
Self-Balancing Multimemetic Algorithms in
Dynamic Scale-Free Networks

Rafael Nogueras and Carlos Cotta

Dept. Lenguajes y Ciencias de la Computación, Universidad de Málaga,
ETSI Informática, Campus de Teatinos, 29071 Málaga, Spain

ccottap@lcc.uma.es

Abstract. We study the behavior and performance of island-based mul-
timemetic algorithms, namely memetic algorithms which explicitly rep-
resent and evolve memes alongside solutions, in unstable computational
environments whose topology is modeled as scale-free networks, a pat-
tern of connectivity observed in real-world networks, such as peer-to-peer
systems. We consider the utilization of self-balancing strategies in order
to efficiently adjust population sizes to cope with the phenomenon of
churn, as well as the dynamic re-wiring of connections in order to deal
with connectivity losses caused by node failures. A broad experimental
evaluation on different problems and computational scenarios featuring
diverse volatility conditions shows that the combination of these two
strategies leads to more robust performances, in particular in situations
in which churn rates are large.

1 Introduction

The use of parallel and distributed models of population-based optimization al-
gorithms is a well-known approach for improving the quality of the solutions
obtained and for reducing the computational time required to obtain them [1].
While such parallel approaches have been known and in use since the late 80s,
e.g., [6,20], it is only much more recently that the use of emerging computational
environments such as peer-to-peer (P2P) networks [14] and volunteer comput-
ing networks [18] is being considered. These new computing platforms offer vast
possibilities in terms of pervasiveness and computational power but also bring
new challenges and difficulties: they are inherently dynamic systems whose re-
sources are potentially enormous in a collective sense but are very volatile on an
individual basis. As a consequence, algorithms running on these platforms must
be fault tolerant and resilient to churn (a term coined to denote the collective
effect of a plethora of peers entering or leaving the system independently along
time).

Focusing on island-based metaheuristics deployed on this kind of unstable
computational environments, it has been shown that churn can lead to the loss
of the current incumbent solution [8] and will in general negatively affect the
progress of the search. In order to cope with this, some fault-aware policy must
be implemented, either for taking corrective measures (e.g., using redundant



2 R. Nogueras and C. Cotta

computation or restoration checkpoints) or for preventive purposes (having the
algorithm self-adapt on the fly to the presence of churn). The latter is the subject
of this work, due to its intrinsic decentralized and emergent nature, better suited
to computational scenarios lacking a global control center. More precisely, we
consider the use of self-balancing strategies aimed to dynamically resize the
population of islands, exchanging individuals among them to account for node
failures or reactivations – see Sect. 2.2. These are applied to an island-based
model of multimemetic algorithms (MMAs) [11], namely memetic algorithms
that explicitly manipulate memes controlling the functioning of local search as
a part of solutions [15,17]. We use a simulated computational environment that
allows experimenting with different scenarios featuring diverse resource volatility
as described in Sect. 2.1. One of the factors whose importance is being assessed
here is the effect of dynamic rewiring of connections, that is, the on-line change
of links among islands so as to keep rich connectivity patterns. This is described
in Sect. 2.3. A broad empirical evaluation is used for this purpose in Sect. 3. We
close the paper with conclusions and an outline of future work in Sect. 4.

2 Materials and Methods

2.1 Algorithmic Setting

As stated before, we consider the deployment of an island-based multimemetic
algorithm on an unstable computational environment. We have nι panmictic
islands, each of them running a multimemetic algorithm in which memes are
attached to individuals and evolve alongside them. These memes are represented
as pattern-based rewriting rules A → B following the model by Smith [19].
Therein A,B are variable-length strings taken from Σ ∪ {#}, where Σ is the
same alphabet used to encode solutions and # represents a wildcard. The action
of the meme is finding an occurrence of pattern A in the solution and changing
it by pattern B if it leads to a fitness improvement (otherwise the solution
is left unchanged). Memes are subject to mutation and are transferred from
parent to offspring via local selection (offspring inherit the meme of the best
parent). The use of memes aside, the MMA resembles a steady-state evolutionary
algorithm using tournament selection, one-point crossover, bit-flip mutation, and
replacement of the worst parent.

