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Abstract

The classical approach of Competitive Coevolution (CC) applied in games tries to exploit an arms race between
coevolving populations that belong to the same species (or at least to the same biotic niche), namely strategies,
rules, tracks for racing, or any other. This paper proposes the co-evolution of entities belonging to different realms
(namely biotic and abiotic) via a competitive approach. More precisely, we aim to coevolutionarily optimize both
virtual players and game content. From a general perspective, our proposal can be viewed as a method of procedural
content generation combined with a technique for generating game Acrtificial Intelligence (Al). This approach can not
only help game designers in game creation but also generate content personalized to both specific players’ profiles
and game designer’s objectives (e.g., create content that favors novice players over skillful players). As a case study
we use Planet Wars, the Real Time Strategy (RTS) game associated with the 2010 Google AI Challenge contest, and

demonstrate (via an empirical study) the validity of our approach.

Index Terms

Coevolution, RTS game, virtual player, Automatic Content Generation.

I. INTRODUCTION

Game designers recognize game Artificial Intelligence (Al) as one of the primary ways to turn good games into
best-sellers. The application of AI, and Computational Intelligence (CI) (as the AI representative of the nature-
inspired computational techniques for learning and optimization) in games is a research field that poses significant
challenges for the game development community [1], [2], [3].

From the set of Al techniques, Coevolution promotes the interaction between different species and that has
already been applied in the game area. Several models have been shown to be successful in different applications
but coevolution also has intrinsic drawbacks that are difficult to solve. Many approaches analyze the dynamics of

the coevolutionary process to identify both its weaknesses and strengths. This produces more solid techniques for
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coevolution support. One of the first approaches in this aspect was that of Rosin and Belew [4]. They proposed
the use of a Hall-of-Fame (HoF) based mechanism as an archive method. The HoF acts as a long-term memory
mechanism in Competitive Coevolutionary (CC) algorithms to manage the historical set of champions, during the
individuals’ evaluation. In this line of work we have already employed the basic archive methods for generating
virtual players (i.e., a traditional game Al perspective) in a capture-the-flag game, with the aim of coping with the
aforementioned problems in coevolutionary methods. In particular, in [5] we analyzed, in the context of the RTS
game RobotWars', how the diversity and the growth of the HoF can influence the quality of the solutions obtained
by HoF-based CC algorithms. Later in [6], we considered another RTS game, namely Planet Wars (the Google
Al challenge in 2010), and added novel strength indicators which were independent from the fitness function, to
avoid the appearance of cycling. We also incorporated into our prime CC algorithm, an additional archive (termed
Hall-of-Celebrities, HoC) that contained a team of experienced virtual players that were used to evaluate how
strong a candidate was. This combined use of two halls (HoF and HoC) with the (possibly combined) employment
of diversity and quality metrics helped the optimization to obtain competitive bots that self-adapted to beat their
(co)evolved enemies. The results obtained in our previous work shown that diversity management is a key point in
guaranteeing the progress of the arms race.

The current state of game development requires revising the term of game Al which should be “enhanced with
non-traditional research and development areas beyond NPC control [7] as AI/CI is applied to most aspects of
game development and design” [8]. Procedural Content Generation (PCG) in particular, applies Al techniques to
automatically generate game content. This content refers to all aspects of the game that affect gameplay other
than NPCs, such as maps, levels, dialogues, characters, rule-sets and weapons [9]. PCG represents one of the most
interesting issues in the CI-in-games community, as game content is an important factor to keep “players engaged
in the gaming world” [10]. However, it is well-known that player satisfaction is not easy to measure as it depends
on many variables such as personality, age, culture, skills, preferences, and player gender. In fact, developing a
general solution to satisfy all players is extremely complicated, (possibly even a utopian task). Although it is known
that games which are too easy or too hard for the players will not be successful, design decisions relative to the
hardness of a game (or a level in a game) are difficult to make. Players have different skills ranging from novice
to those with professional skills. So, how to balance a game? In this context, game adaptability to the player is an
important issue to consider.

With this issue in mind, this paper represents a step forward with regard to our previous work and also considers
the generation of game content (i.e., different from bot’s behavior) to compose a multi-species CC algorithm that
promotes the self-generation of both NPC’s Al and game content. CC represents a perfect scenario in which this
(bi-)evolution can be defined. Our proposal can assist both programmers and designers. It not only allows the
automatic generation of game Al (i.e., game strategies to govern the behavior of the NPCs), but it can also help

designers to create content that dynamically adapts to reach specific objectives. Imagine, for example, a map/level

L://wp.me/p2cObl-60{}
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that adapts to favor novice players to face more experienced players so that all of them enjoy the match (i.e., the
match is neither too easy for the skillful player nor too hard for the in experienced players). From this design
perspective, our approach can be viewed as a model for the dynamic adaptation of the game according to specific
players’ profile via PCG.

Our work here represents another attempt at interspecific coevolution (but, as usual, bridging some gaps with
reality), whereby we manage (two) species which are intrinsically different (they are different-in-nature domains).
One of them groups bot strategies and the other represents game content (that might be in the form of maps or
levels, for example). So, the relationship of competitiveness between them is slightly beyond that of the typical
scenario of two competing species, such as a predator - prey or a parasite - host, in which the performance of each
individual is closely related to the performance of the competitor [11]. Therefore, how to establish the competition
between the content game and bots is a key point in our proposal and makes it new in the Cl-in-game field. In
addition, to the best of our knowledge, this is the first time that a CC algorithm is used to handle the co-evolution
of game content as well as game Al There is a single, obligatory condition for the viability of this approach,
and it is competition, because the existence of a competitive relationship between the coevolved species is strictly
necessary.

It is important to emphasise that our coevolutionary system is applicable to any genre of games which promote
competition between players, and for this we first describe a generic schema. We provide a proof-of-concept to
show its suitability by instantiating it to a specific RTS game. Finally, we proved, via an experimental validation,
that it can generate not only content that adapts to specific objectives but also game Al that performs at the level

of the best bot described in the scientific literature for this RTS game.

II. BACKGROUND

Games have already been used as environments over which different coevolutionary models have been tested.
The range of these games is wide, from simple games (e.g., board games) to others that can generate an extensive
search space and that involve intrinsically complex domains (e.g., RTS games). The concept of coevolution involves
individuals which interact with each other and that might belong (or not) to the same species. From a general
categorization of the coevolutionary models studied in the scientific literature one can observe a trend towards the
use of models that coevolve populations belonging to the same species. This means that all the individuals have
the same genetic structure or codification, and from this idea, two approaches can be identified.

