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1 Introduction

Genetic Algorithms (GAs) constitute a very efficient search model that has provided excel-
lent results in different domains during the last fifty years. However, new methods offering
additional possibilities are emerging. Estimation of distribution Algorithms (EDAs) are one
of these methods. In this work, we study the combination of both approaches. To be precise,
we consider the use of a Bayesian Network (BNs) to improve the best individuals found by
the GA. BNs are a probabilistic model that we utilize to predict the performance of a partic-
ular individual in its subsequent mutations and crossovers. This can be used to provide hints
on which the most convenient way to mutate one particular individual, or to recombine two
different individuals is.

The remainder of the paper is organized as follows. First, an overview of previous work
regarding the use of BNs in Evolutionary Computation (EC) methods. The HPA (Hybrid
Probabilistic Algorithm) model is described and exemplified in Section 3. Next, an extensive
empirical evaluation of the different variants of HPA is presented in Section 4. Finally, Section
5 summarizes our results, and outlines future research.

2 Related Work

EDAs are undoubtedly a prime example of the use of BNs in the EC arena [5, 3, 4]. These
methods are mainly based on evolving probability distributions, describing better and better
solutions as the search progresses. Unlike GAs, the population of solutions is just a mere
temporary device used to estimate a probability distribution. It is actually this probability
distribution the central element of the algorithm: initially, it is a flat (or random) distribution
over the whole search space; subsequently, the population is obtained by sampling the distri-
bution, and the best individuals are used to infer the probability distribution for the next step.
The population is disposed after this, and the process is repeated.

As it can be seen, an EDA has just a few parameters: how many individuals are sampled,
how many are retained, and —most importantly— how the probability distribution is modeled
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(some associated parameters appear here). Hence, EDAs are somewhat simpler in this sense
than GAs. Indeed, the adequate parametrization of evolutionary algorithms is a problem for
itself, as Grefenstette showed in [2].

The particular model used to describe the probability distribution must match the features
of the search space, i.e., it must be capable of capturing any underlying relationship between
the decision variables that might exists. BN provide a very general model, capable of grasping
complex inter-variable relationships (this is done for example in the Bayesian Optimization
Algorithm — BOA [6]). In general, the process would be as follows:

1. let ¥ +— RandomBN;
2. while —=Termination do

(a) let pop < Sample (U, N); /* N is the population sizex*/
(b) let pop’ < SelectBest (pop, M); /* M<N */
(c) let ¥ «— LearnBNFromData (pop');

Notice that while GAs evolve using crossover and mutation operators on the information
pool (the population), aiming at producing the optimal solution, EDAs attempt to characterize
this optimal solution in a probabilistic sense. Following related ideas, a Probabilistic Model
Building Genetic Algorithms (PMBGA) are described in [8]. They try to build a probabilistic
model of the population to maintain building blocks in subsequent generations.

In order to perform a deeper analysis, other EDAs that assume different underlying prob-
abilistic models will be considered. To be precise, these are the following:

e Univariate, when no dependency among variables: UMDA, PBIL.
e Bivariate, when pairwise dependencies: MIMIC, COMIT, BMDA

e Multivariate, when multiple dependencies: BOA

3 Hybrid Probabilistic Algorithm (HPA)

As anticipated before, the HPA is a GA in which the reproductive operators are guided by a
BN. The generation of this BN will be dealt later on. At this point, let us assume we have this
BN, and let us get into the functioning of the operators. First of all, the mutation operator is
as follows:

1. Use the BN to estimate the probability that a each gene has its current value. This
is done using the marginal probabilities for root variables in the BN, and using the
corresponding conditional probabilities for the remaining ones.

2. The gen whose current value is most unlikely is selected to mutate.
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According to this description, the underlying idea of this mutation operator is to bring
solutions back to the promising region of the search space. Of course, new solutions can be
discovered on its way back. As to recombination, the process is a generalization of the previous
one. Let s and s’ the solutions to be recombined, and let d be the descendant. Then:

1. let (i1, - -, i) be the topological order of variables in the BN.
2. for j € [1..n] do

(a) if s;; = s; then let d «— s,
(b) else
i. let II be the parents of variable 7; in the BN.

ii. let IT|; be the values of variables in II in the partially defined descendant (recall
that II = () for root variables).

iii. let d;; < Sample (BN,II|4)

Here, the idea is to produce a probably promising (according to the information comprised
in the BN) combination of the parental alleles. This constitutes a much more computationally
amenable approach that e.g. the provably promising combination achievable by using an exact
technique such as Branch and Bound for recombination [1].

