
Self-Sampling Strategies for Multimemetic
Algorithms in Unstable Computational

Environments

Rafael Nogueras and Carlos Cotta

Dept. Lenguajes y Ciencias de la Computación, Universidad de Málaga,
ETSI Informática, Campus de Teatinos, 29071 Málaga, Spain

ccottap@lcc.uma.es

Abstract. Optimization algorithms deployed on unstable computa-
tional environments must be resilient to the volatility of computing
nodes. Different fault-tolerance mechanisms have been proposed for this
purpose. We focus on the use of dynamic population sizes in the context
of island-based multimemetic algorithms, namely memetic algorithms
which explicitly represent and evolve memes alongside solutions. These
strategies require the eventual creation of new solutions in order to en-
large island populations, aiming to compensate the loss of information
taking place when neighboring computing nodes go down. We study the
influence that the mechanism used to create these new individuals has
on the performance of the algorithm. To be precise, we consider the use
of probabilistic models of the current population which are subsequently
sampled in order to produce diverse solutions without distorting the con-
vergence of the population and the progress of the search. We perform
an extensive empirical assessment of those strategies on three different
problems, considering a simulated computational environment featuring
diverse degrees of instability. It is shown that these self-sampling strate-
gies provide a performance improvement with respect to random reini-
tialization, and that a model using bivariate probabilistic dependencies
is more effective in scenarios with large volatility.

1 Introduction

One of the greatest advantages of metaheuristics, and in particular of population-
based variants thereof, is their amenability for deployment on parallel and dis-
tributed environments [2]. Consider for example the so-called island model of
evolutionary algorithms [24], whereby multiple populations evolve in parallel
and occasionally exchange information. Distributing these islands among differ-
ent computing nodes can lead to notably improved solutions and remarkable
reductions in the computational time required to reach them [1]. Although this
strategy has been successfully exploited since the late 1980s, emerging compu-
tational environments such as peer-to-peer (P2P) networks [13] and volunteer
computing networks [22] are currently bringing both new opportunities and new

2 R. Nogueras and C. Cotta

challenges. Regarding the latter, it must be noted that the nature of these com-
putational platforms is inherently dynamic due to the volatility of computational
resources attached to them (i.e., computing nodes can enter and abandon the
system in a dynamic way – the term churn has been coined to denote this phe-
nomenon). For this reason, it is essential that algorithms running on this kind of
environments are adequately suited to work under these conditions. For exam-
ple, it has been shown that the instability of the computational environment can
lead to the loss of the current incumbent solution in island-based evolutionary
algorithms (EAs) [8]; it will also pose additional difficulties to the progress of
the search due to the loss of good solutions, genetic diversity, etc. Although EAs
are intrinsically robust at a fine-grain scale [10], algorithms must nevertheless
be fault-aware in some sense in order to cope with highly volatile systems. In
this line, different fault-management strategies have been proposed – see [16]. In
essence, these strategies can be seen as corrective, exhorting their effect when
a computing node re-enters the system after having left it previously. As an
alternative to these strategies, we can think of reactive strategies whereby the
algorithm self-adapts to the changing environment on the fly.

An example of such strategies can be found in the model for dynamic resizing
of populations defined by Nogueras and Cotta – see Sect. 2. Unlike other fault-
management strategies, this scheme is intrinsically decentralized and emergent,
suiting computational scenarios without global control, and does not require
external persistent storage. By using this model, a rather constant population
size is kept on a global scale, having the size of individual populations fluctu-
ate to compensate for node activations/deactivations. Notice in this sees that
while populations can be easily reduced by truncation and/or distribution of in-
dividuals, enlarging them requires the creation of new solutions. In this work we
focus on this aspect and study different probabilistic modeling strategies for this
purpose. We apply these in the context of island-based model of multimemetic
algorithms (MMAs) [11], an extension of memetic algorithms [15] in which com-
putational representations of problem solving strategies (neighborhood defini-
tions for a local search operator in this case) are explicitly stored and evolved as
a part of solutions, much in the line of the concept of memetic computing [20].
We consider the deployment of these techniques on a simulated computational
environment that allows experimenting with different churn rates. We report the
results of a broad empirical assessment of the strategies considered in Sect. 4.
We close the paper with conclusions and an outline of future work in Sect. 5.

