevolutionary
Algorithm and Variants

Our objective is to apply competitive coevolution techniques to automate the
generation of victorious strategies for the game described above. According
to the strategies encoding shown in the previous section, the search space is
57x2x2x3 — 584 which is really huge, and cannot be efficiently explored using
implicit enumeration techniques due to the inherently complex and non-linear
behavior of game simulations. Thus, the use of metaheuristic techniques is ap-
proached.

Using our RTS game we test five variants of a competitive coevolutionary
algorithm that uses the HoF as a memory mechanism to keep the winning strate-
gies found in each coevolutionary step, to this end the best individual from each
generation is retained for future testing. In our approach, each army (i.e. player)
maintains its own HoF, in which its own winning strategies (with respect to the
set of winning strategies of its opponent) found in each coevolutionary step will
be saved.

Regarding the use and implementation of HoF some aspects must be defined.
The first is the criteria for inserting a new member in the memory. Also we have

An Analysis of the HoF used in CC Algorithms 5

considered different policies for maintaining the champions in the set, regarding
this issue one has to take into account the contribution of the individual (i.e., the
champion) to the search process as, for instance, it might be the case that some
opponents that belong to very old generations do not show a valuable perfor-
mance in comparison with opponents generated in recent generations and thus
they might be easily beaten; it is therefore crucial to remove those champions
not contributing to the solution what, in other words, represents a mechanism to
control the size of the champions’ memory. Another relevant aspect concerns to
the selection of those strategies from HoF that will be employed in the evaluation
process; considering all the champions might produce more consistent solutions
at the expense of a very high computational cost (note that a simulation of the
match must be executed for each champion involved in the evaluation; we will
provide more details on this further on). Next we present our HoF-based com-
petitive coevolutionary algorithm (HofCC) and five variants that precisely differ
in the policy of establishing the aspects mentioned previously.

4.1 Basic HofCC

Algorithm 1 shows the schema of our basic algorithm HofCC. A specific strategy
is considered winning if it achieves a certain score (see below) when it deals with
each of the strategies belonging to the set of winning strategies of its opponent
(i.e. the enemy Hall-of-Fame). The initial objective is to find a winning strategy
of player 1 with respect to player 2 (i.e. the initial opponent) so that the HoF of
player 2 is initially loaded with some strategies (randomly or manually initialized:
line 2). Then a standard evolutionary process tries to find a strategy for player 1
that can be considered as victorious (lines 7-13). A strategy is considered winning
if its fitness value is above a certain threshold value ¢ (line 14) that enables the
tuning of the selective pressure of the search process by considering higher/lower
quality strategies; in case of success (line 14), this strategy is added to the HoF
of player 1 (line 16) and the process is initiated again but with the players’ roles
interchanged (line 17); otherwise (i.e. no winning strategy is found) the search
process is restarted again. If after a number of coevolutionary steps no winning
strategy is found the search is considered to have stagnated and the coevolution
finishes (see while condition in line 4). At the end of the whole process we obtain
as a result two sets of winning strategies associated respectively to each of the
players.

Regarding to the evaluation of candidates for a specific player p (where p €
{player 1,player 2}), the fitness of an specific strategy is computed by facing
it against a selected subset of the (winning) strategies in the Hall-of-Fame of
its opponent player (that we call the selected opponent set). Given a specific
strategy s its fitness is computed as follows:

k S+ extrass(y
fitness(s) = Zj:l (pj +k: ! (j)) (1)

where k& € N is the cardinality of the selected opponent set, p; € % returns ¢
points if strategy s beats strategy h; belonging to the selected opponent set (i.e.

6 An Analysis of the HoF used in CC Algorithms

Algorithm 1: HofCC()

nCoev < 0; A < playeri; B < players; ¢ < thresholdvalue;
HoFa <+ 0; HoFp < INITIALOPPONENT();

pop < EVALUATE(HoFg); // Evaluate initial population

while nCoev < MaxzCoevolutions A NOT (timeout) do

pop <—RANDOMSOLUTIONS(); // pop randomly initialized
i< 0;

while (i < MaxzGenerations) A (fitness(best(pop)) < ¢) do
parents <—SELECT (pop);

childs < RECOMBINE (parents,px);

childs < MUTATE (childs, par);

pop < REPLACE(childs);

pop < EVALUATE(HoFBR);

P41

end while

if fitness(best(pop)) > ¢ then //winner found!