The first approach uses a unique population and the evaluation process is carried out by having individuals
face each other according to a selection mechanism. A direct consequence is that here reproductive relationships
emerge as a natural process. The second case employs different populations, to encourage the arms race. There is
a tendency to create these populations as lineages, distinguished from each other by modifying some aspects of
the coevolutionary cycle (e.g., the individuals’ generation process, fitness function, genetic operators, etc.). Another
variant is just to generate several populations over the same features and conditions. It is interesting to see how, in

both of them, even though they are dealing with a unique species, it is possible to produce “interspecific coevolution”
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(according to the classifications defined in [12]) whenever the competition occurs in populations that do not have
reproductive or parental relationships. Along these lines, [13] worked with competitive fitness functions in the Tic
Tac Toe game, whereas [14] evolved strategies in a pursuit-evasion game. Also, [15] analyzed the evolution of
both the morphology and behaviors of artificial creatures through competition in a predator-prey environment. [16]
proposed a method for finding game strategies with a basic coevolutionary algorithm for zero-sum and non-zero-
sum games. More complex scenarios such as those that emerge in strategy games have also been considered as,
for instance in [17] which coevolved Al opponents to train human players in the context of a capture-the-flag
game. [18] presented a spatial decision making system that used a basic implementation of co-evolution. Another
interesting perspective was presented in [19], which employed the game of Tempo as the test suite, and evaluated
the results of inserting an expert strategy into two populations.

All the aforementioned approaches use a co-evolutionary model based on a single species which is, as far as we
know, the most-used CC variant in the literature. However, there are computational coevolutionary models based on
multispecies interaction, and they produce a prime and proper “interspecific coevolution”. This type of coevolution
is less common in games although one can find a pair of proposals following this schema as for instance, that
presented in [20] in the context of Pac-Man versus Ghost Teams Competition. The authors coevolved two different
populations, one for the Pac-Man strategies and the other for the Ghost team. In this approach the two populations
were derived from different species, although both of them shared the same nature, in this case both populations
evolve “virtual players” (i.e., the classical game Al application). Another interesting approach was described in
[21], which compared the performance between nine-population co-evolution and single-population co-evolution.
The goal was to develop controllers for a simple car racing game; each population represented a controller (i.e.,
again, same nature for the populations).

Note that this section does not mention other forms of coevolution which have also been applied in games because

they are not directly related to competition (e.g., [22] the focus is cooperation and not on competition).

III. GENERAL MODEL

This section presents our general (and primary) model for a Multi Content Competitive Coevolutionary Algorithm

(MuCCCo) in Section III-A. Subsequently three variants of this algorithm are also described.

A. The general schema for MuCCCo

Our proposal employs two populations to automatically generate both game strategies and game content’ at
the same time. These two domains are completely different in nature and have conflicting goals. Due to this, the
population inter-relationship is not standard and will be described below.

In a general competitive co-evolutionary system, game Al evolves with the goal of finding ‘good’ virtual players

that defeat the champions of its adversarial populations. Our proposal maintains this approach but the game scenario

2In the rest of the paper we will use the terms ‘game strategy’, ‘bot” and ‘game AI’ (resp., ‘game content’, ‘maps’ and ‘levels’) interchangeably.
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is influenced by the champions of the game content population. The process of generating content is usually driven
by constraints or effectiveness criteria which are associated with a specific goal like, improving content diversity
[23], or satisfying aesthetical measures or human preferences with respect to the balance of difficulty [24], just
to name a few. The key point is that the two domains to evolve are not intrinsically competitive (by their very
nature) and the evolution of game content cannot be driven by a direct confrontation against the champions of the
bot population. Even in the case of a multi-player game, the generation of game content requires a specific goal
to determine what a (game content) champion is when it is used as the game scenario in a game that pits the
champions of the different bot populations against each other. In this context, it makes sense to fix a game Al that
provides the goals (surely imposed by the game designer) to direct the evolution of maps. Consider this bot (termed
as the fixed rival bot (FRB)), for instance, as a model of a specific player profile so that bots —of the other game
Al populations— evolve with the goal of beating players with this profile, whereas game content evolves driven by
objectives related with this FRB. The game content, may for instance, adapt to favor (resp. disfavor) the FRB if
this represents a model of novice (resp. an skilfull) player. This basically means that the game scenario adapts to
satisfy a design decision i.e., in this case, preventing a game from being too hard (resp. easy) for the novice (resp.
experienced player). Of course, other objectives for the game content evolution with respect to the FRB(s) can be
included.

Note that any game which uses content to affect gameplay other than NPCs and promotes competition between
players can apply this model, and the fixed rival bot is the seed for encouraging the specialization process. As
shown in our study case, the designer might use one or many of them, depending on the objectives required. Note
also, that a specific player profile can be extracted using standard or advanced player modeling techniques (beyond
the goal of this paper).

Our proposal can be adjusted to multi-player games and multiple FRBs (see Figure 1); for a n-player game, we
have n — 1 game Al populations that evolve according to some specific objectives (again, associated with design
decisions) related with all the FRBs. We can also have m populations, one for each kind of content (that should
be different in nature from the other contents), that set the game scenario for the battles between the n — 1 players
and the FRBs. The form of these fights can vary depending on the design objectives.

Algorithm 1 shows the schema of MuCCCo adapted (for simplicity) to a 2-player game. This schema manages
two populations, one that encodes game content, and the other for game strategies. Each population uses its own
HoF as a long-term memory mechanism to keep the winning individuals found in each coevolutionary step, and
each member of the HoF is used in the evaluation process (although this schema of evaluation can vary). The
algorithm has two parameters: « that indicates (in percentage) the portion of the HoF to be removed so as to
maintain only those worthwhile champions that might contribute to the solution according to some specific metric
(see details below), and A the frequency of executing this updating of the HoF'.

One or several fixed rival bots can be considered in the evaluation step. In the general explanation we consider
one FRB although we employ several of them in the experiments. So, applying this model to our domain, in the

n¢p, coevolutionary step, each candidate in the bot population is faced with a fixed rival bot F"RB in n — 1 matches
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Fig. 1. Multi-content generation coevolutionary schema for a n-player game.

executed over each map in {map1, maps, ...map,_1}, where map; is the game content champion found in the i-th
(1 <7 < n—1) coevolutionary step. Additionally, each candidate in the game content population is also evaluated in
the ny;, coevolutionary iteration. This is done by organizing a set of battles, in the scenario imposed by the candidate,
between the fixed rival bot F'RB and each member of the bot’s HoF, that is to say, {boty, bota, ...bot,,_1 }. Figure
2 shows how the battle scenario is configured to evaluate each population in a two-player game, and where ‘player
1’ and ‘player 2’ denote each of the players considered in a confrontation. To sum up, the bot fitness function
evaluates the capacity that an individual has to defeat the fixed opponent(s) in a finite set of maps, whereas the
map fitness function evaluates the nature of a map that favors the fixed opponent(s) when it(they) is(are) competing
against a set of evolved bots in different matches.