2 Algorithmic Model

We have nι panmictic (i.e., unstructured) islands, each of them running a MMA
in which memes are attached to individuals and evolve alongside them. These
memes are represented as pattern-based rewriting rules following the model by
Smith [23]. Memes are subject to mutation and are transferred from parent to
offspring via local selection (offspring inherit the meme of the best parent). We
refer to [18] for details. Besides the use of memes, the MMA run on each is-

Self-Sampling MMAs in Unstable Computational Environments 3

b

10 16

a

22 16 18 17

c

20 18

d

16 17

← ping

→ ping

→ ping

→ pong

← status?
→ 〈10, 4〉
← push(6)

← pong

→ status?
← 〈20, 3〉
→ request(2)
← push(2)

← pong

→ status?
← 〈16, 5〉
→ push(1)

(a)

b a

17 21

← ping
[timeout]

(b)

Fig. 1: (a) Node a attempts to balance with nodes b, c and d in that order.
The numbers next to each node indicate the population sizes (crossed-out values
correspond to previous sizes). (b) Node a attempts to balance with node b which
is now inactive. The information from the previous balancing attempt, namely
that node b had size 16 and 4 active neighbors, is recalled in order to enlarge
the population of node a by 16/4 individuals.

land can be otherwise regarded as a steady-state evolutionary algorithm using
tournament selection, one-point crossover, bit-flip mutation, and replacement of
the worst parent. From a global point of view, the islands work in parallel and
are interconnected as a scale-free network, a pattern of connectivity observed
in many real-world systems, and in particular in peer-to-peer systems. We use
Barabási-Albert model [3] in order to generate these networks. This network
topology is used for the purposes of information exchange via migration. This
operation is asynchronously performed with a certain probability at the end of
each cycle. When performed, we use random selection of migrants and determin-
istic replacement of the worst individuals in the receiving island [17].

To model the instability of the computational environment we assume each
island of the MMA runs on one out of nι nodes. These nodes are volatile and
become inactive or active on a time-dependent basis (much like P2P networks or
volunteer computing platforms). To be precise we use a Weibull distribution to
model the dynamics of the system – see [12,16]. In response to such variability of
computational resources, the MMA tries to dynamically resize the islands so as
to counteract the loss of information taking place when a computing node goes
down. To this end, each island performs a handshake with its neighbors at the
beginning of each evolutionary cycle and tries to balance the size of their popu-
lation by exchanging individuals (see Fig. 1a). In the event of a new computing

4 R. Nogueras and C. Cotta

node going up, this same process is used for it to absorb a fraction of its neigh-
bors’ population (using a default population size C1 if no neighbor can donate
solutions). If during this handshaking process a node detects that a neighbor
that was active has just become inactive, it enlarges its own population to com-
pensate the loss of that island (see Fig. 1b). For this purpose new individuals
have to be created. Next section studies how to approach this task.

3 Self-Sampling Strategies

Dynamic population resizing strategies such as those described before only cap-
ture the quantitative aspect of the process when it comes to enlarge a population
without having a donor to provide solutions. The simplest approach to solve the
qualitative question of how to produce those required individuals is to resort
to blind search: new solutions, as many as needed, are generated from scratch,
essentially using the same mechanism by which the initial population was cre-
ated. While this can be regarded as an appropriate method to boost diversity,
introducing fresh information in the population, it certainly has the drawback
of not keeping up with the momentum of the search. In fact, the new random
individuals are to a certain extent dragging backwards the population in terms
of global convergence to promising regions of the search space. Needless to say,
this effect will be more or less strong depending upon the frequency at which
the algorithm has to resort to this mechanism, which will be directly linked to
the severity of churn.

As an alternative to such a random reinitialization from scratch, some smarter
strategies based on probabilistic modeling could be used. The underlying idea
would be to estimate the joint probability distribution p(x) representing the
population of the island to be enlarged; subsequently, that distribution would
be sampled as many times as necessary in order to produce the new individuals.
By doing so, two objectives are pursued: (1) the momentum of the search is kept
since the new individuals would be representative of the current state of the
population (as indicated by the probabilistic model) and (2) diversity would be
still introduced since the new individuals can be different to individuals already
in the population.

To approach the probabilistic modeling we assume the population is a matrix
[popij] where each row popi· represents an individual and each column pop·j
represent a variable (a genetic/memetic symbol). We consider two alternatives
to model this population: univariate and bivariate models. In univariate models,
variables are assumed to be independent and therefore the joint probability
distribution p(x) is factorized as

p(x) =

n∏
j=1

p(xj).