nCoev < 0; // start new search

HoF4 < HoF4 U {best(pop)}

temp < A; A < B; B < temp; // interchange players’ roles

N0 o W N

I S B~ O
® N oA BWNR OO

else
‘ nCoev < nCoev + 1; // continue search
end if

22 end while

NN
= O ©

victorious case), % in case of a draw, and 0 if h; wins to strategy s; Also:
extrass(j) = ¢ — nturng; + ¢ * Ahealths; + ¢ * AAliveg; (2)

where ¢ € N is a constant, nTurn,; € N is the number of turns spent on the
game to achieve a victory of s over its opponent h; (0 in case of draw or defeat),
Ahealths; € N is the difference between the final health of the army (i.e. sum
of the health of all its living units) controlled by strategy s at the end of the
match and the corresponding health of the enemy army, and AAlive,; € N is its
equivalent with respect to the number of living units at the end of the combat.
This fitness definition was formulated based on our game experience, and it
values the victory above any other result.

4.2 HofCC variants

This section is devoted to describe five variants of our HofCC algorithms; basi-
cally these variants differ in the nature (i.e., in this case, size) of the HoF when
it is used as a memory mechanism, ranging from short-term memory versions to
long-term memory instances.

4.2.1 HofCC-Complete: in this variant the Hall-of-Fame acts as a long-term
memory by keeping all the winners found in previous coevolutions, and all of
them are also used in the evaluation process. So, in the coevolutionary step n each
possible solution of army A fight again each solution in { By, Bs, ...B,_1}, where
B; is the champion found by army B in the ¢ (for 1 <4 < n — 1) coevolutionary
step.

Note that the cardinality of the selected opponent set and the cardinality of
the HoF in the coevolutionary step n are equal (i.e., K = n in Equation 1).

An Analysis of the HoF used in CC Algorithms 7

4.2.2 HofCC-Reduced: here the HoF acts as the minimum short-term mem-
ory mechanism by minimizing the number of battles required for evaluating an
individual; that is to say, in the n co-evolutionary step, each individual in army
A only faces the latest champion inserted in the HoF of army B (i.e., B,_1).
Note that this means £ = 1 in Equation 1.

4.2.3 HofCC-Diversity: in this proposal the HoF acts as a long-term mem-
ory mechanism, but the content of the HoF is updated by removing those mem-
bers that provide less diversity. The value of diversity that an individual in the
HoF provides is calculated by the genotypic distance as follows: we manage the
memory of champions as a matrix in which each row represents a solution and
each column a gen (i.e., an action in the strategy). Then, we compute the entropy
value for a specific column j as follows:

k
Hj == (pijlogpis) (3)

i=1

Where p;; is the probability of action ¢ in column j, and k is the length of the
memory. Finally the entropy of the whole set is defined by the following formula:

H=Y H, (4)

The higher the value of H the greater the diversity of the set. For determin-
ing the diversity’s contribution of a specific solution, we calculate the value of
entropy with this solution inside the set, and the corresponding value with this
solution out of the set, and finally, the difference of these two values represents
the contribution of diversity.

The number of individuals to be deleted from the memory should be set by
the programmer as a percentage value («) representing the portion of the HoF
to be removed; in other words, the HoF (with cardinality #HoF') is ordered
according to the diversity value in a decreased order and the last r#Hol xn 7
individuals in this ordered sequence are removed. The frequency of updating ()
is also a parameter of this version (i.e., the HoF is updated every X coevolutions)

The motivation of this proposal is to maintain certain diversity among the
members of the HoF, and at the same time to reduce (or maintain an acceptable
value for) the size of the memory. With this idea, we assume that the deleted
individuals will not affect the quality of the found solutions.

Here, the cardinality of the selected opponent set k in the evaluation phase
(see Equation 1) is the cardinality of the opponent HoF after executing the
updating of the memory (i.e., after removing the individuals).

4.2.4 HofCC-Quality: in this version, we follow a similar approach to that
applied in Hof CC-Diversity but now the HoF is ordered with respect to a measure
of quality that is defined as the number of defeats that an individual obtained

8 An Analysis of the HoF used in CC Algorithms

in the previous coevolutionary step; in other words, a simple counter variable
associated with each member of the HoF stores the number of defeats that were
computed for the corresponding member during the evaluation process of the
opponent army in the previous coevolutive turn.

