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Abstract The use of parallel and distributed models of evolutionary algorithms
(EAs) is widespread nowadays as a means to improve solution quality and reduce
computational times when solving hard optimization problems. For this purpose,
emergent computational environments such as P2P networks and desktop grids are
offering a plethora of new opportunities but also bring new challenges: functioning
on a computational network whose resources are volatile requires fault tolerance
and resilience to churn. In this work we analyze these issues from the point of
view of island-based EAs. We consider two EA variants, genetic and multimemetic
algorithms, and analyze the impact on them of design decisions regarding the log-
ical interconnection topology among islands and the particular fault-management
policy used. To be precise, we have conducted an extensive empirical evaluation
of five topologies (ring, von Neumann grid, hypercube and two kinds of scale-free
networks) and four policies (including checkpoint creation and population reinitial-
ization variants) on four benchmark problems, considering three different scenarios
of increasing resource volatility. The statistical analysis of the results underlines
the inherent fault-tolerance of these EAs and indicates that, while checkpointing is
the most robust strategy and is superior in the most fragile topologies, a seemingly
simpler guided reinitialization strategy provide statistically comparable results on
the top-performing topologies, namely von Neumann grids and hypercubes.
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1 Introduction

Metaheuristics have steadily become during the last decades one of the weapons
of choice for solving hard optimization problems. Among others, one of the salient
features of these techniques is their flexibility and amenability to run on different
computational environments. This is specifically true for parallel environments, on
which metaheuristics in general –and population-based techniques in particular–
can provide notably results in shorter times, cf. [1,3]. Not surprisingly, this has
been an active field of research since the early years of the paradigm. Indeed,
the deployment of population-based metaheuristics –such as, e.g., evolutionary
algorithms (EAs) – on parallel systems has been around since the late 80s and
early 90s, e.g., [15,37,45], and the design factors influencing their performance
have been extensively studied – see, e.g., [4,8,9,41].

The last decade has witnessed the emergence of massively parallel environments
such as peer-to-peer networks [30] and volunteer computing networks [39], offering
vast possibilities for these techniques but also new challenges. Among the latter we
can cite the inherent volatility of computational resources in these networks. The
term churn has been coined to denote the collective effect of a plethora of peers
entering or leaving the system independently along time. A parallel EA running
on such an environment has to be able to cope with this effect, whereby the ideal
functioning the algorithm would exhibit in a stable environment is disrupted by
communication failures or by information losses resulting from computing nodes
going out of the system. Fortunately, EAs have been shown to be fairly resilient
to this phenomenon on a fine-grained scale such as, for example, master-slave
models in which a reliable node takes care of the algorithm logic and individual-
wise operations (e.g., evaluation, operator application, etc.) are distributed in the
system, or even in which the latter are run in a fully decentralized way – see [21,25–
27] – suggesting these techniques are inherently fault-tolerant at this level. Indeed,
as shown in [20], the computing resources can be diminished due to failures in up
to one order of magnitude without major impact on the quality of the results. This
fact notwithstanding, different fault-management policies have been used in this
fine-grained context, such as redundancy [12] or epidemic algorithms [13] to cite a
few – see [17] and references therein for a recap of some of these approaches as well
as frameworks supporting them. The situation admits different perspectives when
a more coarse level of information distribution is considered. In particular, we can
consider the distribution of islands or population demes across the system. This
situation has been tackled for example in [29], wherein a checkpointing policy
(namely saving periodically a snapshot of the state of a task to avoid having
to restart computation from scratch) is proposed. More precisely, they propose a
mixed architecture in which islands run on stable client nodes and costly individual
operations such as local search are done on volatile workers, and emphasize the
need for an effective management of the fault-tolerance issue. A related take on this
is provided precisely in [17]. Therein, the robustness of an island-based EA with
ring topology is studied: whenever a fault takes place a whole island is disconnected
from the ring, which is re-wired to close the gap. Even with such a simple fault
management policy, the EA only exhibits a minor degradation of performance,
providing results of similar quality to a non-faulty EA.