Observe that the initial objective is to find a winning individual for bots (i.e. the population marked as active — line
1 — and which will firstly be evolved). During the execution, the population marked as active (resp. non-active) is
the one that will be (resp. will not be) evolved in a coevolutionary cycle, and this role will be interchanged between
the two populations (line 20) until the end of the process. The HoF of the non-active population (i.e., the maps) is
initially loaded with some (randomly or manually generated) individuals (line 2, method PRELOADMAPS) whereas
the bot’s HoF is initially empty (line 2). The HoF of the population being evolved is updated (i.e., only robust
champions are kept) according to specific criteria and all \ coevolutionary steps (lines 4-6). The active population

is randomly initialized (line 7) and the strength of its initial candidates is evaluated in line 8. Then a standard
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Fig. 2. Configuration of the battle scenario for both populations, note that the object under evaluation is highlighted with dashed lines.

evolutionary process tries to find a victorious individual in the active population (lines 11-24). If one individual is
found to be victorious (line 17), it is added to the HoF of the active population (line 19) and the process is initiated
again but with the population roles reversed (line 20). This means the population not being evolved will take the
active role in the following co-evolutionary cycle and vice versa; otherwise (i.e. no winning individual is found) the
search process is restarted. If, after a number of coevolutionary steps, no winning individual is found in the active
population (i.e., bots or maps) then the search is considered to have stagnated and the coevolution ends (see the
while condition in line 3). At the end of the process we obtain as a result, two sets of winning solutions associated

accordingly with each of the populations.

B. Variants of MuCCCo

This section describes three variants of our basic MuCCCo algorithm that have been adjusted from those proposed
in [5] and are denoted as: MuCCCo-Diversity, MuCCCo-Quality and MuCCCo-U. The variants differ from each
other in the way in which they periodically update the archives employed on the basis of quality and diversity
metrics. The objective is to establish a correct policy for updating the HoF (by removing some of its members)
whilst maintaining in this set, only those champions which can be considered robust.

The number of individuals to be removed from the memories (i.e., strategies’ HoF and game content’” HoF) in
each update is a percentage value («) (see line 5 in Algorithm 1), set by the programmer. This indicates the portion

of the HoF to be removed; in other words, the HoF (with cardinality # HoF’) is ordered according to the metric

#HoF X«

value (i.e., diversity, quality or a combined criteria) in a descending order and the last [#=75

| individuals in
this ordered sequence are removed unless the HoF is empty after executing this update. The update is executed
every A coevolution.

1) MuCCCo-Diversity: This variant updates the archive by eliminating those solutions identified as “less diverse”.
In a previous approach we proved that the control of diversity helps to avoid redundancy in the champion’s memory
as well as combat over-specialization, and for this reason we decided to employ it here.

2) MuCCCo-Quality: In this variant, the criteria for eliminating solutions of the HoFs is a measure of quality

(which, as for diversity factor, has to be specifically defined for the game under consideration).
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Algorithm 1: MuCCCo(c, )

1 nCoev < 0; activePop <— Bots; nonActivePop < Maps; ¢ < thresholdvalue;

2 HoFpBots < 0; HoFnraps < PRELOADMAPS(); frb < FIXEDRIVALBOT();

3 while nCoev < MaxFailCoevolutions A —timeout do

4 if nCoev mod A = 0 then //HoF updating every A Coevolutions

5 PURGEq (HOoF4ctivePop); // HoF updating

6 end if

7 POPactive Pop < RANDOMSOLUTIONS(); // Active pop randomly initialized

8 POPactivePop < EVALUATEPOPfTb(HOFnonActiyePop);// Evaluate candidates in Active population against rival
HoF and FRB

9 i+ 05

10 foundWinner < false;

11 while (i < MaxzGen) A = foundWinner do

12 parents <—SELECT (pOpactivePop):

13 children < RECOMBINE (parents, px);

14 children < MUTATE (childs, par);

15 POPactivePop  REPLACE(childs);

16 POPactivePop < EVALUATEPOP ., (HOFpon Active Pop)s

17 if (FITNESSqctivePop(BEST(PODactivePop)) > ¢) then //winner found!

18 foundWinner <« true;

19 HoF,ctivePop < HoFactivePop U {BEST(POPactivePop)}

20 temp < activePop; active Pop +— nonActive Pop; nonActivePop < temp;// interchange populations’

activity roles

21 else

22 ‘ 1<+ 1+ 1;

23 end if

24 end while

25 if (foundWinner = true) then

26 ‘ nCoev < 0; // start new search

27 else

28 ‘ nCoev < nCoev + 1; // continue search

29 end if

30 end while

3) MuCCCo-U: This variant continues the idea of optimizing the champions memory, but now we propose a
multiobjective approach where each solution has both a diversity value and a quality value, as previously described,
associated with it. Then, a percentage value («) from the set of dominated solutions according to the multiobjective
values is removed.

Note that, in general, the adaptation of our proposal to a specific game can be done by just providing game-
specific definitions for the evaluation function and the diversity measure. We agree that this might be not simple

to do but, in general, the adaptation does not require additional efforts.

IV. STUDY CASE ON A RTS GAME: PLANET WARS

To demonstrate the applicability of our proposal, this section describes an instance of it in a specific RTS game.
Section I'V-A introduces the game, then Section IV-B centers on codification issues. Finally, Section IV-C provides

specific details to adapt our algorithms to the game Planet Wars.
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A. Planet Wars

Real-Time Strategy (RTS) games are one of the most exciting genre of games or research because they provide
a range of challenging problems for AI design.These include planning in an uncertain world with incomplete
information, learning, opponent modeling, and spatial and temporal reasoning [25]. Here, we consider the Planet
Wars game, which is an easy-to-understand instance of an RTS game. Planet Wars is a two player game that
was proposed by the Google Al Challenge international contest 2010° the objective of which was to optimize the
Artificial Intelligence (AI) of the game.

The game takes place on a map which contains several planets, each of which has a specific number of ships
on it. The planets may belong to the player, the opponent, or just be neutral. Each planet owned by a player (not
those that are neutral) will increase their forces there according to the “growth rate” of the planet.