Based on our game experience, we assume that this metric is representative
of the strength of a solution, and the aim is to keep only the robust individuals
in the champions’ memory by removing the weak strategies.

As in the HofCC-Diversity, the parameters o and A have to be set, and the
cardinality of the selected opponent set k is exactly the same.

4.2.5 HofCC-U: this variant of HofCC follows the idea of optimizing the
memory of champions, but in this case we propose a multiobjective approach
where each solution has a diversity value and also a quality value as described
previously associated with it. Then, a percentage value («) from the set of dom-
inated solutions according to the multiobjective values is removed; if the set of
dominate solutions is empty then HoF is ordered according to the measure of
quality and the solutions with worst quality will be removed.

As in the previous algorithms (HofCC-Quality and HofCC-Diversity) the
frequency of updating the HoF is an important parameter that must be defined.

This proposal uses a different fitness function (to that shown in Equation 1)
whose definition was inspired by the Competitive Fitness Sharing(CFS) [3]. The
main idea is that a defeat against opponent X has more importance if there are
other individuals that defeated X. So, a penalization value IV for each individual
i (for 1 < i < k) in the population is then calculated as follows:

S
Ny =1- == ;V(” (5)

where v;; = 1 is the individual ¢ of the population defeats the strategy (or
champion) j in the HoF (whose cardinality is k) and 0 otherwise; and

V(i) = Z Vij
i=1

is the number of individuals in the population which defeat opponent j of the
HoF. As a consequence, N; =~ 0 if the candidate ¢ defeats all opponents of HoF
and the solution i itself is one of the few candidates to do so; N; = 1 if it
defeats no opponent; and 0 < N; < 1 depending on how many times it wins and
how common is to beat certain opponents. The fitness of a candidate ¢ is then
computed as follows:

where P; is the result obtained in the battles by Equation 1, and ¢ € N is a
coefficient that scales IV; in order to make it meaningful with respect to value
P.

An Analysis of the HoF used in CC Algorithms 9

5 Experiments and Analysis

Due to the high computational cost to execute the experiments we have con-
sidered a unique battle scenario without obstacles and in which the formation
(i.e., morphology) of armies is the type of tortoise vs. tortoise, and the initial
predefined enemy strategy is random.

The five variants of the HofCC described in previous section has been con-
sidered for the experiments.

5.1 Configuration of the Experiments

Eleven instances of our algorithms were used: one for Hof CC-Complete (HofC);
one for HofCC-Reduce (HofR); and three for each of the Hof CC-Diversity, HofCC-
Quality, and HofCC-U varying according to the values of & = 10% (i.e., (HofDiv-
10, HofQua-10, HofU-10), a = 30% ((HofDiv-30, HofQua-30, HofU-30)), and
a = 50% ((HofDiv-50, HofQua-50, HofU-50)). Also we set A = 3 for all the
versions of HofCC-Diversity, HofCC-Quality, and HofCC-U.

Ten runs per each algorithm instance were executed, and in all of them we
have used a steady-sate genetic algorithm (GA - note that this corresponds to
Lines 7-13 in Algorithm 1) with the aim of finding a winning strategy with
respect to a set of strategies (stored in the HoF of the opponent) that were
considered winning in previous stages of the coevolutionary algorithm; this GA
employed binary tournament for selection, Bernoulli crossover, bit-flip muta-
tion, elitist replacement, MaxzCoevolution = 15 (it represents the numbers of
continuous coevolutions in the same army without finding a champion solution),
Mazxgenerations = 300, population size was set to 100, the limit of evaluation
was 230000 (i.e., the timeout value), and standard values for crossover and mu-
tation probabilities were used (px = .9 and py; = 1/nb respectively where nb
is the number of genes); and ¢ = 2000 so that a strategy that defeats all the
strategies in the HoF of its opponent is surely considered as victorious, although
others can also be. The choice of these values is due to a previous analysis of the
mean fitness reached by individuals in the competitions. We also set the constant
¢ in Equation (6) to 200, a representative value of the range of scores that were
obtained from the battle simulator after executing a number of games.

Our analysis has been guided by the following indicators which are applied
for all runs of each algorithm: Best fitness: shows the best value of fitness found
by the search process; Average fitness: shows the average fitness value reached
in the coevolutive cycle; Number of evaluations: indicates the total number of
battles which are realized during the evaluation process; Number of defeats:
indicates the total number of defeats obtained in an All(vs)All fighting among
the best solutions found by each version of algorithm.