Spurred on by these results, we approach the fault-tolerance issue in this work
from different perspectives. On one hand, we intend to study the influence that
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factors such as the underlying topology of the island-model or the actual fault-
tolerance policy used have on the performance of the algorithm, thus shedding
some light on the impact that these design decisions have. On the other hand,
we consider two different population-based algorithms, a genetic algorithm and
a multimemetic algorithm, so as analyze the inherent resilience of each of these
techniques. Next section provides a detailed account of the algorithmic setting and
the experimental framework we have considered for this purpose.

2 Materials and Methods

2.1 Algorithmic Setting

One of the goals of this work is provide a comparative account of the fault tol-
erance of two different evolutionary algorithms. In particular, we have considered
genetic algorithms (GAs) and multimemetic algorithms (MMAs) [19]. Let us start
by describing the latter. MMAs are a subclass of memetic algorithms [16,31,32]
which explicitly handle memes (representing in this case a local search operator),
having them evolve alongside solutions. They thus provide a self-adaptive search
approach. The precise MMA considered is inspired by the work of Smith [42,43]
wherein each individual in the population carries a binary genotype and a single
meme representing a rewriting rule A→ C, where both A and C are patterns of a
certain length. A ternary alphabet Σ = {0, 1,#} is used to express these patterns.
Here, ‘#’ is used as a wildcard symbol. Thus, given a genotype b1b2 · · · bn, a meme
a1 · · · ar → c1 · · · cr could be applied on any segment of the former matching the
antecedent (i.e, on any position i for which bibi+1 · · · bi+r−1 = a1 · · · ar). This
application would result on the substitution of this genotypic segment by the con-
sequent (i.e., letting bibi+1 · · · bi+r−1 ← c1 · · · cr). For these purposes, the wildcard
symbol ‘#’ is taken as a don’t-care symbol in the antecedent (hence it can match
both ‘0’ and ‘1’) and as a don’t-change symbol in the consequent (hence leaving
the corresponding position unchanged). For instance, let a genotype be 11011101,
and let a rule be 10# → 1#0. A possible application of the rule could be the
following:

1

A︷︸︸︷
101 1101

rule−−−−−−→ 1 100︸︷︷︸
C

1101

The meme could also be applied on the sixth position, resulting in the genotype
11011100. To avoid positional bias, the order in which application points are sought
is randomized. Upon finding a match, the resulting genotype is generated and
evaluated according to the objective function under consideration. The total cost
of the process is kept under control by using a parameter w, which determines
the maximal number of meme applications. The best neighbor generated (if better
that the current solution) is kept. Note also that the length of each meme is not
fixed but evolves itself, increasing or decreasing by one with probability pr within
a certain length range [lmin, lmax].

Apart from the use of memes embedded within individuals, this MMA other-
wise resembles a generational memetic algorithm in which parents are selected us-
ing binary tournament, and recombination, mutation and local-search (conducted
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Fig. 1: Topologies considered for the interconnection of islands. (a) Ring (b)
Toroidal with von Neumann neighborhood (c) Hypercube (d) Scale-free (m = 1)
(e) Scale-free (m = 2)

using the meme carried out by the individual as illustrated before) are used to gen-
erate the offspring, which replaces the worst parent, following the model presented
in [33]. Notice that by disabling meme evolution and the use of local search, the
algorithm reduces to a GA. This GA model is also included in the experimentation.

Both EAs have been deployed on an island-based architecture, whereby multi-
ple independent populations (islands) are initially created and subsequently evolve
in partial isolation. The definition of this architecture involves some design deci-
sions regarding (1) and interconnection topology among islands and (2) a collec-
tion of migration parameters determining how and when information is exchanged
among islands [4,9,41]. Regarding the former, we have considered the following
topologies:

• Ring : islands are arranged in a logical ring so that island i can communicate
with island i− 1 and island i+ 1 (all operations module the number of islands
so as to close the ring).
• Von Neumann (VN): islands are arranged in a toroidal p× q grid, and connec-

tions are assumed between each island and the islands located at a Manhattan
distance of ρ (the neighborhood radius) at most. For ρ = 1 this implies each
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island communicates with the islands located north, south, east and west from
its position.
• Hypercube (HC): islands are arranged on the vertices of a κ-dimensional hy-

percube (hence, 2κ islands are assumed to exist), and connections are assumed
along the edges of the hypercube, namely between vertices whose indices ex-
pressed in binary differ in just one bit.
• Scale-Free (SF): this is a non-regular complex topology commonly observed

in many natural and social processes, in which node degrees exhibit a power-
law distribution. We generate this kind of topology using the Barabási-Albert
model [5], whereby a network is grown by adding a new node at a time. This
node is connected to m existing nodes, selected with a probability proportional
to their current degree (the model is thus driven by preferential attachment
[7]).