Self-Sampling MMAs in Unstable Computational Environments 5

This is the model used by simple estimation of distribution algorithms (EDAs)
such as UMDA [14], in which p(xj) is estimated as

p(xj = v) =
1

µ

µ∑
i=1

δ(popij , v),

where µ = |pop| is the size of the population, popij is the value of the j-th
variable of the i-th individual in pop, and δ(·, ·) is Kronecker delta (δ(a, b) = 1
if a = b and δ(a, b) = 0 otherwise).

On the other hand, bivariate models assume relations between pairs of vari-
ables. Thus, p(x) is factorized as

p(x) = p(xj1)

n∏
i=2

p(xji |xja(i)
),

where j1 · · · jn is a permutation of the indices 1 · · ·n, and a(i) < i is the permu-
tation index of the variable which xji depends on. This model is used by EDAs
such as MIMIC [5] and COMIT [4]. We focus on a mechanism analogous to the
latter EDA and hence we pick j1 as the variable with the lowest entropy H(Xk)
in the population, and then we pick ji (i > 1) as the variable (among those
not yet selected) that minimizes H(Xk|Xjs , s < i). Each variable will therefore
depend on a variable previously selected hence leading to a tree-like dependence
structure. As a final detail, it must be noted that we compute separate models
for both genotypes and memes.

4 Experimental Analysis

The experiments have been done using an MMA with nι = 32 islands whose
initial size is µ = 16 individuals, interconnected utilizing a scale-free topology
generated with Barabási-Albert model using parameter m = 2. We consider
crossover probability pX = 1.0, mutation probability pM = 1/` –where ` is the
genotype length– and migration probability pmig = 1/80. As indicated in Sect.
2, memes are rewriting rules. Following [18], their length varies from lmin =
3 up to lmax = 9 and is mutated with probability pr = 1/lmax. To control
churn, we consider that the Weibull distribution describing node availability is
defined by the shape parameter η = 1.5 (implying an increasing hazard rate
since it is larger than 1) and by six scale parameters β = −1/ log(p) for p =
1 − (Knι)

−1, K ∈ {1, 2, 5, 10, 20,∞} describing scenarios of different volatility:
from no churn (K = ∞) to very high churn (K = 1). As an approximate
interpretation, notice that under an hypothetically constant hazard rate these
scale parameters would correspond to an average of one island going down/up
every K cycles. Parameter C1 used during eventual island reinitialization from
scratch is set to 2µ = 32. We perform 25 simulations for each algorithm and churn
scenario, each of them comprising maxevals = 50000 evaluations. We denote by
LBQrand, LBQumda and LBQcomit the MMAs using random reinitialization of

6 R. Nogueras and C. Cotta

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

1/k

de
vi

at
io

n
fr

om
 o

pt
im

um
 (

%
)

noLB
LBQ

rand

LBQ
umda

LBQ
comit

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
rank

LBQ
comit

LBQ
umda

LBQ
rand

noB

(b)

Fig. 2: (a) Mean deviation from the optimal solution across all three problems
for each algorithm as a function of the churn rate. (b) Distribution of ranks for
each algorithm. As usual the boxes comprise the 2nd and 3rd quartiles of the
distribution, the whiskers extend to the most extreme data points not considered
outliers and the circle marks the mean rank.

Table 1: Results of Holm Test (α = 0.05) using LBQcomit as control algorithm.
i algorithm z-statistic p-value α/i

1 LBQumda 5.657e–01 2.858e–01 5.000e–02

2 LBQrand 1.980e+00 2.386e–02 2.500e–02
3 noB 5.091e+00 1.779e–07 1.667e–02

individuals, or probabilistic modeling with univariate (UMDA-like) or bivariate
(COMIT-like) models respectively. As a reference we also consider an MMA
without any balancing at all which we denote as noB. We have considered three
test functions, namely Deb’s trap (TRAP) function [6] (concatenating 32 four-bit
traps), Watson et al.’s Hierarchical-if-and-only-if (HIFF) function [25] (using 128
bits) and Goldberg et al.’s Massively Multimodal Deceptive Problem (MMDP)
[7] (using 24 six-bit blocks).