In what follows, we analyze the results obtained in ten independent execu-
tions for the eleven versions of HofCC, and focus on the mentioned indicators;
we have used the well-known non-parametric statistical tests to compare ranks
namely Kruskal-Wallis test [19] with a significance of 95%. When this test de-
tects significant differences in the distributions, we have performed multiple tests

10 An Analysis of the HoF used in CC Algorithms

using the Dunn—Sidak method [20] in order to determine which pairs of means
are significantly different, and which are not. Next, the results obtained in the
experiments for each indicator are presented.

5.2 Results of average fitness

Figure 1 shows the behavior of the average fitness for each algorithm instance. In
this figure the algorithms are sorted according to the median of the distribution
(i.e., the vertical red line). The Kruskal-Wallis test confirms that the differences
between values are statistically significant (see the first row in Table 1). The
HofR algorithm reaches the worst results for this indicator, such results may be
a sign that this algorithm does not exploit the search space sufficiently because
in this version the HoF acts as a short memory mechanism, whereby it is easier
to find a champion than for the rest of the algorithms. Moreover, note that
the best results are obtained by algorithms which optimize the use of HoF (in
terms of diversity, quality, or both), and at the same time do not reduce too
significantly the memory size; note also that the average fitness value decreases
in those cases where the HoF suffered a reduction of 50% during the updating
process. In the results of multiple tests for the value of average fitness, the HofR
distribution has significant differences respect to the majority of the algorithms
(except HofU-50, and HofQua-50), and the rest of the versions have a similar
behavior.

wooiv-3, | [T
HofDiv-10) F---{ 1T F--
HofQua-3p + — — — — — — — — T F--
HofQua-1p = — - =
HofDiv-50) et I D |
Hofu-30 F-{ T F--1
Hofu-10 F--4 T F---4
HofC === I |
Hofu-50 et B D
HofQua-5p et I R

HofR HIF

1050 1100 1150 1200 1250 1300 1350 1400

Fig. 1. Average Fitness obtained in each algorithm

An Analysis of the HoF used in CC Algorithms 11

Table 1. Results of Kruskal-Wallis test for all the indicators (pvalue< 0.05).

Indicator pvalue

Average fitness 2.6205F — 004

Best fitness 0.0175

Number of evaluations 0,2214

Numbers of defeats 5.6909E — 007

5.3 Results of best fitness

Figure 2 shows the results of best fitness for each algorithm in the executions.
Note that HofR finds the higher values. This situation can be generated by the
fact that in HofR the individuals compete only against one opponent during
the evaluation process, therefore it is easier to obtain higher scores. For the
rest of the algorithms a high value in this indicator may be given by a further
intensification in the search. As another interesting point, note that in many
cases the algorithms with poor results in terms of average fitness, have good
results here; except in the case of the HofDiv-10 and HofU-30 which maintain
good results in both analysis.

HofR ‘ ‘ ‘ o H ‘
HofQua5sQ == -4
HofDiv10 - 1 TR
Hofu30 - ——— T H
HofU50 + F----C"T1F--
HofQualQ + [4:|:|> -
HofC F———-=-4__ T F -
Hofu10 F--C TR A
HofDiv50 i I R
HofDiv30 - T
HofQua3g e B R

2400 2450 2500 2550 2600

Fig. 2. Best fitness obtained by each algorithm

Table 1 (row 2) displays the results computed by Kruskal-Wallis’ test con-
firming there are significative differences among the distributions. The results
of multicompare test shows that the HofQua-30 and HofDvi-30 have relevant
differences with respect to the HofR; the rest of the algorithms have similar
values.

12 An Analysis of the HoF used in CC Algorithms

5.4 Results of number of evaluations

HoFDiv-50] oo —D:k 4 +
HoFDiv-30) - F -~
e A E—
HoFU-50 T F-+
HoFC e N
HoFDiv-10| LT] + +
HoFQua-5 it I I S
HoFU-30 o I B
HoFU-10 I e
HOFR o I I
HoFQua-1 HOT ks +
0 05 1 15 2