The aforementioned topologies are illustrated in Fig. 1. Regarding the migra-
tion strategy, we follow previous results in the context of GAs and MMAs [4,34]
indicating that selecting a random individual as migrant and having it replace
the worst individual in the target population is a robust strategy. Note finally
that migration is performed synchronously on active islands. While this could not
correspond with real environments, it is simpler and helps as a proof-of-concept.

2.2 Fault Simulation and Management

The island-based model described in the previous section is deployed on a simu-
lated distributed system composed of n nodes whose availability changes dynam-
ically. More precisely, we assume all n nodes are initially available but any of
them can abandon the system during the run (i.e., a fault), probably returning
at a later point (i.e., a recovery) or maybe not becoming available again at all.
There are several options to model these faults/recoveries. The easiest approach
is considering independent faults/recoveries, namely assuming they happen with
a certain probability pf per time unit. In this case, availability times are expo-
nentially distributed. In a more general (and realistic) situation, faults/recoveries
are not the result of a memoryless –i.e., time-independent– process and hence
availability times follow a different distribution such as, for example, the Weibull
distribution [48]. This distribution is often utilized in survival analysis to model
individual lifetimes or time-to-failure in mechanical devices [23], and provides a
nice generalization of the exponential distribution: hazard rates (the rate at which
faults take place) need not be constant anymore; indeed, these rates can increase
or decrease with time according to a certain shape parameter η. For η = 1 we
obtain the exponential distribution mentioned before, whereas for η > 1 (resp.
η < 1) the hazard rate increases (resp. decreases) with time – see Fig. 2 (left). We
actually consider η > 1, which implies that the longer a node has been available,
the more likely it is that it goes down in the near future. In mathematical terms,
the probability of a node being available up to time t1 given that it was available
up to time t0 is

p(t0, t1, η, β) = e−[(t1/β)
η−(t0/β)

η] (1)

where η and β are respectively the shape and scale parameters of the distribution.
Under this model, the mean availability stint is given by βΓ (1+1/η), where Γ (·) is
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Fig. 2: (a) Weibull-distributed node availability probabilities for some configu-
rations used in the experimentation. Values of k = 5, 10, 20 correspond to scale
parameter β ' 79.5, 159.5, 319.5 – see Section 3. (b) Example of the evolution of
the number of available nodes in a simulation of the system.

the gamma function. For simplicity, we assume this same model for node recoveries.
Note that this fits for example the case of volunteering computing systems, in which
computer nodes are contributed when idle, since it is known that the duration of
some human tasks on the computer follows a Weibull distribution, e.g., see [24,
44]. An example of how the number of available nodes fluctuates using this model
is shown in Fig. 2 (right).

When a fault takes place, the corresponding node leaves the system. Unlike
[17], we do not re-wire the interconnections among islands in this case. On one
hand, while how to perform such a re-wiring is conceptually straightforward in
cases such as the ring topology, it is not clear how it should be done in general,
preserving the properties of the underlying topology (i.e., without having this
topology reducing to something completely different after a few reconnections, thus
introducing noise in the analysis). On the other hand, keeping the topology static
allows for a more focused study on the inherent robustest of each interconnection
scheme and is a conceptually simpler strategy. Our management policies thus
manifest themselves when a node that was down becomes available again (in some
cases using information gathered during the previous functioning of the node). To
be precise, we have considered the following possibilities:

• no action: any node which becomes inactive is subsequently ignored, even if it
re-enters the network. This is the simplest option and can be used as a baseline
to gauge the remaining strategies.

• checkpoint: the functioning of each node is monitored and checkpoints are pe-
riodically created to store its state. When a node becomes available again,
its activity resumes from the last checkpoint saved. This is the most classical
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approach to fault management in a general sense. In our experimentation we
consider that such a checkpoint is created in each generation of the EA.