The BN used in the operators can be obtained in different ways. In this work we have
opted for by keeping a record of a couple of pilot executions of a plain GA, but other possi-
bilities exists, e.g., using a pilot EDA, generating an elite set using multiple runs of a GRASP
procedure, etc. Preliminary tests indicate that the BN exerts a strong control on the evolu-
tion of the population, inducing premature convergence to suboptimal solutions. To fix this
issue, we have considered a mixed model that uses the Bayesian operators during some phases
of the evolution and traditional genetic operators in the remaining ones. The followed crite-
rion is based on the mean fitness of the population: when this value is closed to a particular
percentage of the best fitness, classical genetic operators are used.

Therefore, it is shown that the HPA reaches (only in three or four evaluations) the best
fitness obtained by the GA and, from there, the HPA follows its evolution, improving the
result of the GA, as it can be seen in the Figure 1 (middle) with the curves of HPA’. Figure 1
(right) shows a comparative with the several versions of EDAs described in Section 2.

4 Experimental Results

This section provides some examples of the application of the HPA model for several problems.
Unless otherwise noted, experiments have been done with an elitist generational GA/HPA
(popsize = 100, px = .9, pp, = 0.01, mazevals = 10000) using ranking selection. All results
correspond to series of 50 runs. In all cases, the HPA switched to traditional operators (single-
point crossover, and random bit-flip mutation) when the mean fitness of the population is close
to the 95 percent of the best fitness. Experiments have been done with a SAT problem, the
Rosenbrock function, an alternate bits function (maximizing the number of 10 or 01 substrings
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Figure 1: Comparative between the GA and the initial HPA (left), between the GA and the
HPA (middle) and between HPA and the EDAs (right) for OneMax problem with 1000 bits.

in a binary sequence), the Massively Multimodal Deceptive Problem (MMDP)! and the P-
Peaks 2 function.
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Figure 2: Comparison of GA vs. defined EDA in Section 2 on a SAT problem for 3 variables
per clause, 70 variables and 4300 clauses (left), in the MMDP problem with 200 segments
(middle), and in P-Peaks function with 1000 bits and 100 peaks (right). In all problems
N =100 and M =1/2 of N or 1/4 of N for the EDAs.

The results are shown in Figs. 2 to 5. As it can be seen, the improvement of the HPAs
with respect to the GA is conclusive in all problems studied. This indicates that BNs can
lead genetic operators to produce better individuals. Indeed, the HPA always generate better
solutions than the GA. Regarding the comparison with the EDA, the HPA always converges
faster, and produces similar or better solutions.

!This problem is defined by the concatenation of k 6-bit segments. The fitness of a string is determined by
the sum of each segment fitness, which is calculated on the basis of its unitation: there are two global optima
at 0 and 6 ones, and a local optimum at 3 ones; the gradient at 1 and 2 ones leads to the local optimum.

2This function is defined on binary strings of N bits; P points of the search space —the peaks— are selected,
and the fitness of a solution is the normalized Hamming distance to the closest one.
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Figure 3: Comparison of GA vs. different EDAs on a SAT problem for 3 variables per clause,
70 variables and 4300 clauses (left), in the MMDP problem with 200 segments (middle), and in
P-Peaks function with 1000 bits and 100 peaks (right). In all problems the size of population
is 100 individuals and the individuals selected in each iteration are 50.
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Figure 4: Comparison of UMDA vs. HPA in the alternate bits problem with 1000 bits(left),
in the MMDP problem with 200 segments (middle), and in P-Peaks function with 1000 bits
and 100 peaks (right).

5 Conclusions

We have presented a hybrid GA that incorporates ideas from EDAs in order to define heuristic
reproductive operators. The use of probability distributions within recombination and/or
mutation offers a computationally amenable alternative to using more sophisticated, problem-
dependent heuristics for performing these tasks. The initial results obtained indicate that this
can be a promising approach, since both an EDA and a GA were outperformed by the hybrid.

Future work will try to confirm these results on other problems. Furthermore, there are
numerous variants of the algorithm that are worth exploring. These involve alternative mech-
anisms for obtaining the initial BN, or for governing the usage of the Bayesian operators.
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Figure 5: Comparison of GA vs. HPA in the Rosenbrock function with n = 8, length = 128
bits (left) and the same function with zoom in, where it can be seen that HPA stops very close
to the optimum solution (right).
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