Fig. 3. Numbers of evaluations employed by each algorithm

For the case of the number of evaluations the results are shown in Figure 3 and
according to the statistical tests performed (see Table 1), there is no significant
statistical difference in the distribution data. In this indicator we noted that the
increasing in the number of evaluations is in consonance to the length of the
coevolutive cycle; except in the case of HofR which presents a very long cycle
and has no influence because during the evaluation process of this algorithm the
individuals face a single opponent, and this decreases the number of evaluations
significantly. Consider that the coevolutive cycle’s length is determined by the
number of coevolutions that use the algorithm to find an undefeated champion
(i.e a member of the HoF which can not be defeated by the opponent side), and
it helps to identify whether the problem difficulty increases as best solutions
are obtained, or if it remains stable. In all algorithms (except HofR) the rigor
of the competition increases until it reaches the point at which the algorithm
can not exceed the level of specialization achieved. However, in HofR the cycles
were very long, because the quality of the solutions was stagnated; and it was
necessary to limit the length of cycles up to 500 iterations.

5.5 Results of number of defeats

For this test, the last champions (i.e. the last member added to the HoF) found
by each algorithm instance (in each execution) fought in an All versus All tour-
nament. The results with respect to the amount of defeats are shown in Figure 4;
and Table 1 (row 4). The main differences are in the values of HofR, and HofC
which still maintain the same poor results as the previous indicators. On the

An Analysis of the HoF used in CC Algorithms 13

i M

HofC - TR

HofU-10 F-L T F-+

HofQua-1p [| |} -+

HofDiv-50 [-+

HofU-30 11

HofQuas0 T+

HofDiv-10 [

HofU-50 1

HofDiv-30 F
L]

HofQua-3p

Fig. 4. Numbers of defeats obtained by each algorithm in an All (vs) All tournament

other hand, HofDiv-10 and HofDiv-30 again obtains the best values. Curiously,
the HofQua-30 which had the worst results in the analysis of best fitness has a
low ranking of defeats here, this is certainly an indicator that the fitness mea-
sure used is insufficient. The instances of HofQua-10 and HofU-10 have a similar
behavior with high numbers of defeats. Another detail that attracts attention is
that variants that reduce the HoF by 50% in the previous indicators have not
shown encouraging results, except for the HofDiv-50, however in this analysis
we can see that they are in the middle top of the ranking.

5.6 Summary of the results

We can conclude that, for all the experiments, the versions that incorporate up-
dating the HoF were more efficient than HofR and HofC. In the case of the best
fitness analysis the HofR shows higher values, however in the fighting tourna-
ments the strategies generated by this algorithm were the weakest, so we can
say that the fitness function is not sufficiently representative of the individuals’
strength, and undoubtedly the loss of transitivity in this algorithm causes a total
disengagement of the search.

Regarding to the numbers of evaluations there are not significant differences,
and here let us underline that the game used does not allow very long evolu-
tionary cycles due to performance limitations. This means the HoF obtained is
not large, so it is not possible to demonstrate the benefits of those algorithms
which optimize the size of the HoF and in turn reduce the number of necessary
evaluations.

By analyzing the families of algorithms we can conclude that the HofDiv’s
variants shown the best performance for all the indicators. In the fitness analysis
HofDiv shown the best results, while the HofU and HofQua reached similar be-

14 An Analysis of the HoF used in CC Algorithms

havior. And as general rule, for these indicators, the variants which update HoF
by 10% and 30% obtain a better performance; however in the tournaments, the
algorithms which use a high percentage showed some slight advantages, although
the differences between the versions that update the HoF are not statistically
significant for any indicator.

We have also shown that the fitness values are not related with the solution
robustness by executing fighting tournaments; this is a particular result which
can be interpreted as follows. During the coevolutive cycle the search space is
explored, but the self-learning mechanism falls into a local optimum and gets
trapped there, so that the solutions found improve their fitness values without
a global improvement in a more general context.

6 Conclusions and Future Work

The analyzed results allow us to conclude that whenever we update the mem-
ory of champions using a selection criteria the search process provides better
solutions. In our experiments the updating of HoF using the diversity as the
selection criteria showed the best performance. We also detected that affecting
the transitivity among the solutions has a direct influence on the quality of the
search result, and therefore, the removing of members in the champions’ memory
should be done carefully. However, it is important to decrease to avoid perfor-
mance problems; in our experiments we did not suffer this, but there are cases
in which the exhaustive exploration of the search space requires to significantly
enlarging the size of the champions’ memory what can affect the performance of
the algorithm considerably.