• reinitialization: islands located at nodes which become available again are reini-
tialized in some way. We consider the following two reinitialization strategies:
◦ random: the island is created from scratch, much like it was done at the

beginning of the run.
◦ probabilistic: once a node is reactivated, its active neighbors –according to

the topology used– are used to re-build the new island (if there were no ad-
jacent active populations, a random reinitialization would be done). More
precisely, a probabilistic model is built using the adjacent populations, and
subsequently sampled to create the new population, in the spirit of estima-
tion of distribution algorithms (EDAs) [22,28,36]. In our experimentation
we have considered the use of COMIT [6] for this purpose. This is an EDA
that creates a probabilistic distribution using bivariate dependencies, and
was shown to provide good results in the context of multimemetic opti-
mization [35]. See Appendix A for details. The rationale of this strategy is
to re-create a population state which places the island at an analogous level
of neighboring demes in the current search stage, hence avoiding re-starting
from scratch.

The main advantage of these reinitialization strategies is the fact that they
do not require active monitoring for checkpoint creation. Hence, they can be
arguably simpler to deploy and may introduce less overhead.

Once the algorithms and fault-management strategies considered have been
presented, next section describes the test suite used in the experimentation in
order to evaluate these strategies.

2.3 Test Suite

In order to test the robustness of the different topologies and the performance
of the fault-management strategies, we have used a test suite comprising four
different problems defined on binary strings, namely Deb’s trap (TRAP) function
[10], the Massively Multimodal Deceptive Problem (MMDP) [14], and Watson
et al.’s Hierarchical-if-and-only-if (HIFF) and Hierarchical-Exclusive-OR (HXOR)
functions [46]. These are described below.

Fully-deceptive trap function Deb’s 4-bit fully deceptive function (TRAP hence-
forth) has a single global optimum surrounded by low-fitness solutions and a local
optimum surrounded by increasingly good solutions. Hence, gradient-based meth-
ods are deceived to follow the path towards this local optimum. In mathematical
terms, TRAP is defined as:

f(b1 · · · b4) =

{
0.6− 0.2 · u(b1 · · · b4) if u(b1 · · · b4) < 4

1 if u(b1 · · · b4) = 4
(2)

where u(s1 · · · si) =
∑
j sj is the unitation (number of 1s) of the binary string. A

higher-order problem is built by concatenating k 4-bits blocks, and defining the fit-
ness of this 4k-bit string as the sum of the function value for all blocks/subproblems.
In our experiments we have considered k = 32 subproblems (and hence opt = 32).
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Massively Multimodal Deceptive Problem The MMDP is a bipolar deceptive func-
tion with two global optima located at extreme unitation values (and hence far
apart from each other), and with a local deceptive attractor halfway between them.
This location of the deceptive attractor results in massively more local optima than
global optima (i.e.,

(
L
L/2

)
local vs 2 global). The basic MMDP is defined for 6-bit

blocks as follows:

f(b1 · · · b6) =


1 u(b1 · · · b6) ∈ {0, 6}
0 u(b1 · · · b6) ∈ {1, 5}
0.360384 u(b1 · · · b6) ∈ {2, 4}
0.640576 u(b1 · · · b6) = 3

(3)

We concatenate k copies of this basic block to create a harder problem. We have
considered k = 24 (thus, opt = 24).

Hierarchically consistent functions The hierarchically consistent test problems are
recursive epistatic functions defined for 2k-bit strings. They use two auxiliary func-
tions, namely f : {0, 1,×} → {0, 1} and t : {0, 1,×} → {0, 1, •}, the first one being
used to score the contribution of building blocks, and the second one to capture
their interaction. In the case of the Hierarchical if-and-only-if (HIFF) function f
and t are defined as:

f(a, b) =

{
1 a = b 6= •
0 otherwise

t(a, b) =

{
a a = b

• otherwise

These two functions are used as follows:

HIFFk(b1 · · · bn) =

n/2∑
i=1

f(b2i−1, b2i) + 2 ·HIFFk−1(b′1, · · · , b′n/2) (4)

where b′i = t(b2i−1, b2i) and HIFF0(·) = 1. The Hierarchical-XOR (HXOR) works
similarly but changing f so as to provide a fitness contribution of 1 when a = 1
and b = 0 or vice versa, and having in that case t(a, b) = a (and t(a, b) = ×
otherwise). We have considered k = 7 (i.e., 128-bit strings, opt = 576).