At the start of each turn, the player receives the current status of the game (i.e., information about the planets and
fleets) and can only take one type of action: send fleets of ships to another planet. After sending fleets, each planet
owned by a player increases the number of ships remaining proportional to the planet growth rate. The fleets that
were sent in a previous order take a certain number of turns to reach their destination, according to the distance
between the planet of origin and the destination. Upon arrival, if both the planet and the ships belong to the same
player, then the number of ships increases by adding together the current number of ships on the planet and the
number of newly arrived ships. Otherwise, if the arrival planet is neutral, then it has a fixed number of ships (/V.S)
and the player must send at least N.S 4 1 ships to own the planet (i.e. reach the neutral planet in order to conquer
it); and if the player sends fleets to an enemy planet (i.e. the player attacks an enemy planet) a fight is initiated to
own the planet.

Although the players issue their orders on a turn-by-turn basis, they carry out these orders at the same time, so
we can treat this game as a real-time one. The player with the most ships at the end of the game wins. The game
may also end earlier if one of the players loses all his/her ships or if one player exceeds the time limit without
completing his/her orders and therefore forfeits the game. If both players have the same number of ships when the
game ends it is considered to be a draw.

Planet Wars has been used as a test scenario in other research on Al applied to video games. The first issue was
a proposal by a team from the University of Granada, they designed a Genetic Algorithm to generate and train bots
which were apt for participating in the Google Al competition. The result was the “GeneBot” [26], [27], which
was a virtual player that defeated baseline bots in most playing environments and obtained a top-20% ranking
position in the contest. Other examples are described in [24] and [9] where the authors presented two procedurally
balanced map generators for this game. As can be seen, in this game the generation of maps and bots has been
addressed earlier but independently from each other, without any relation between them (i.e. maps and bots). Our
purpose here, is to experiment with the unification of these two objectives. The idea is to contribute to the (PCG)

with a mechanism which allows the simultaneous creation of multiple games’ resources, and which exploits the

3http://planetwars.aichallenge.org
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possibilities offered by CC for co-evolving multiple species.

B. Representation issues

Our coevolutionary algorithm tries to achieve two main conflicting goals. The first is to find optimal winning
strategies to govern a bot (i.e., the virtual player) in the game Planet Wars. This is done optimizing the rules that
guide its decision making mechanism, so that, in each turn the bot should select the best action according to the
current state in the game. The second objective is to automatically generate game maps to avoid the victory of the
evolved bots. In other words, this second goal leads to maps which enhance the performance of the opponent at
the expense of the evolved bots.

Two different populations (i.e., one for bots and the other for maps) are thus managed, and their specific
representations are now detailed. For bots (i.e., strategies), we take into account that the state, at a specific instance
of the game is determined by the advantage (with respect to its opponent) of the bot in terms of ships and growth
rate. Both advantage metrics have three possible values (‘high’, ‘null’ or ‘low’) which indicate the level of advantage
in each case. Lets say that, for player p (resp. opponent 0), GR, (resp. GR,) is the total growth rate, according
to the growth rate of the planets owned by player p, and let AGR,, = GR, — GR,; then if AGR,, > 0, we
say that player p has a ‘high’ advantage over opponent o in terms of the growth rate; ‘null’ in the case of a draw
(i.e., AGRp,, = 0), and ‘low’ if AGR,, < 0. The calculation of the advantage in terms of ships is similar but
considers N S, instead of GR,, (resp. N.S, instead of GR,) as the total number of ships owned by player p (resp.
opponent o) at the current instant of the game; in other words, ANS,, = NS, — NS,. However, we considered
different thresholds for the advantage values so that if ANS,, > 10, then player p has a ‘high’ advantage, ‘null’
if 0 < ANS,, < 10, and ‘low’ otherwise (note that we consider that a difference of 10 ships is not significant
enough to distinguish between the two players; we settled on this value through our playing experience).

So, a virtual player strategy is coded as a bidimensional matrix where the first dimension symbolizes the player’s
advantage over his/her opponent in terms of the number of ships (i.e. the ANS,,), and the second dimension
represents the advantage in terms of the total growth rate (i.e. the AGR,,). As we explained above, each axis has
three possible values (‘high’, ‘null’ or ‘low’). Each cell in the matrix acts as a gene and stores one of the following
possible actions:

1) attack the strongest enemy planet (AS) (i.e., the enemy planet that owns the greatest number of ships),

2) attack the weakest enemy planet (AW),

3) attack the closest enemy planet (AC),

4) conquer the strongest neutral planet (CS) (again in terms of number of ships),

5) conquer the weakest neutral planet (CW),

6) conquer the closest neutral planet (CC),

7) follow the enemy (FE): it sends fleets to one of the destination planets to which the enemy is now sending

his/her own fleets, chosen by first planet on the list of the enemy fleets for which we have sufficient number

of ships.
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In this way, the whole matrix represents a strategy that controls, deterministically, the behavior of a bot during
the game by executing the action associated with a specific instance of the game. For a virtual player there are
9 possible different states (i.e. 3 x 3, all the possible value combinations considering the two dimensions of the
matrix). Basically, in a specific turn of the game the player will execute the action stored in the state in which
he perceives that he is. Note that the search space is 7° = 40353607 € [22°,2%6], which cannot be exhaustively
assessed due to the cost of the evaluation that requires a game simulation and thus metaheuristic techniques are
used.

Our maps are coded differently. A map is a list of n planets where n € [15,30] and each planet is represented
by the following information: two float values that indicate, on the map, the z and y coordinates corresponding
to the center of the planet, where z,y € [0.0,15.0]; the owner attribute which identifies the player who dominates
the planet (i.e., O if the planet is a neutral and thus has not owner; 1 if player 1 is the owner of the planet, and 2
if player 2 owns the planet); the total number of ships (V.S € N) that the planet hosts (when the map is created
NS €[1,100]); and an integer value GR € [1, 5] that denotes the specific growth rate of the planet.

C. Specific issues

A game strategy is considered ‘winning’ if it is able to beat the fixed rival bot(s) when they are faced on all the
maps belonging to the map’s HoF. On the other hand, a map is considered a victorious individual if it meets two
constraints: the first being that the fixed rival bot has to defeat (or tie with) each member in the bots’ HoF in a
match played, considering this map (i.e. the evaluated map) as the confrontation scenario. The second requires that
the fixed rival bot does not exceed a limit of planets conquered. This second constraint is imposed so as to avoid
the generation of corrupt (i.e., degenerated) game content, that is to say, content that provides no possibility at all
for the game strategies to beat the fixed rival bot.