A global view of the results is provided by Fig. 2a. This figure shows the rela-
tionship between the mean distance to the optimum attained by each algorithm
–averaged for the three problems– as a function of the churn rate (complete
numerical data is provided in Table 2). Not surprisingly the distance to the op-
timum increases for increasing churn for all algorithms. It is however interesting
to note how the different algorithms do this at a different rate. In the case of
noB there is an abrupt performance degradation as we move to the right of
the X axis (increasing churn) but this degradation is much more gently (rather
linear actually) for variants with balancing. Among these, variants with prob-

Self-Sampling MMAs in Unstable Computational Environments 7

Table 2: Results (25 runs) in terms of deviation from the optimal solution of the
different MMAs on the three problems considered. The median (x̃), mean (x̄) and
standard error of the mean (σx̄) are indicated. The three symbols next to each
entry indicate whether differences are statistically significant (•) or not (◦). The
first symbol correspond to a comparison between the corresponding algorithm
and the fault-less (k = ∞) version; the second one reflects a comparison with
LBQrand and the third one is a comparison with the algorithm that provides the
best results for the corresponding problem and value of k (marked with ?).

TRAP HIFF MMDP
strategy K x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄

– ∞ 0.00 0.55 ± 0.18 0.00 1.00 ± 1.00 1.50 2.08 ± 0.33

noB 20 1.25 1.65 ± 0.39 ••• 0.00 4.88 ± 2.05 ◦◦◦ 5.99 5.51 ± 0.77 •••
10 8.75 8.72 ± 1.09 ••• 0.00 12.30 ± 3.11 •◦◦ 13.48 15.25 ± 1.03 •••
5 27.50 28.59 ± 1.49 ••• 44.44 39.61 ± 3.28 ••• 25.13 26.55 ± 0.69 •••
2 48.12 47.49 ± 0.71 ••• 61.98 61.51 ± 0.43 ••• 38.45 38.02 ± 0.51 •••
1 51.88 52.35 ± 0.57 ••• 64.76 64.17 ± 0.27 ••• 41.12 40.93 ± 0.54 •••

LBQrand 20 0.00 0.50 ± 0.26 ◦◦• 0.00 2.83 ± 1.64 ◦◦◦ 3.00 2.56 ± 0.38 ◦◦◦
10 0.00 0.45 ± 0.19 ◦◦? 0.00 7.28 ± 2.32 •◦◦ 4.49 4.71 ± 0.55 •◦•
5 5.00 5.22 ± 0.75 •◦• 0.00 9.67 ± 2.55 •◦? 8.99 8.72 ± 0.66 •◦•
2 21.88 22.83 ± 1.25 •◦• 21.88 21.71 ± 3.39 •◦• 21.80 21.48 ± 0.87 •◦•
1 44.38 44.15 ± 1.04 •◦• 51.39 50.17 ± 1.79 •◦• 36.78 36.38 ± 0.57 •◦•

LBQumda 20 0.00 0.00 ± 0.00 ••? 0.00 2.44 ± 1.35 ◦◦? 1.50 1.89 ± 0.45 ◦◦◦
10 0.00 0.60 ± 0.24 ◦◦◦ 0.00 9.94 ± 2.81 •◦◦ 4.49 3.93 ± 0.45 •◦•
5 1.88 2.82 ± 0.57 ••? 0.00 10.44 ± 2.36 •◦◦ 7.49 7.25 ± 0.57 •◦•
2 17.50 15.55 ± 1.02 ••• 0.00 6.77 ± 2.27 ••? 21.14 20.56 ± 0.83 •◦•
1 38.75 38.76 ± 1.22 ••• 35.07 34.01 ± 3.20 ••• 37.80 37.28 ± 0.88 •◦•

LBQcomit 20 0.00 0.10 ± 0.07 •◦◦ 0.00 3.28 ± 1.54 ◦◦◦ 1.50 1.66 ± 0.37 ◦◦?
10 0.00 0.70 ± 0.28 ◦◦◦ 0.00 5.83 ± 2.17 •◦? 3.00 2.47 ± 0.40 ◦•?
5 3.75 3.60 ± 0.62 •◦◦ 0.00 12.28 ± 2.80 •◦◦ 5.99 5.20 ± 0.52 ••?
2 10.62 10.88 ± 0.82 ••? 19.44 17.89 ± 3.08 •◦• 14.98 14.23 ± 0.83 ••?
1 27.50 26.92 ± 1.42 ••? 21.53 18.95 ± 3.54 ••? 32.14 32.88 ± 0.75 ••?