3 Experimental Results

The experiments have been realized with island-based GAs and MMAs comprising
n = 16 islands interconnected by each of the topologies considered. In the case of
the SF topology, we consider values m = 1 (SF1) and m = 2 (SF2) when generating
the network (generated anew in each run of the algorithm). As to the VN topology,
we consider a 4 × 4 toroidal grid. Each island has a population size of µ = 16
individuals, and follows a generational reproductive plan with binary tournament
for parent selection, one-point crossover (pX = 1.0), bit-flip mutation (pM = 1/`,
where ` is the number of bits, 144 for MMDP and 128 for the remaining functions),
local-search if required (conducted using the meme linked to the individual, w = 1)
and replacement of the worst parent [33]. Offspring inherit the meme of the best
parent, which is subsequently subject to length adaptation with probability pr and
mutation with probability pM . We consider meme lengths bounded by lmin = 3 and
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lmax = 9, and use pr = 1/lmax for length self-adaptation. Migration (performed as
indicated in Section 2.1) is done every 20 generations, thus allowing for a reasonable
lapse of isolated evolution in each deme. Aiming to compare strategies/topologies,
the computational time to reach the optimum is used in some related works with
distributed EAs, cf. [2] but in this case the hardness of solving to optimality some
of the test functions precludes this approach. For this reason, we have opted for
measuring performance for a fixed number of 50,000 evaluations.

Regarding fault simulation, we use the model described in Section 2.2, using
η = 1.5 as shape parameter to induce an increasing fault rate. The scale parameter
β is used to modulate the frequency of faults. The value of this parameter has
been chosen so as to have on average one node failure/recovery per k generations
under an hypothetical time-independent fault distribution (the actual distribution
is obviously not time-independent since η > 1, but this analogy provides an anchor
to interpret the value of the parameter, if only in an approximate way). Since,
there are n nodes, this implies that the survival probability per generation in
this hypothetical scenario would be p = 1− (kn)−1, which translates into a scale
parameter β = −1/ log(p) (to a good approximation, β ' kn− 1/2). We consider
three different scenarios of increasing volatility: k = 20 (low volatility), k = 10
(moderate volatility) and k = 5 (high volatility) – see Fig. 2 (right). The case
k = ∞ would represent the fault-less execution of the algorithms. We take the
best individual in the last population to measure the performance of each run.
Twenty runs are performed for each problem, algorithm, configuration (island
topology and fault-management strategy) and fault scenario, for a total of 10,400
runs.

Full numerical data is provided in Tables 3-10 in Appendix B. A summary of
these data is provided in Fig. 3-6. Therein, fitness has been normalized using the
mean fitness for k =∞ (no faults) as reference, in order to get relative degradation
figures. This allows aggregating the results for all four problems in the test suite to
obtain a degradation curve for a specific configuration 〈topology, strategy〉 (Fig.
3 and 4). As expected, the steepest degradation is exhibited by no action. On the
contrary, checkpoint offers the most graceful degradation for all topologies –Fig. 3
(b) and 4 (b)– with a loss in the most severe scenario of about 5% for the GA and
just about 2% for the MMA. The two reinitialization strategies offer slightly worse
results (the statistical significance of this difference shall be analyzed later on) and
most interestingly, they seem to be more sensitive to the interconnection topology,
in particular in the case of the MMA – see Fig. 4 (c)-(d). Specifically in the case of
probabilistic reinitialization, it can be seen how the performance is fully competitive
with that of checkpoint when using VN or HC topology. We attribute this effect to
their richer connectivity, which allows for a more effective probabilistic modeling
of neighboring islands when a node is reactivated. If we analyze the data from the
complementary perspective of topologies, we can observe that in general the degra-
dation profile is going to be more dependent on the fault-management strategy
used that the other way around. This is true both for the GA –Fig. 3 (e)-(i)– and
the MMA –Fig. 4 (e)-(i)– although notice that in the latter case the difference be-
tween checkpoint and the two reinitialization strategies is less marked than for the
GA with the same topology. This can be due to the enhanced search capabilities of
the MMA that allow reactivated demes to catch-up more easily with their neigh-
bors. Moreover, while VN, HC and SF2 seem to provide robust performance just in
combination with checkpoint for the GA, they also provide competitive results in
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Fig. 3: Fitness degradation in island-based GAs for specific fault-management
policies (a)-(d) and topologies (e)-(i).