More specifically, bots are evaluated by a direct confrontation against the FRB on all the maps in the corresponding

HoF. So, given a specific strategy s € Poppots, its fitness (F) is computed as follows:

1
Fpots(s) = z e}% (rf,’lfrb + (C1 — nTurns, prp(m)) "
m Maps

+ CQ : Qs,frb(m))
o k=#HoFyqps € N is the cardinality of the maps’ HoF;
o function 7%’ € R returns ¢ points if strategy a beats strategy b on the map m, % if the confrontation ends in

a draw, and 0 if FRB wins over strategy s;

s, frb

So, for instance, r;;

would return ¢ points if strategy s beats the FRB on the map m;

o function nT'urng ,(m) € N returns the number of turns spent on a game that, played on the map m, ends in
a victory of a or in a tie, and O otherwise;

e and Q,(m) € R is the percentage of conquered planets (with respect to the total number of planets existing

on the map m) that strategy a owns at the end of the confrontation between a and b on map m.
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e (] and (5 are two constants used for scaling/weighting. We consider C; = 500 and C5 = 10, based on our
game experience and with the goal of providing significance to both number of turns and conquered planets

in the fitness evaluation.

In turn, map evaluation uses a different fitness function defined in Equation 2 where m € Popjsqps 1S @ map to
be evaluated, function r;‘,;b € R is defined as shown above, and | = #HoFp,s € N is the cardinality of the bots’
HoF. Also, in the new fitness equation we employ a modification of the function @, ;(m) used in Equation 1. The
reason is to penalize the corrupt maps, because in preliminary experiments, based on the function @, (m) our
algorithm generated (as champions) maps where the majority of the planets had a beneficial position with respect
to the planet of origin associated with the fixed rival bot. Note that the number of turns is not considered in these
experiments, initially it was included in the function but the first experiments showed that finding individuals which
gave the victory to the FRB without crushing players’ adversaries was very difficult for the maps’ population. We
therefore try to reduce the selection pressure during the search process centering only on the goal of achieving
victorious maps.

s, R C2 Q)

Fl\laps (m) - I (2)

where

, 07 Qb,(l (m) < P
Qa,b(m) =
Qa,p(m) + Plusyo(m), Qpa(m)=p

and

Plusy qo(m) = Qpo(m) — p

The maps’ fitness function values positively those maps in which the bot champions are not radically defeated
by the FRB. This basically means that the bot champion owns, at least, p% of the planets in the map at the end
of the fight. This constraint prevents the convergence of the algorithm onto corrupt maps. Note also that a bonus
is given to those maps in which the loser bot (resp. the winner FRB) conquers more than p%. Using this bonus
we try to intensify the search for maps which lead to games with a fairer share of resources between players. We
tested different values for p € [0%, 50%)] but found that when p was close to 0% all planets in the maps tended to
be aligned, clearly close to the initial position of the fixed rival bot and far from the initial position of the opponent
game strategy; o its turn, when p was close to 50% we experimented problems in finding map champions (probably
because maps were not able, by themselves, to find the equilibrium of the game). Based on our game experience
and preliminary experiments, we finally set p = 20% to prevent totally corrupt maps from being generated.

1) MuCCCo-Diversity: As for the strategies’ HoF, the diversity provided by each of its members is calculated via
the genotypic distance as follows: we manage the memory of champions as a matrix in which each row represents
a solution and each column a gene (i.e., an action in the strategy). Note that there are 9 columns (see Section I'V-B).

Then, we compute the entropy value for a specific column j as follows:
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#HoFBots

H; = - Z (pij log pij) 3)

i=1
where p;; is the probability of action ¢ in column j, and # HoFp.:s € N is the length of the bots’ memory. Finally

the entropy of the whole set is defined by:
9
H=> H, )
=1

The higher the value of H the greater the diversity of the set. To determine the diversity’s contribution to a specific
solution, we calculate the value of entropy with this solution inside the set. Then we find the corresponding value
with this solution outside the set, and finally, the difference between these two values represents the contribution
of diversity.

This notion of genotypic distance is similar to Novelty Search [28], as both aim to maintain the diversity in a
set of solutions. However, our proposal is different because diversity is not an objective in our search process but
rather it is used as a policy to keep the memories (i.e., HoFs) to a manageable size.

Regarding maps, the calculation is done by the analysis of the average distance between the planets of the map
with respect to all the other maps in the memory as follows:

i1(S)

D(my) = Zi:}ﬁ (5)

where k& € N is the cardinality of maps” HoF which the individual m; is a member, and Vi € HoF{m;—o, mi=1, ..., M;=j };

i # j we calculate:

(eSiz) + (eS;i)

Sij = .

(6)

where eS;; is the average of the Euclidean distance of each planet contained in the ¢ — th map (i.e. m; in HoF
of maps population) to each planet located in j — th map (i.e m; member in HoF); and eS}; represents the same
distance concept but this time starting from the j — th planet as the origin for calculating the Euclidean value.

2) MuCCCo-Quality: The measure of quality for Planet Wars was defined based on our game experience, in
the case of bots, as the number of defeats that a member in the champions memory suffered in the previous
coevolutionary step. For maps, the quality was defined as the number of defeats that each fixed rival bot suffered
when he had to face enemies on this map also in the previous coevolutionary step. In what follows, and abusing
the language, we will say that a map suffers a defeat against a game strategy b (i.e., a bot) if the fixed rival bot is
defeated by b in the map.

3) MuCCCo-U: This variant is based on a modification of the fitness functions defined in (1) and (2). This
change is inspired by the Competitive Fitness Sharing (CFS) method [4]. The main idea is that a victory against
opponent b can be considered more relevant if b beats a significant number of opponents. So, given a domain
d € {Bots, Maps}, a penalization value N for each individual i (for 1 < i < n) in the population Pop, is then

calculated as follows:
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1 k Vi
N,=1-—= *J 7
P2 T) @

where v;; = 1 if the i-th individual of the population defeats* the j-th champion in the rival HoF (whose cardinality

is k) and O otherwise; and

#Popa
Vi) = > vy (8)
i=1
is the number of individuals in the population which defeat the j-th opponent of the rival HoF. As a consequence,
N; =~ 0 if the i-th candidate defeats all opponents of the rival HoF and the i-th solution itself is one of the few
candidates to do so; IN; = 1 if doesn’t defeat any opponent; and 0 < N; < 1 depending on how many times it

wins and how common it is to beat certain opponents. The fitness of a candidate ¢ is then computed as follows:

FZ‘:P,L‘—(,UNZ‘ (9)

where P; is the result obtained in the battles by applying (1) or (2) depending on whether the domain to be
considered is Bots or Maps, and w € N is a coefficient that scales N; in order to make it meaningful with respect

to the value P.