These islands are assumed to work in parallel, and are interconnected ac-
cording to a certain topology N . Migration is performed asynchronously: at the
beginning of each cycle the island checks if migrants have been received from
any neighboring nodes. If this is the case, they are accepted into the population
according to the specific migrant replacement policy chosen. Later, at the end of
each cycle, migration is stochastically performed much like the remaining evolu-
tionary operators. If done, migrants are selected using a certain migrant selection
policy and sent to neighboring islands. Following previous analysis of migration
strategies in island-based MMAs [16], we use random selection of migrants and
deterministic replacement of the worst individuals in the receiving island.



Self-Balancing MMAs in Dynamic Scale-Free Networks 3

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

su
rv

iv
al

 p
ro

ba
bi

lit
y

 

 

k=1
k=2
k=5
k=10
k=20

(a)

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

(b)

Fig. 1: (a) Failure probabilities under a Weibull distribution with the parameters
used in Sect. 3. (b) Example of scale-free network generated with Barabási-Albert
model (nι = 32, m = 2).

This island-based model runs on a simulated distributed system composed
of nι nodes. More precisely, these nodes are all initially available but can even-
tually abandon the system, only to reappear later, much like it is the case of
P2P networks or volunteer computing platforms. In order to model the dynam-
ics of the system, we consider that failures/recoveries are Weibull distributed.
This distribution is commonly used in survival analysis and also fits computing
environments such as, e.g., P2P networks – see [12]. In mathematical terms, the
distribution is described by a shape parameter η and a scale parameter β. The
probability of a node being available up to time t is p(t, η, β) = exp(−(t/β)η). If
the shape parameter is larger than 1 –as we set in the experiments, see Sect. 3–
failure probabilities increase with time (i.e., the longer a node has been active
the more likely it will go down and vice versa, the longer a node has been out
of the system the more likely it will enter it again) – see Fig. 1a.

2.2 Self-Balancing Strategy

The volatility of computational resources implies that in the absence of any
strategy to deal with the phenomenon of churn, the overall population size will
fluctuate with the subsequent impact on genetic/memetic diversity. To cope with
this, balancing strategies are required. These strategies must be decentralized,
that is, decision making and information exchange has to be done locally among
neighboring islands, since the underlying infrastructure is assumed to have no
central control [13]. We consider here a variation of a direct-neighbor policy [22]
based on the qualitative exchange of information among islands.



4 R. Nogueras and C. Cotta

Node B

10

Node A

20

Node C

25

ping

pong

status?

status(10,3)

push(5)

1515

ping

pong

status?

status(25,2)

request(5)

push(5)

20 20

msc Balancing routine for node A

(a)

Node B

16

Node A

40

status(16,4)

push(12)

2828

30

ping

grow(7)

37

msc Resizing population upon neighbor failure

(b)

Fig. 2: (a) Standard balancing protocol. Node A communicates with its two
neighbors and tries to balance its population with them. (b) Population resizing
upon neighbor failure. Node A attempts to balance with node B and realizes
it has gone down upon timeout of the ping message. Then it enlarges its own
population using the information it gathered from B in their last exchange (i.e.,
by 7 = 28/4 in this case).

The basic balancing protocol is illustrated in the message sequence charts
in Fig. 2a. This protocol is run by each island prior to entering each iteration
of the main evolutionary cycle. Therein, a certain node A (whose population
size is assumed to be µ0) communicates with its neighbors, pinging them to
check they are active and if so, requesting information on their population size
µi and number of active neighbors #ni. On the basis of this information (which
is also stored in a local memory for later use) the population is enlarged or
contracted in order to achieve local balance (that is, the mid-point between µi
and µ0). This is done by transferring a certain number of individuals (selected at
random from the corresponding population) from the larger peer to the smaller
one to reach a local equilibrium (eventually attaining global equilibrium as well
after a number of iterations [3]). In case some neighbor is detected to have just
become inactive (i.e., it was active in the previous balancing attempt but not
in the current one), the island enlarges its own population to compensate the
loss of the neighboring island, as illustrated in Fig. 2b: using the information
gathered in the last successful communication with the now-inactive island on
its number of active neighbors #ni and its last observed population size µi,
the node assumes the population lost is quantitatively distributed among these
neighbors. Hence it increases its population (using random immigrants [7], that