the case of the MMA in combination with probabilistic reinitialization – Fig. 4 (f)(g)
and (i). Let us also note en passant that there are a couple of instances in which
the degradation profile is slightly non-monotonic. This is due to the stochastic
nature of these techniques and the disturbance introduced by the volatility of the
environment and the fault-management policy introduced (as pointed out in [40],
faults can also play a role in increasing diversity in the GA search process, which
may have beneficial consequences). At any rate, note that these non-monotonic
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Fig. 4: Fitness degradation in island-based MMAs for specific fault-management
policies (a)-(d) and topologies (e)-(i).

fluctuations are not statistically significant (see Tables 3-10). From a general per-
spective, Fig. 5 and 6 provide a global picture of the behavior of both algorithmic
models. As advanced before, the MMA provides better performance and lower
degradation than the GA for a given topology or fault-management policy. It is
also not surprising to have ring and SF1 as the topologies with the highest sensitiv-
ity to the instability of the network, since they are more prone to get partitioned
in disconnected clusters as a result of node faults. This said, merely augmenting
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Fig. 5: Summary of fitness degradation in island-based GAs. (a) According to
fault-management policy. (b) According to topology.
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Fig. 6: Summary of fitness degradation in island-based MMAs. (a) According to
fault-management policy. (b) According to topology.

the connectivity does not tell the whole story, since there are marked performance
differences between the remaining topologies. This is tackled next.

Having analyzed the degradation trends, let us know focus on the statistical
significance of the data and how they compare on a head-to-head basis. To do
so, we perform a rank analysis, computing the relative ordering of the different



Fault-Tolerance in Island-Based EAs and MMAs 13

1 2 3 4

checkpoint

probabilistic

random

no action

rank

All Strategies

(a)

1 2 3 4 5

VN

HC

SF2

Ring

SF1

rank

All Topologies

(b)

Fig. 7: Global rank distribution of performance degradation indices in island-based
GAs. (a) According to fault-management policy. (b) According to topology.
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Fig. 8: Global rank distribution of performance degradation indices in island-based
MMAs (a) According to fault-management policy. (b) According to topology.

strategies for a each problem, fault scenario and topology (and conversely, the
relative ordering of the different topologies for each problem, fault scenario and
strategy). We assign rank 1 to the strategy (resp. topology) with the best mean
performance in each configuration and rank 4 (resp. rank 5) to the worst one (in
case of ties the average rank of the tied positions is awarded). The distribution of
ranks is shown in Fig. 7-10. Then, we have used Quade test [38] –a non-parametric
test more sensitive than Friedman test, see [11]– to determine whether there are
significant differences between these ranks. Table 1 shows the outcome of the test
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Fig. 9: Rank distribution of performance degradation indices in island-based GAs
for specific fault-management policies (a)-(d) and topologies (e)-(i).

for each of the comparisons: strategy-wise for a given topology, topology-wise for a
given strategy, or global (strategy-wise for all topologies or the other way around).
As can be seen, the p-values are very small in all cases, supporting the significance
of the differences. Thus, a post-hoc test is in order. We have used Holm test for
this purpose [18] and the results are shown in Table 2.

Let us firstly consider the global picture. Both for the GA and the MMA check-
point is the strategy with the best rank, and this position is statistically significant
(α = 0.05), as seen in Table 2 (first column, upper half). Topology-wise, there is
not a clear winner since the test is not passed for HC, and SF2 with respect to
VN in the GA, and for VN with respect to HC in the MMA. This would indicate
in first instance that checkpoint is clearly the best strategy and VN/HC are the
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Table 1: Results (p-values) of Quade statistical test on island-based GA/MMA
performance degradation data. The upper half (resp. bottom half) corresponds
to the comparison of different fault-management policies (resp. topologies) for a
given topology (resp. strategy) and for all of them.