V. EXPERIMENTS AND ANALYSIS

This section describes the experimental analysis conducted on the Planet Wars game. We consider two instances
for each algorithm (MuCCCo-Div, MuCCCo-Qua, and MuCCCo-U) that vary according to the value of a €
{10%, 50%}. The notation MuCCCo-Variant-oc (where Variant €{Div, Qua, U} is used to denote each of the
instances. In all cases, we set A = 3 and performs 10 runs per algorithm instance using a steady-state genetic
algorithm (GA) with the aim of finding winning solutions (maps or bots) with respect to the rival HoF. This employs
binary tournament for selection, uniform crossover, bit-flip mutation and elitist replacement. At the beginning of
the coevolutionary cycle, map 10 (from the collection of maps designed for the original Google AI Challenge
Competition 2010) is set as the initial map opponent (i.e. the map added initially to the maps’ HoF). We also chose
the ProspectorBot, from the set of bots that were originally provided as example bots in the competition because
it is a fairly offensive strategy that can help to produce bots with fighting spirit. Next, we detail the configuration

of the experiments, and analyze the results obtained.

4Remember that, in the case that d = Maps, we consider that a map ‘defeats’ a specific bot b if the FRB is defeated by the bot b when
both the FBR and b are faced on the map. In addition, we will use the term ‘rival HoF" of maps’ (resp. bots) as synonym of the HoF'Bo¢s

(resp. the HoFnraps)-
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A. Configuration of the Experiments

All experiments were executed using the Planet Wars engine (version 1.2) 5. The parameters used in the
experiments are as follows: max FailCoevolutions (set to 10) represents the limit of continuous coevolutions that
one of the domains (i.e., bots or maps) can consume without finding a champion solution. The timeout condition
(line 3 in Algorithm 1) is associated with maxCoevolutions (set to 100), which indicates the maximum number of
total coevolutions that the algorithm execution can employ. maz Evaluations (3000) is the limit of evaluations i.e.,
timeout = (nCoev > maxCoevolutions) or (numEvaluations > maxEvaluations), where numEvaluations
represents the number of evaluations consumed by that execution of the algorithm. Other parameters are: Mutation
Probability (pps = 0.01), Crossover probability (px = 1.0), ¢ is the threshold value to consider a solution as
winning (¢pBots = 1600, pMaps = 1250), maxGen = 50, popSize = 30 and \ = 3.

We have compared the results obtained by the different executions in the instances by applying the Kruskal-Wallis
test [29] (a non-parametric statistical test which allows a comparison of different distributions that are independent
from each other) with a significance of 95%. Moreover, in those cases in which this test detected significant
differences in the distributions we additionally performed multiple tests using the Dunn—Sidak method [30] for

determining which pairs are significantly different and which are not.

B. Analysis of the Results

Figures 3 and 4 show the fitness of the best champion found in each independent execution of the algorithm
instances for the populations of maps and bots, respectively.

The Kruskal-Wallis test confirms that the differences between Qua — 10 and the ‘U’ versions (i.e., U — 10 and
U — 50) are statistically significant (with p—value= 9.0524e — 007) and, according to the bot population results
(Figure 3), the algorithms working on ‘quality’ values obtain the best results. These are followed by those based on

)

the ‘diversity’ metrics, while the combined versions (i.e., the ‘U’ versions) show a less-competitive behavior. This
last assertion might be made because in ‘U’ versions it is more difficult to obtain a high fitness value due to the
penalty that is applied to the score obtained by the individuals according to Eq.(9). Although this penalty affects
the numerical value of fitness it should not affect the robustness of the solution; it should even, in theory, improve
the focus in the search process.

With respect to the maps’ fitness displayed in Figure 4, the behavior of the algorithms is very similar to the
bots’ results. Once again, a clear distinction between the three families of algorithms is seen, the Multicompare test
showed that the “MuCCCo-Div” results are in the middle of the mean ranks and there are statistically significant
differences between Qua — 10 and the ‘U’ versions (with p—value= 4.5878¢ — 006). In order to compare the
algorithms from another point of view, Figure 5 presents the best bot fitness, the best map fitness and the number

of evaluations consumed in the execution (in axes X, Y, and Z respectively) for each independent execution. Here

each point (z,y, z) corresponds to one of the 10 executions performed by each algorithm instance. For clarity, the
Shttp://planetwars.aichallenge.org/starter\_packages.php
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Fig. 3. Best bot fitness distributions: Qua — 10 obtained the best results and showed statistically significant differences with respect to U — 10
and U — 50.

algorithms are grouped in families, where each family comprises 20 points corresponding to the 10 executions of the
algorithm for both e = 10% and o = 50%. In addition, we have considered the families of algorithms because the
instances of our prime algorithm distinguished in terms of their results as we have shown previously, and because
no significant differences between instances of the same family were found. Considering a multi-objective approach,
note that there are only two non-dominated solutions in the Pareto front, one belonging to MuCCCo-Qua and the
other to MuCCCo-Div. By analyzing them in depth, we note that in both cases the dominance is due to a low
value in the Z axis (i.e., number of evaluations consumed to obtain the solutions) which corresponds to very short
coevolutionary cycles. In such a case, this result may be interpreted as a sign of an early stagnation of the search
process. However, considering that the fitness values achieved in these short cycles correspond to the “best values”
we could also think that there is a rapid convergence towards robust solutions. It may also be the case that in large
and short cycles the algorithms find similar fitness values which could be a sign that the search process is affected
by a loss of requirements and so it only finds mediocre solutions. To complement this analysis, in the following
paragraphs the behavior of another ‘robustness’ indicator for bot individuals is used to help us reach more accurate
conclusions. Table I presents the results of the robustness test for bot individuals. Here, the 10 bot champions
obtained in the independent executions of the algorithm instances, were pitted against each other in an All vs. All

tournament, and the results of each family of algorithms (i.e., 20 results for each family) were grouped together.
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Fig. 4. Best map fitness distributions: Qua — 10 obtained the best results and showed statistically significant differences respect to U — 10
and U — 50.

In other words, each individual competes against the other 20 champions of the opponent algorithm family, and,
in each confrontation, two battles (each of them centered on a distinct scenario) are executed. The game scenarios
were two maps, randomly chosen from the original set given in the Planet Wars starter package. Columns in Table
I show, respectively, the algorithm families that competed against each other, the number of victories that were
obtained by each of them and the percentage that each value represents with respect to the total number of battles.
It also shows the number of draws with the corresponding percentage. We note that 800 battles were performed in
total in each algorithm confrontation (i.e., 20 individuals x 20 opponents X 2 maps).

Note also that we have differentiated the battles according to the order of the players (i.e., first player as Playerl
(P1) and second player as Player2 (P2)) which is necessary because when we execute the Planet Wars’ game engine
sometimes the player’s position on the map can result in an advantage or disadvantage in the match. Table I shows
a slight variation (between 1 and 2 per cent) with respect to the number of victories and defeats when we pit the
same bots against each other on the same maps and only permute their positions, and so we conclude that the three
families behave similarly, in both cases (i.e., for two player positions) MuCCCo-Diversity seems to obtain the most
difficult set to overcome and MuCCCo-U is the most vulnerable in the competitions.