Self-Balancing MMAs in Dynamic Scale-Free Networks 5

Algorithm 1: Barabási-Albert Model

function BA-Model (↓ m,n : N) : Network
// net: the network created

// n: number of nodes

// m: number of links for each node

m0 ← min(n,m);
net← CreateClique(m0);
δ[1 . . .m0]← m0;
for i← m0 + 1 to n do

net← AddNode(net);
for j ← 1 to m do

k ← Pick(δ) // Sampling w/o replacement proportional to δ
δ[k]← δ[k] + 1;
net← AddLink(net, i, k);

end
δ[i]← m;

end
return net

is, generating new random solutions and inserting them in the population) by
the corresponding fraction µi/#ni. Of course, it is possible that simultaneous
failures of neighboring islands lead to the loss of a fraction of their populations.
We have purposefully not dealt with this possibility for two reasons: on one
hand, it is not a likely event in low-churn scenarios; on the other hand, its
occurrence in high-churn scenarios can provide interesting information on the
inherent resilience of these techniques/strategies. Finally, it must be also noted
that the reciprocal situation of a failure, namely a node going up again is treated
in pretty much the same way as in Fig. 2a, i.e., a standard balancing attempt in
which one of the intervening parts has an empty population. Eventually, it may
be the case that this process in not successful (because the reactivated island has
no active neighbors or because these cannot donate a part of their populations
if, e.g., they are empty as well). In this case the node resorts to self-reinitializing
using a fixed population size C1.

2.3 Network Topology and Dynamic Rewiring

The interconnection network is assumed to be scale-free, a complex topology
commonly observed in many natural phenomena (and also in computational
processes, such as P2P networks) in which node degrees exhibit a power-law
distribution. To generate this kind of topology we use the Barabási-Albert (BA)
model [2]: nodes are added one at a time, and linked to m (a parameter) ex-
isting nodes. The attachment procedure is driven by preferential attachment,
i.e., each new node is connected to m existing nodes, selected with a probability
proportional to their current degree. This is described in Algorithm 1.

An example of the application of this model is shown in Fig 1b for n = 32 and
m = 2. As can be seen, preferential attachment causes the network to feature a



6 R. Nogueras and C. Cotta

1

2

3

4

5
6

7

8

9

12

13

14

16

17

18
20

21

22

23

24

25

26

27

28

29

30

32

(a)

2

3

4

5

6

8

13

16

17

18

21

22

23

25

28

29

30

(b)

1

2

3

4

6

11

13

16

17

18

19

21

22

23

30

(c)

1

2

3

4

5
6

7

8
9

12

13

14

16

17

18

20

21

22

23

24

25

26

27

28

29

30

32

(d)

2

3

4

5

6

8

13

16

17

18

21

22

23

25

28

29

30

(e)

1

2

3

4

6

11

13

16

17

18

19

21

22 23
30

(f)

Fig. 3: Comparison of the evolution of the volatile network in Fig. 2b without
rewiring (a)-(c) and with rewiring (d)-(f). These are three snapshots of the net-
work state at t = 100, 250, 500 using nι = 32 islands and volatility parameter
k = 10 (see Sect. 3).

few nodes with many connections and increasingly more nodes with fewer con-
nections following the well-known scale-free pattern of connectivity. Notice now
how the system evolves when node failures begin to take place (Fig. 3, upper
row): the network becomes more sparse and even disconnected, exhibiting iso-
lated nodes and pendant nodes. This can impair the functioning of the algorithm
in different ways: firstly, it severely limits the flow of information via migration
among islands, something essential in the island model; secondly, it disrupts the
functioning of balancing algorithms resulting not just in quantitative losses of
individuals but also in more frequent island reinitializations from scratch (due
to the additional burden on effective balancing), hindering the progress of the
search.

To alleviate these problems we consider the use of re-wiring strategies. These
strategies proceed as follows: (1) neighbors determined to be inactive during
the balancing stage are forgotten, and (2) whenever an island detects that its
number of active neighbors has fallen below a predefined threshold (in our case,
the value of parameter m in the BA model used to create the network), it looks
for additional neighbors to reach this minimum level. While this can be done in a
purely decentralized way using the triad formation algorithm [9] or the newscast
protocol [10], we have consider in this work a simpler alternative based on the
use of the BA model. This serves as a proof of concept on the usefulness of the



Self-Balancing MMAs in Dynamic Scale-Free Networks 7

approach and paves the way for using eventually other rewiring approaches. The
lower row of Fig. 3 shows the sate of the network in the very same scenario of
activation/deactivation illustrated in the upper row when rewiring is used. Notice
how the network maintains a rich connectivity and node isolation is avoided.