Topology
All ring VN HC SF1 SF2

GA 0.00e-00 1.58e-08 1.89e-05 6.42e-06 7.81e-07 3.75e-06
MMA 0.00e-00 2.73e-06 1.46e-04 2.65e-05 9.16e-07 6.66e-07

Fault-management policy
All no action checkpoint random probabilistic

GA 0.00e-00 2.29e-04 2.19e-04 2.45e-08 5.11e-08
MMA 0.00e-00 8.65e-05 2.13e-04 4.44e-06 1.17e-06

Table 2: Results of Holm test (α = 0.05). In each entry of the table we firstly
indicate in boldface the control topology/strategy. Then, we list the remaining
strategies/topologies in rank order, using italics to denote items which do not
pass the test with respect to the control subject (the item with the best rank)
and regular face for those which do pass the test (a horizontal segment separates
the former from the latter). The upper half (resp. bottom half) corresponds to
different fault-management policies (resp. topologies) for a given topology (resp.
strategy) and for all of them.

Topology
All ring VN HC SF1 SF2

GA checkpoint checkpoint checkpoint checkpoint checkpoint checkpoint
probabilistic probabilistic probabilistic probabilistic probabilistic probabilistic

random random random random random random
no action no action no action no action no action no action

MMA checkpoint checkpoint probabilistic checkpoint checkpoint checkpoint
probabilistic probabilistic checkpoint probabilistic probabilistic probabilistic

random random random random random random
no action no action no action no action no action no action

Fault-management policy
All no action checkpoint random probabilistic

GA VN VN VN VN VN
HC SF2 HC HC HC
SF2 HC SF2 SF2 SF2

SF1 ring ring SF1 ring
ring SF1 SF1 ring SF1

MMA HC VN HC HC VN
VN HC VN VN HC
ring ring ring SF2 ring
SF2 SF2 SF1 ring SF2

SF1 SF1 SF2 SF1 SF1
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Fig. 10: Rank distribution of performance degradation indices in island-based
MMAs for specific fault-management policies (a)-(d) and topologies (e)-(i).

most robust topologies. Indeed, checkpoint does provide top performance for most
topologies and so do HC and VN for all fault-management strategies. However, if
we look closely in the intersection of these two winners, the situation admits nu-
ances: both for the GA and the MMA with VN and HC topologies, checkpoint does
not achieve statistically significant differences with probabilistic reinitialization (and
in fact, the latter ranks first in MMA with VN topology). Notice also how both
HC and VN are not significantly different when either checkpoint or probabilistic
reinitialization are used as fault-management strategy. Overall, this suggests that
checkpoint is certainly a powerful strategy, but its global superiority is dominated
by its robustness when dealing with poor performing or fragile topologies. This
is certainly a strong point of this strategy, but notice that when the topology is
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appropriately selected to be one of the top performing ones, probabilistic reinitial-
ization offers comparable performance. This is interesting if we take into account
that this latter strategy may be arguably simpler to implement in practice, since
it does not require saving periodically the state of the island is some stable data
store.