Next we repeat the previous test, using the same bots that have been evaluated before but this time the battles

take place on two maps that have been generated by the algorithms implemented, and which have been chosen at
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RESULTS OF ALL (VS) ALL TOURNAMENT ON MAP30 AND MAP70 (FROM THE PLANET WARS MAPS’ SET).

TABLE I

71000

3000

Playerl  Player2  Victories-P1 Victories-P2 Draws
Qua Div (25%) 211 (26%) 386 (49%)
Qua U 36%) 231 (29%) 282 (35%)
Div Qua 224 (28%) 217 (27%) 359 (45%)
Div U 284 (36%) 193 (24%) 323 (40%)
6] Qua 218 (27%) 286 (36%) 296 (37%)
6] Div 9 (25%) 299 (37%) 302 (38%)
Qua Qua 220 (27.5%) 196 (24.5%) 384 (48%)
Div Div 192 (24%) 216 (27%) 392 (49%)
U U 272 (34%) 240 (30%) 72 (36%)

18
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TABLE I
RESULTS OF ALL (VS) ALL TOURNAMENT ON TWO MAPS CHOSEN AT RANDOM FROM THE CHAMPIONS’ SETS GENERATED BY OUR

ALGORITHMS.

Playerl  Player2  Victories-P1  Victories-P2  Draws

Qua Div 306 (38%) 466 (58%) 28 (4%)
Qua U 307 (38%) 458 (57%) 35 (5%)
Div Qua 274 (34%) 516 (65%) 10 (1%)
Div U 324 (41%) 127 (53%) 49 (6%)
8] Qua 231 (29%) 544 (68%) 25 (3%)
U Div 265 (33%) 477 (60%) 58 (7%)
Qua Qua 152 (19%) 648 (81%) 0 (0%)
Div Div 96 (12%) 704 (88%) 0 (0%)
U U 120 (15%) 672 (84%) 8 (1%)

random from the set of map individuals classified as winners. So, looking at Table II we observe a very similar
behavior in the outcomes of individuals who are positioned as Player 2. Note that in all cases the maps clearly
favor the second player, and this time there is a notable variation in the results when the positions of the bots in
the battles are interchanged, the numbers of victories/defeats for the same bots’ family always vary between 20 and
30 per cent (see the differences between the cells with the same color). Note how, unlike the previous table, the
number of wins (on the same family of bots) increases considerably when the positions of the bots in the battles are
interchanged. It is noteworthy that our algorithm coevolution in maps aims to find solutions to ensure the victory of
the FRB in the HoF individual opponents (as mentioned in the previous sections), and it is precisely this FRB that
always occupies the position of Player 2 in the battles that are executed during the evaluation process. Therefore, this
interesting behavior suggests how the learning process that emerges in the mapping population converges towards
the creation of more favorable structures for Player 2. Next some tests were applied to our maps so as to analyze
them in more detail.

First, we show the results from a geometrical evaluation of the maps, for this we use the same maps that are
analyzed in Figure 4 (which were the best individuals obtained by each algorithm in the experiments described
above) but this time instead of having six algorithms we have just 3 because they are grouped by families (i.e “Div”,
“Qua”, “U”) and another set is added that contains 20 maps (which were chosen at random) from the official maps’
set of Planet Wars. Some of the measurements used for this testing are based on the maps aesthetic analysis
presented in [31]. These are indicators related to the spatial distribution of the planets and their features, such as
number of ships and the growth rate. The first test explored the differences between the maps sets with respect to
the average distance from the planets to the home planet of Player 2 in each map, this distance is calculated by the
Euclidean distance formula. Figure 6 shows that in our maps the average distance is significantly lower than the
Google maps set. The values distributions of our maps behave similarly, no one set stands out for finding especially

radical solutions, but the test shows that there are significant differences between our maps and the Google maps
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Fig. 6. Statistical analysis of the average distance from the planets to Player 2’s home planet for each map in the maps’ sets.

set. A second test was applied to the maps. It focused on the “number of ships” and “growth rate” and checked
whether there was a relationship between the values assigned to these features when the maps were created by our
algorithm. Let s; and w;, respectively, be the number of ships and growth rate of the ¢;; planet on a map (V is
the number of planets in this map), then we specify the average and standard deviation of this feature (us and oy,

respectively) and the Pearson’s correlation between the number of ships and the growth rate on p as follows:

N
s = si (10)
i=1

Zf\;1(5i — 15)?
N

(1)

Og =

N
Zi:1 siw; — N sy
Nosoy

p= (12)

According to Figure 7 in all distributions the relationships between the analyzed variables is positive, for the
cases of the “Div” and “U” sets they display less dispersion in the values but it is not a significant difference
with respect to the other sets. To sum up, it was found that there is a relationship which may be classified as
“high” because in all the cases the median value is larger than 0.5, this is an expected result because the correlation

between the size and the number of ships in a planet is reasonable.
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Fig. 7. Statistical analysis of the Pearson Correlation between “number of ships” and “growth rate”.

Lastly we show the analysis of the diversity in the maps sets using the map diversity metric defined in Equation
5 which computes the average distance between the planets of a map with respect to all the other maps in the set.
So we calculate the diversity metric D; for each map in the set according to Equation 5, then the average of the
diversity values is computed for each set an it is denoted as j4, and the standard deviation o4 of these diversity

values is obtained, as follows:

N (D; — ug)?
gd:\/zz—l(NM) (13)

Figure 8 shows a clear distinction between the Google maps set and our maps, the first has less dispersion in its
values distribution and it produces significant differences with regards to the maps set of our algorithms which are
more disperse. This result may be an indicator that our algorithms are able to maintain an adequate diversity level
in the HoF, in fact, note how the distribution of the “Div” family has the greatest dispersion because this variant
of algorithms (i.e. “Div10” and “Div50”) pay particular attention to the diversity control in the HoF during the
coevolutionary process. So far, we have shown those results which have been useful in our research, in the next
section they will be summarized, trying to establish relationships and reach conclusions.