3 Experimental Analysis

We consider nι = 32 islands whose initial size is µ = 16 individuals and a total
number of evaluations maxevals = 50000. Meme lengths evolve within lmin = 3
and lmax = 9, mutating their length with probability pr = 1/9. We use crossover
probability pX = 1.0, and mutation probability pM = 1/`, where ` is the geno-
type length. Parameter m in the Barabási-Albert model is set to m = 2, and
we let pmig = 1/80. Regarding node deactivation/reactivation, we use the shape
parameter η = 1.5 to have an increasing hazard rate, and scale parameters
β = −1/ log(p) for p = 1− (knι)

−1, k ∈ {1, 2, 5, 10, 20,∞}. Intuitively, these set-
tings would correspond to an average of one island going down/up every k cycles
if the failure rate was constant (it is not since η > 1 but this creates a mental
anchor to interpret these values). This provides different scenarios ranging from
none (k =∞) or low (k = 20) churn to extremely high (k = 1) churn. Parame-
ter C1 used during eventual island reinitialization from scratch is set to 2µ = 32
(this setting is motivated by the fact that the asymptotic number of active is-
lands under the parameterization chosen is nι/2). We perform 25 simulations for
each algorithm and churn scenario. We denote by noB and LBQ the algorithmic
variants without balancing and with balancing respectively. In addition we use
the superscript r to denote the use of rewiring (i.e., noBr and LBQr). We have
considered three test functions, namely Deb’s trap (TRAP) function [4] (con-
catenating 32 four-bit traps), Watson et al.’s Hierarchical-if-and-only-if (HIFF)
function [21] (using 128 bits) and Goldberg et al.’s Massively Multimodal De-
ceptive Problem (MMDP) [5] (using 24 six-bit blocks) – see Appendix A.

Fig. 4 shows the results obtained in terms of the deviation from the optimal
solution in each of the problems for each algorithm as a function of the churn
rate (the corresponding numerical data is provided in Table 1). It is clear that
performance degrades with increasing churn rates, but the degradation trend is
quite different for the different algorithms. Notice firstly that the variants that
use balancing perform notably better than their unbalanced counterparts. This
indicates that balancing is effectively contributing to maintaining the momen-
tum of the search despite the volatility of the system. However, observe how as
one moves toward the high end of churn rates (rightmost part of the figures) the
performance of LBQ degrades at a fast pace, approaching the poor performance
of noB variants. This is a clear signal that the increasing instability of the un-
derlying network is negating the effectiveness of the balancing strategy. In fact,
LBQr has a much more gently degradation curve, being remarkably superior to
the remaining algorithms on scenarios with high churn rates. This superiority
is validated by a signrank test at α = 0.05 level. Notice also that the use of
rewiring has no effect on the performance of noB whose performance is virtually



8 R. Nogueras and C. Cotta

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

1/k

de
vi

at
io

n 
fr

om
 o

pt
im

um
 (

%
)

 

 

noB

noBr

LBQ

LBQr

(a)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

1/k

de
vi

at
io

n 
fr

om
 o

pt
im

um
 (

%
)

 

 

noB

noBr

LBQ

LBQr

(b)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

1/k

de
vi

at
io

n 
fr

om
 o

pt
im

um
 (

%
)

 

 

noB

noBr

LBQ

LBQr

(c)

Fig. 4: Deviation from the optimal solution as a function of the churn rate. From
left to right: TRAP, HIFF and MMDP

Table 1: Results (averaged for 25 runs) of the different MMAs on the three
problems considered. The median (x̃), mean (x̄) and standard error of the mean
(σx̄) are indicated.

TRAP HIFF MMDP
strategy k x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄

– ∞ 0.00 0.55 ± 0.18 0.00 1.00 ± 1.00 1.50 2.08 ± 0.33

noB 20 1.25 1.65 ± 0.39 0.00 4.88 ± 2.05 5.99 5.51 ± 0.77
10 8.75 8.72 ± 1.09 0.00 12.30 ± 3.11 13.48 15.25 ± 1.03
5 27.50 28.59 ± 1.49 44.44 39.61 ± 3.28 25.13 26.55 ± 0.69
2 48.12 47.49 ± 0.71 61.98 61.51 ± 0.43 38.45 38.02 ± 0.51
1 51.88 52.35 ± 0.57 64.76 64.17 ± 0.27 41.12 40.93 ± 0.54

noBr 20 1.25 2.32 ± 0.65 0.00 4.50 ± 1.88 4.49 5.11 ± 0.71
10 9.38 8.43 ± 1.06 24.65 24.01 ± 3.49 13.48 13.62 ± 0.93
5 29.37 28.73 ± 1.14 50.52 46.08 ± 2.51 28.30 27.30 ± 1.03
2 48.75 48.40 ± 0.73 61.63 60.96 ± 0.64 37.29 36.91 ± 0.67
1 53.13 53.28 ± 0.40 64.76 64.57 ± 0.25 41.12 41.05 ± 0.62