abilistic modeling perform distinctly better than LBQrand, exhibiting a lower
slope, that is, a smaller degradation for increasing churn. This is more clearly
seen in Fig. 2b in which a box plot of the distribution of relative ranks (1 for
the best, 4 the worst) of each algorithm on each problem and churn scenario
is shown. The advantage of LBQ variants over noB as well as the advantage of
LBQ[umda|comit] over LBQrand is clearly depicted. To ascertain the significance
of these differences, we have conducted the Quade test [21], obtaining that at
least one algorithm is significantly different to the rest (p-value ≈ 0). Subse-
quently we have conduct a post-hoc test, namely Holm test [9] (see Table 1)
using LBQcomit as control algorithm. It is shown to be significantly different to
both noB and LBQrand at α = 0.05 level. The difference between LBQumda and
LBQcomit is not statistically significant at this level on a global scale. A more
fine-grained perspective is shown in Table 2. In most cases LBQcomit provides
the best results and it is better (with statistical significance) than LBQumda for
the most extreme churn scenarios. This is further illustrated in Fig. 3 in which

8 R. Nogueras and C. Cotta

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

14

16

18

20

22

24

26

28

30

32

evaluations

be
st

 fi
tn

es
s

K = 1
K = 2
K = 5
K = 10
K = 20

(a) LBQumda

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

14

16

18

20

22

24

26

28

30

32

evaluations

be
st

 fi
tn

es
s

K = 1
K = 2
K = 5
K = 10
K = 20

(b) LBQcomit

Fig. 3: Evolution of best fitness in TRAP for LBQumda and LBQcommit depending
on the churn rate.

the evolution of best fitness (for the TRAP function) is shown for variants using
probabilistic modeling. The performance is statistically indistinguishable for low
and moderate churn (up to K = 5) but there is a clear superiority (statistically
significant) of LBQcomit in the two most severe scenarios. This can be explained
by the fact that (1) population enlarging is less frequently demanded in scenarios
with low churn, and hence the particular strategy chosen bears a smaller effect
on performance and (2) the better accuracy of the bivariate model for model-
ing the population seems to be decisive to keep the progress of the search in
scenarios with severe churn.

5 Conclusions

Resilience is a key feature optimization techniques must exhibit in order to be
successfully deployed on unstable computational environments. To this end, we
have studied in this work the effect that the use of self-sampling strategies have
on the performance of island-based multimemetic algorithms endowed with dy-
namic population balancing mechanisms. These self-sampling procedures are
aimed to produce new solutions (used to enlarge the population of an island
when needed) similar but not identical to other solutions in a certain popula-
tion, so that the distortion on the search caused by churn is kept at a minimum.
This is done by building a probabilistic model of the current population and
subsequently sampling it. We have shown that the use of these strategies can
effectively improve the performance of the base algorithm, maintaining better
the momentum of the search particularly in situations of severe churn. We have

Self-Sampling MMAs in Unstable Computational Environments 9

considered two different approaches for building the probabilistic model, based
on a univariate and bivariate dependencies respectively. While both approaches
provide globally comparable results, the latter seems again superior when churn
is high, a fact which is interpreted in light of the need of more accurate pop-
ulation models in such highly unstable scenarios. There are many directions
for future work. In the short term we plan to extend the collection of environ-
mental scenarios considered by including other network parameters as well as
dynamically-rewired network topologies [19]. Considering more complex proba-
bilistic models (i.e., multivariate models) is another objective which we plan to
approach in the mid-term.

Acknowledgements This work is partially supported by MICINN project
ANYSELF (TIN2011-28627-C04-01) and EphemeCH (TIN2014-56494-C4-1-P),
by Junta de Andalućıa project DNEMESIS (P10-TIC-6083) and by Universidad
de Málaga, Campus de Excelencia Internacional Andalućıa Tech.

References

1. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance.
Information Processing Letters 82, 7–13 (2002)

2. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience
(2005)

3. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Review of
Modern Physics 74(1), 47–97 (Jan 2002)

4. Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimiza-
tion: Learning the structure of the search space. In: 14th International Conference
on Machine Learning. pp. 30–38. Morgan Kaufmann (1997)

5. Bonet, J.S.D., Isbell, C.L., Jr., Viola, P.: MIMIC: Finding optima by estimating
probability densities. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in
Neural Information Processing Systems. vol. 9, pp. 424–430. The MIT Press (1996)

6. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D.
(ed.) Second Workshop on Foundations of Genetic Algorithms. pp. 93–108. Morgan
Kaufmann, Vail, Colorado, USA (1993)

7. Goldberg, D.E., Deb, K., Horn, J.: Massive multimodality, deception, and genetic
algorithms. In: Parallel Problem Solving from Nature – PPSN II. pp. 37–48. Else-
vier, Brussels, Belgium (1992)