Next, we conducted three additional experiments, one to show the capacity of the system to evolve competitive
bots, another to assess the adequacy of our method to cope with a set of fixed rival bots (for instance to specialize

content/bots with respect to several adversaries or profiles of players), and the third other to demonstrate the
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Fig. 8. Statistical analysis of the diversity in the maps sets.

adaptation of our maps to favor an FRB when this is faced with one of the best experts known in the game. In the
first case, we fixed the FRB to be a highly specialized bot, namely, the GeneBot [26], [27]. This bot is mentioned
in Subsection IV-A and represents the best method described in the scientific literature for playing Planet Wars. The
encoding of GeneBot consists of a set of numeric values, and each bot to evolve, tries to optimize them. GeneBot
had been subjected to a computationally expensive optimization process so that the task to improve it seemed to be
hard. In the second experiment, we considered three FRBs: GeneBot, ProspectorBot, and RandomBot (i.e., other
bot from the Google bot’s set for PlanetWars). All the variants of ‘MuCCCo’ were considered, and each experiment
was run 10 times. Table III (Rows 1-18) shows the results from the All vs All tournament between 15 victorious
individuals (taken from the execution of the different algorithm variants), and where we used two balanced maps
(obtained from the set of Google maps) that were not involved in the search process. The prefix ‘Many’ (resp.
‘Fixed’) indicates the cardinality of FRB’s set is 3 (resp. 1). Note also that the original version of GeneBot is
also included in the tournaments. In all cases, the individuals obtained from ‘Fixed’ instances are more robust
in the battles and show the best performances against their adversaries. The reason might be that a single FRB
leads an efficient specialization of the solutions during the search process whereas the use of many FRB generates
less specialized solutions (at the expense of obtaining a wider profile). Observe that GeneBot is not an invincible
adversary and that even our bots evolved via our ‘Fixed’ versions, clearly beat it (particularly, the version obtained

by ‘Fixed U’). This is a promising result, especially if we consider that our bots were not optimized in the two
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TABLE III
RESULTS OF ALL (VS) ALL TOURNAMENT (IN GOOGLE MAPS, EXCEPT LAST ROW * IN TWO EVOLVED MAPS). ‘FIXED’ MEANS THE BOTS
WERE EVOLVED VIA ONE FRB (GENEBOT). ‘MANY’ MEANS THE BOTS WERE EVOLVED VIA THREE FRBS (GENEBOT, PROSPECTORBOT,

RANDOMBOT).
Player 1 Player2 Victories-P1 ~ Victories-P2 ~ Draws
ManyDiv FixedDiv 129 321 0
ManyDiv FixedQua 139 311 0
ManyDiv FixedU 83 367 0
ManyQua ManyDiv 256 194 0
ManyQua ManyU 210 240 0
ManyQua FixedDiv 170 280 0
ManyQua FixedQua 146 304 0
ManyQua FixedU 102 348 0
ManyU ManyDiv 276 174 0
ManyU FixedDiv 182 268 0
ManyU FixedQua 169 281 0
ManyU FixedU 111 339 0
ManyDiv GeneBot 5 25 0
ManyQua GeneBot 9 21 0
ManyU GeneBot 15 15 0
FixedDiv GeneBot 15 15 0
FixedQua GeneBot 19 11 0
FixedU GeneBot 25 5 0
ZerlingRush GeneBot 29 1 0
ZerlingRush FixedU 30 0 0
ZerlingRush*  FixedU 0 30 0

confrontation maps.

In the third experiment, we considered the bot ZerlingRush (developed by GreenTea) that was ranked 8th in the
Google AI Contest 2010 (with over 4600 submissions) and was publicly available as a jar file. This robot beat all
our bots (including the original GeneBot) in the set of balanced maps provided by Google. Rows 19 and 20 in
Table III show its manifest superiority wrt. GeneBot and our 15 evolved solutions obtained from FixedU. Then,
we fixed ZerlingRush as the FRB in FizedU, and let Genebot co-evolve to beat it at the same time as the game
maps evolved to disfavor it. These 15 new evolved GeneBot beat ZerlingRush in our generated (non-corrupted)
maps as shown in the last row of the Table (marked with *). This is a proof that the maps adapt to satisfy the

objectives we have established.

VI. CONCLUSION

This paper has described an evolutionary model that allows the co-evolution of game Al and game content

via competition. The intrinsic differences between these two domains prevent direct confrontation between their
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candidates so that the model has a set of fixed opponents that play the role of adversaries in the evolution of bots,
and allies in the optimization of game content. The overall schema can be used to automate the generation of game
Al as well as to dynamically adapt the game for specific objectives via procedural content generation.

We have considered Planet Wars as the testbed, and have shown that our proposal can not only generate maps
that favor (resp., disfavor) allies (resp., adversaries) but also game Al that performs very efficiently (on a par with
the best game Al reported in the scientific literature for playing the game).

The number of generations needed to adapt the game AI and content can vary significantly according to the
underlying game and to the expected quality of the results. The efficiency of the application of our algorithm
depends thus on many factors and, as in any other evolutionary algorithm, one can tune the basic parameters (such
as population size, number of co-evolutionary iterations, number of FRBs, and the sizes of the HoFs) to significantly
reduce the running time at the expense of solution quality.

In future work, we will focus on testing other multi species co-evolutionary approaches to explore the parallel
generation of different contents for games, trying to reduce the vulnerabilities of this model. We will pay particular
attention to the use of other populations with the aim of generating more complex game components such as game

rules.
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CAPTIONS OF THE FIGURES

Figure noguel.pdf

Caption: Multi-content generation coevolutionary schema for a n-player game.

Main caption for SubFigure nogue2a and SubFigure nogue2b
Caption: Configuration of the battle scenario for both populations, note that the object under evaluation is highlighted

with dashed lines.

SubFigure nogue2a.pdf

Sub-caption: Bot evaluation.

SubFigure nogue2b.pdf

Sub-caption: Map evaluation.

Figure nogue3.pdf
Caption: Best bot fitness distributions: Qua — 10 obtained the best results and showed statistically significant

differences with respect to U — 10 and U — 50.

Figure nogue4.pdf
Caption: Best map fitness distributions: Qua — 10 obtained the best results and showed statistically significant

differences respect to U — 10 and U — 50.

Figure nogue5.pdf

Caption: A Pareto Front representation.
Figure nogue6.pdf
Caption: Statistical analysis of the average distance from the planets to Player 2’s home planet for each map in

the maps’ sets.

Figure nogue7.pdf

Caption: Statistical analysis of the Pearson Correlation between “number of ships” and “growth rate”.

Figure nogue8.pdf

Caption: Statistical analysis of the diversity in the maps sets.
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CAPTIONS OF THE TABLES

Table nogue.tl.pdf

Caption: Results of All (vs) All tournament on map30 and map70 (from the Planet Wars maps’ set).

Table nogue.t2.pdf
Caption: Results of All (vs) All tournament on two maps chosen at random from the champions’ sets generated

by our algorithms.

Table nogue.t3.pdf
Caption: Results of All (vs) All tournament (in Google maps, except last row * in two evolved maps). ‘Fixed’ means
the bots were evolved via one FRB (GeneBot). ‘Many’ means the bots were evolved via three FRBs (GeneBot,

ProspectorBot, RandomBot).
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