LBQ 20 0.00 0.50 ± 0.26 0.00 2.83 ± 1.64 3.00 2.56 ± 0.38
10 0.00 0.45 ± 0.19 0.00 7.28 ± 2.32 4.49 4.71 ± 0.55
5 5.00 5.22 ± 0.75 0.00 9.67 ± 2.55 8.99 8.72 ± 0.66
2 21.88 22.83 ± 1.25 21.88 21.71 ± 3.39 21.80 21.48 ± 0.87
1 44.38 44.15 ± 1.04 51.39 50.17 ± 1.79 36.78 36.38 ± 0.57

LBQr 20 0.00 0.20 ± 0.16 0.00 6.06 ± 2.14 1.50 1.14 ± 0.22
10 0.00 0.10 ± 0.07 0.00 8.44 ± 2.17 3.00 2.82 ± 0.40
5 1.88 3.20 ± 0.60 0.00 7.27 ± 2.28 8.66 8.48 ± 0.65
2 12.50 13.65 ± 0.90 0.00 7.92 ± 2.63 14.65 15.53 ± 0.87
1 16.25 14.97 ± 1.36 0.00 11.20 ± 3.79 19.47 18.86 ± 0.73

indistinguishable from noBr. This confirms that none of the two strategy factors,
namely balancing and rewiring, is capable on itself of ensuring resilient perfor-
mance (although admittedly balancing has a higher impact in the low end of



Self-Balancing MMAs in Dynamic Scale-Free Networks 9

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

14

16

18

20

22

24

26

28

30

32

evaluations

be
st

 fi
tn

es
s

 

 

k=1
k=2
k=5
k=10
k=20

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

14

16

18

20

22

24

26

28

30

32

evaluations

be
st

 fi
tn

es
s

 

 

k=1
k=2
k=5
k=10
k=20

(b)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

14

16

18

20

22

24

26

28

30

32

evaluations

be
st

 fi
tn

es
s

 

 

k=1
k=2
k=5
k=10
k=20

(c)

Fig. 5: Evolution of best fitness on the TRAP function for different churn rates.
(a) noB (b) LBQ (c) LBQr. The results for noBr are very similar to noB.

churn rates). On the contrary, they are synergistically interacting as supported
by the consistently resilient behavior of LBQr. This is further illustrated in Fig.
5 in which the evolution of fitness on the TRAP function is shown for different
churn rates: notice how the use of balancing allows attaining results analogous
to those the unbalanced version yields in about twice as much more stable sce-
narios, but the search is not capable of progressing much for very high churn;
rewiring allows overcoming this situation, favoring the sustained progress of the
search even in the latter scenarios.

A deeper look at the comparative effect of rewiring is obtained by performing
a spectral analysis of the dynamics of island sizes. We have computed the power
spectral density (PSD) of the evolution of island sizes in each run of LBQ and
LBQr and estimated the relationship between frequency and PSD via a power-
law PSD ∼ fγ . Fig. 6a shows the values of the so-obtained spectrum slopes (γ).
For low churn rates γ is closer to −2, indicating Brown noise. This can be inter-
preted by node volatility being low thus giving time to the algorithm to balance
the island sizes in-between failures; the deactivation/reactivation of islands thus
causes the mean island size to follow a rather random walk trajectory. As the
churn rate increases, changes in node availability start to interact with the op-
eration of the balancing process; the system does not settle into a stable state
between deactivation/reactivation events causing new balancing flows which in-
terfere with previous balancing waves. As a result the dynamics of island sizes
starts to move to a regime close to pink noise (γ = −1) which is the signature of
a self-organized system – see Fig. 6b and 6c for a depiction of mean-island-size
trajectories for k = 5 (slope of the PSD of LBQr close to −1) and k = 2 (idem
for LBQ) respectively. We conjecture that differences between LBQ and LBQr

for the highest churn rates is due to the fact that the balancing process is seri-
ously impaired in the former, causing many islands initializations from scratch,
whereas balancing keeps working in the latter (albeit simultaneous node failures
cause a net decrease of the total population size – cf. Sect. 2.2; notice at any