8. Hidalgo, J.I., Lanchares, J., Fernández de Vega, F., Lombraña, D.: Is the island
model fault tolerant? In: Proceedings of the 9th Annual Conference Companion on
Genetic and Evolutionary Computation. pp. 2737–2744. GECCO ’07, ACM, New
York, NY, USA (2007)

9. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics 6, 65–70 (1979)

10. Jiménez Laredo, J.L., Bouvry, P., Lombraña González, D., Fernández de Vega,
F., Garćıa Arenas, M., Merelo Guervós, J.J., Fernandes, C.M.: Designing robust
volunteer-based evolutionary algorithms. Genetic Programming and Evolvable Ma-
chines 15(3), 221–244 (2014)

10 R. Nogueras and C. Cotta

11. Krasnogor, N., Blackburne, B., Burke, E., Hirst, J.: Multimeme algorithms for
protein structure prediction. In: Merelo, J., et al. (eds.) Parallel Problem Solving
From Nature VII, Lecture Notes in Computer Science, vol. 2439, pp. 769–778.
Springer, Berlin (2002)

12. Liu, C., White, R.W., Dumais, S.: Understanding web browsing behaviors through
weibull analysis of dwell time. In: Proceedings of the 33rd International ACM
SIGIR Conference on Research and Development in Information Retrieval. pp.
379–386. SIGIR ’10, ACM, New York, NY, USA (2010)

13. Milojičić, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.,
Rollins, S., Xu, Z.: Peer-to-peer computing. Tech. Rep. HPL-2002-57, Hewlett-
Packard Labs (2002)

14. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of dis-
tributions I. Binary parameters. In: Parallel Problem Solving from Nature – PPSN
IV. Lecture Notes in Computer Science, vol. 1141, pp. 178–187. Springer Berlin
Heidelberg (1996)

15. Neri, F., Cotta, C., Moscato, P.: Handbook of Memetic Algorithms, Studies in
Computational Intelligence, vol. 379. Springer, Berlin Heidelberg (2012)

16. Nogueras, R., Cotta, C.: Studying fault-tolerance in island-based evolutionary and
multimemetic algorithms. Journal of Grid Computing (2015), DOI:10.1007/s10723-
014-9315-6

17. Nogueras, R., Cotta, C.: An analysis of migration strategies in island-based multi-
memetic algorithms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.)
Parallel Problem Solving From Nature – PPSN XIII. Lecture Notes in Computer
Science, vol. 8672, pp. 731–740. Springer, Berlin Heidelberg (2014)

18. Nogueras, R., Cotta, C.: On meme self-adaptation in spatially-structured multi-
memetic algorithms. In: Dimov, I., Fidanova, S., Lirkov, I. (eds.) Numerical Meth-
ods and Applications. Lecture Notes in Computer Science, vol. 8962, pp. 70–77.
Springer, Berlin-Heidelberg (2015)

19. Nogueras, R., Cotta, C.: Self-balancing multimemetic algorithms in dynamic scale-
free networks. In: Mora, A., Squillero, G. (eds.) Applications of Evolutionary Com-
puting. Lecture Notes in Computer Science, vol. 9028. Springer, Berlin-Heidelberg
(2015)

20. Ong, Y.S., Lim, M.H., Chen, X.: Memetic computation-past, present and future.
IEEE Computational Intelligence Magazine 5(2), 24–31 (2010)

21. Quade, D.: Using weighted rankings in the analysis of complete blocks with additive
block effects. Journal of the American Statistical Association 74, 680–683 (1979)

22. Sarmenta, L.F.: Bayanihan: Web-based volunteer computing using java. In: Ma-
sunaga, Y., Katayama, T., Tsukamoto, M. (eds.) Worldwide Computing and Its
Applications – WWCA’98, Lecture Notes in Computer Science, vol. 1368, pp. 444–
461. Springer Berlin Heidelberg (1998)

23. Smith, J.E.: Self-adaptation in evolutionary algorithms for combinatorial optimisa-
tion. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Meta-
heuristics, Studies in Computational Intelligence, vol. 136, pp. 31–57. Springer
Berlin Heidelberg (2008)

24. Tanese, R.: Distributed genetic algorithms. In: 3rd International Conference on Ge-
netic Algorithms. pp. 434–439. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1989)

25. Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling building-block interdepen-
dency. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel
Problem Solving from Nature – PPSN V, Lecture Notes in Computer Science, vol.
1498, pp. 97–106. Springer-Verlag, Berlin Heidelberg (1998)