As for future work we propose testing these algorithms in other games. Trying
at that time to achieve a more complete representation of individuals by genetic
encoding, and a better adjustment of the evaluation function. The games that
we will choose should allow us to experiment with long coevolutionary cycles, to
carry out a performance analysis of the algorithms.

Acknowledgements

This work is partially supported by Spanish MICINN under project ANYSELF
(TIN2011-28627-C04-01), and by Junta de Andalucia under project P10-TIC-
6083 (DNEMESIS).

References

1. Rosin, C.D., Belew, R.K.: Methods for Competitive Co-Evolution: Finding Oppo-
nents Worth Beating. In: ICGA. (1995) 373-381
2. Ficici, S.G., Bucci, A.: Advanced tutorial on coevolution. In: Proceedings of the

2007 GECCO conference companion on Genetic and evolutionary computation,
New York, NY, USA, ACM (2007) 3172-3204

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

An Analysis of the HoF used in CC Algorithms 15

Rosin, C., Belew, R.: New methods for competitive coevolution. Evolutionary
Computation 5(1) (1997) 1-29

de Jong, E.: Towards a bounded Pareto-Coevolution archive. In: Congress on
Evolutionary Computation, CEC2004. Volume 2., IEEE (june 2004) 23412348
Jaskowski, W., Krawiec, K.: Coordinate System Archive for coevolution. [21] 1-10
Yang, L., Huang, H., Yang, X.: A simple coevolution archive based on bidirectional
dimension extraction. In: Artificial Intelligence and Computational Intelligence,
2009. AICT’09. International Conference on. Volume 1., IEEE (2009) 596-600
Avery, P.M., Greenwood, G.W., Michalewicz, Z.: Coevolving strategic intelligence.
In: IEEE Congress on Evolutionary Computation, IEEE (2008) 3523-3530
Angeline, P.J., Pollack, J.B.: Competitive Environments Evolve Better Solutions
for Complex Tasks. In: ICGA. (1993) 264-270

Reynolds, C.: Competition, coevolution and the game of tag. In Brooks, Maes,
P., eds.: Proceedings of Artificial Life IV, Cambridge, Massachusetts, MIT Press
(1994) 59-69

Sims, K.: Evolving 3D Morphology and Behavior by Competition. Artificial Life
1(4) (1994) 353-372

Smith, G., Avery, P., Houmanfar, R., Louis, S.J.: Using co-evolved RTS opponents
to teach spatial tactics. In Yannakakis, G.N., Togelius, J., eds.: CIG, IEEE (2010)
146-153

Avery, P., Louis, S.J.: Coevolving team tactics for a real-time strategy game. [21]
1-8

Dziuk, A., Miikkulainen, R.: Creating intelligent agents through shaping of coevo-
lution. In: IEEE Congress on Evolutionary Computation. (2011) 1077-1083
Lichocki, P.: Evolving players for a real-time strategy game using gene expression
programming (2008) Master thesis, Poznan Universtity of Technology.

Avery, P.M., Michalewicz, Z.: Static experts and dynamic enemies in coevolution-
ary games. In: IEEE Congress on Evolutionary Computation. (2007) 4035-4042
Johnson, R., Melich, M., Michalewicz, Z., Schmidt, M.: Coevolutionary Tempo
game. In: Evolutionary Computation. CEC’04. Congress on. Volume 2. (2004)
1610-1617

Avery, P., et al.: Coevolving a computer player for resource allocation games:
using the game of Tempo as a test space. PhD thesis, School of Computer Science
University of Adelaide (2008)

Nogueira, M., Gélvez, J., Cotta, C., Ferndndez-Leiva, A.: Hall of Fame based
competitive coevolutionary algorithms for optimizing opponent strategies in a new
RTS game. In Ferndndez-Leiva et al., A.; ed.: 13th annual European conference on
simulation and AI in computer games (GAMEON’2012), Mélaga, Spain, Eurosis
(November 2012) 71-78

Kruskal, W., Wallis, W.: Use of ranks in one-criterion variance analysis. Journal
of the American Statistical Association 47(260) (1952) 583-621

Sokal Robert, R., Rohlf James, F.: Biometry: the principles and practice of statis-
tics in biological reseach. W.H. Freeman and Company, New York (1995)
Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010,
Barcelona, Spain, 18-23 July 2010. In: IEEE Congress on Evolutionary Com-
putation, IEEE (2010)