10 R. Nogueras and C. Cotta

0 0.2 0.4 0.6 0.8 1

−1.8

−1.6

−1.4

−1.2

−1

−0.8

1/k

sp
ec

tr
um

 s
lo

pe

 

 

LBQ
LBQr

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

16

18

20

22

24

26

28

30

32

34

evaluations

m
e

a
n

 p
o

p
s
iz

e

 

 

LBQ
LBQr

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

16

18

20

22

24

26

28

30

32

evaluations

m
e

a
n

 p
o

p
s
iz

e

 

 

LBQ
LBQr

(c)

Fig. 6: (a) Slope of the power spectral density of the evolution of mean island
sizes. (b) Mean island size with/without rewiring in LBQ for k = 5 (c) Idem for
k = 2.

rate that LBQr is resilient enough to cope with this decrease as shown in Fig.
4).

4 Conclusions

This work has focused on the study and analysis of island-based MMAs running
on unstable computational environments, and how their performance is affected
by the use of balancing strategies and rewiring policies. This kind of computa-
tional environments is typically found in emergent systems such as P2P networks
or volunteer desktop grids and hence it is of the foremost interest to determine
appropriate courses of action for the deployment of parallel metaheuristics on
them. In this sense, it has been shown that the use of population balancing
strategies is crucial in order to make the optimizer churn-aware and able to deal
with resource volatility. However, these strategies are not enough to fully miti-
gate the degradation of performance in scenarios with very high rates of churn;
they need the complement of other strategies such as rewiring policies aimed
to keep the global network connectivity pattern, avoiding the disconnection of
parts of the network or the apparition of bottlenecks disrupting the effective flow
of information across the network.

The directions for future work are manifold. Further scalability analysis and
study of the influence of network parameters is a line to be approached in the
short term. Similarly so, we plan to analyze other rewiring strategies entirely
based on local information [9, 10] so as to confirm the behavioral patterns ob-
served. As a longer-term objective, we believe it is worth designing more complex
fault-aware policies based on a deeper understanding of the particular charac-
teristics of the environment as perceived by the algorithm itself.



Self-Balancing MMAs in Dynamic Scale-Free Networks 11

Acknowledgements Thanks are due to the reviewers for useful suggestions.
This work is partially supported by MICINN project ANYSELF (TIN2011-
28627-C04-01), by Junta de Andalućıa project P10-TIC-6083 (DNEMESIS) and
by Universidad de Málaga, Campus de Excelencia Internacional Andalućıa Tech.

References

1. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience
(2005)

2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Review of
Modern Physics 74(1), 47–97 (Jan 2002)

3. Bronevich, A.G., Meyer, W.: Load balancing algorithms based on gradient meth-
ods and their analysis through algebraic graph theory. Journal of Parallel and
Distributed Computing 68(2), 209 – 220 (2008)

4. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D.
(ed.) Second Workshop on Foundations of Genetic Algorithms. pp. 93–108. Morgan
Kaufmann, Vail, Colorado, USA (1993)

5. Goldberg, D.E., Deb, K., Horn, J.: Massive multimodality, deception, and genetic
algorithms. In: Parallel Problem Solving from Nature – PPSN II. pp. 37–48. Else-
vier, Brussels, Belgium (1992)

6. Gorges-Schleuter, M.: ASPARAGOS: an asynchronous parallel genetic optimiza-
tion strategy. In: Schaffer, J.D. (ed.) Third International Conference on Genetic
Algorithms. pp. 422–427. Morgan Kaufmann, San Francisco, CA (1989)

7. Grefenstette, J.: Genetic algorithms for changing environments. In: Männer, R.,
Manderick, B. (eds.) Parallel Problem Solving from Nature II. pp. 137–144. Else-
vier, Brussels, Belgium (1992)

8. Hidalgo, J.I., Lanchares, J., Fernández de Vega, F., Lombraña, D.: Is the island
model fault tolerant? In: Proceedings of the 9th Annual Conference Companion on
Genetic and Evolutionary Computation. pp. 2737–2744. GECCO ’07, ACM, New
York, NY, USA (2007)

9. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys.
Rev. E 65, 026107 (Jan 2002)

10. Jelasity, M., van Steen, M.: Large-scale newscast computing on the Internet. Tech.
Rep. IR-503, Vrije Universiteit Amsterdam, Department of Computer Science, Am-
sterdam, The Netherlands (October 2002)

11. Krasnogor, N., Blackburne, B., Burke, E., Hirst, J.: Multimeme algorithms for
protein structure prediction. In: Merelo, J., et al. (eds.) Parallel Problem Solving
From Nature VII, Lecture Notes in Computer Science, vol. 2439, pp. 769–778.
Springer, Berlin (2002)

12. Liu, C., White, R.W., Dumais, S.: Understanding web browsing behaviors through
weibull analysis of dwell time. In: Proceedings of the 33rd International ACM
SIGIR Conference on Research and Development in Information Retrieval. pp.
379–386. SIGIR ’10, ACM, New York, NY, USA (2010)

13. Lüling, R., Monien, B., Ramme, F.: Load balancing in large networks: a compar-
ative study. In: Third IEEE Symposium on Parallel and Distributed Processing,
1991. pp. 686–689. IEEE (Dec 1991)

14. Milojičić, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.,
Rollins, S., Xu, Z.: Peer-to-peer computing. Tech. Rep. HPL-2002-57, Hewlett-
Packard Labs (2002)



12 R. Nogueras and C. Cotta

15. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: A
literature review. Swarm and Evolutionary Computation 2, 1–14 (2012)

16. Nogueras, R., Cotta, C.: An analysis of migration strategies in island-based multi-
memetic algorithms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.)
Parallel Problem Solving From Nature – PPSN XIII. Lecture Notes in Computer
Science, vol. 8672, pp. 731–740. Springer, Berlin Heidelberg (2014)

17. Ong, Y.S., Lim, M.H., Chen, X.: Memetic computation-past, present and future.
IEEE Computational Intelligence Magazine 5(2), 24–31 (2010)

18. Sarmenta, L.F.: Bayanihan: Web-based volunteer computing using java. In: Ma-
sunaga, Y., Katayama, T., Tsukamoto, M. (eds.) Worldwide Computing and Its
Applications – WWCA’98, Lecture Notes in Computer Science, vol. 1368, pp. 444–
461. Springer Berlin Heidelberg (1998)

19. Smith, J.E.: Self-adaptation in evolutionary algorithms for combinatorial optimisa-
tion. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Meta-
heuristics, Studies in Computational Intelligence, vol. 136, pp. 31–57. Springer
Berlin Heidelberg (2008)

20. Tanese, R.: Distributed genetic algorithms. In: 3rd International Conference on Ge-
netic Algorithms. pp. 434–439. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1989)

21. Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling building-block interdepen-
dency. In: Eiben, A., Bck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Prob-
lem Solving from Nature – PPSN V, Lecture Notes in Computer Science, vol. 1498,
pp. 97–106. Springer-Verlag, Berlin Heidelberg (1998)

22. Zambonelli, F.: Exploiting biased load information in direct-neighbour load bal-
ancing policies. Parallel Computing 25(6), 745 – 766 (1999)

A Test Suite

Deb’s 4-bit fully deceptive function (TRAP) is defined as ftrap(s) = 0.6−0.2·u(s)
for u(s) < 4 and ftrap(s) = 1 for u(s) = 4, where u(s1 · · · si) =

∑
j sj is the

number of 1s in binary string s. A higher-order problem is built by concatenating
k such blocks.

The Hierarchical if-and-only-if (HIFF) function is a recursive epistatic func-
tion for binary strings of 2k bits by means of two auxiliary functions f and t
defined as

– f(a, b) = 1 for a = b 6= • and f(a, b) = 0 otherwise.
– t(a, b) = a if a = b and t(a, b) = • otherwise.

These two functions are used as follows:

HIFFk(b1 · · · bn) =

n/2∑
i=1

f(b2i−1, b2i) + 2 ·HIFFk−1(b′1, · · · , b′n/2)

where b′i = t(b2i−1, b2i) and HIFF0(·) = 1.
The basic MMDP block is defined for 6-bit strings as fmmdp(s) = 1 for u(s) ∈

{0, 6}, fmmdp(s) = 0 for u(s) ∈ {1, 5}, fmmdp(s) = 0.360384 for u(s) ∈ {2, 4}
and fmmdp(s) = 0.640576 for u(s) = 3. We concatenate k copies of this basic
block to create a harder problem.