4 Conclusions

Fault tolerance and resilience to churn are undoubtedly important issues in island-
based EAs given the increasing relevance of emerging environments for parallel
computation, such as for example P2P networks or desktop grids. In this sense,
we have studied here how two EA variants behave in the presence of volatile
resources, taking into account design factors such as the interconnection topol-
ogy and the fault-management strategy used. The results firstly indicate that
this coarse-grained model is seemingly robust (thus confirming from a different
perspective some results anticipated in the literature, e.g. [17]), tolerating well
scenarios of low and even moderate volatility, and being amenable to the incor-
poration of fault-management strategies for the most unstable scenarios. Related
to this, structured topologies such as von Neumann grids and hypercubes seem
to provide the most graceful degradation profiles. From the point of view of the
fault-management policy, a checkpointing strategy appears to be a robust choice,
capable of providing top performance in most scenarios. However, a reinitialization
strategy based on checking the active neighbors when a node is reactivated and
using this information to build the new island has shown to be very competitive,
providing results comparable to those of the checkpoint strategy without requiring
to create periodic checkpoints in external stable data stores. More work is required
to confirm these findings in scaled-up scenarios, but this work paves the way for
conducting such studies in a more focused way. It would be interesting to ana-
lyze the impact of using other complex network topologies aside from scale-free
networks, such as for instance small-world networks [47], to study comparatively
their robustness (note in this sense that we cannot generalize the performance
of SF networks to the whole class of complex networks). Another interesting line
for future developments is deepening in the self-adaptiveness of the EA, trying to
endow it with the capability to grasp the characteristics of the underlying comput-
ing environment and react accordingly, potentially introducing dynamic changes
of topology or fault-management strategy.
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A Probabilistic Reinitialization Model

Given m individuals x(1), · · · ,x(m), each of them comprising n variables x(i) = x
(i)
1 · · ·x

(i)
n ,

the COMIT-based model used factorizes their joint probability distribution p(x) as

p(x) = p(xi1 )

n∏
j=2

p(xij |xia(j) ),

where i1 · · · in is a permutation of the indices 1 · · ·n, and a(j) < j is the permutation index
of the variable which xij depends on. We assume i1 is the variable with the lowest entropy

H(Xk) in the selected sample x(1), · · · ,x(m), and then we pick ij (j > 1) as the variable
that minimizes the conditional entropy H(Xk|Xis , s < j). Thus, we have a tree dependence
structure.

Once the dependency tree has been computed, variables are sorted in topological order
and randomly sampled using the conditional probability distributions p(xij |xia(j) ) associated

to each variable.
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B Numerical Data

Table 3: Results (averaged for 20 runs) of the different island-based GAs on the
four problems considered (no action). The number of times the optimum is found
(nopt), the median (x̃), the mean (x̄) and the standard error of the mean (σx)
are indicated. In this table and subsequent ones, a bullet (•) indicates the corre-
sponding results are significantly different (using a Wilcoxon test, α = 0.05) to
the results for k =∞.

TRAP HIFF
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 0 28.4 28.4 ± 0.1 1 397.0 407.9 ± 10.1

20 0 28.0 28.1 ± 0.2 0 371.0 377.2 ± 5.5 •
10 0 26.2 26.3 ± 0.3 • 0 325.0 328.2 ± 5.0 •
5 0 25.1 25.3 ± 0.3 • 0 298.0 302.9 ± 3.7 •

VN ∞ 0 30.0 30.0 ± 0.1 0 436.0 433.0 ± 6.5
20 0 30.0 30.2 ± 0.2 0 414.0 420.2 ± 6.7
10 0 28.8 28.8 ± 0.2 • 0 384.0 384.5 ± 5.9 •
5 0 26.7 26.5 ± 0.2 • 0 326.5 330.9 ± 7.2 •

HC ∞ 0 30.3 30.3 ± 0.1 0 436.0 433.2 ± 6.6
20 0 30.3 30.1 ± 0.1 0 428.0 429.8 ± 7.4
10 0 28.8 28.6 ± 0.1 • 0 368.0 372.1 ± 7.9 •
5 0 26.6 26.3 ± 0.3 • 0 323.0 326.8 ± 5.0 •

SF1 ∞ 0 29.0 28.9 ± 0.1 0 397.0 403.6 ± 7.6
20 0 28.4 28.5 ± 0.2 0 380.0 383.6 ± 6.9
10 0 26.8 26.5 ± 0.4 • 0 326.0 328.1 ± 5.8 •
5 0 25.0 25.0 ± 0.3 • 0 309.0 311.4 ± 5.8 •

SF2 ∞ 0 29.8 29.8 ± 0.1 0 402.0 413.4 ± 8.1
20 0 29.9 29.7 ± 0.2 0 400.0 411.0 ± 7.7
10 0 28.0 27.9 ± 0.3 • 0 362.0 361.4 ± 5.6 •
5 0 26.3 26.5 ± 0.3 • 0 340.0 333.8 ± 6.9 •

HXOR MMDP
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 0 389.0 394.8 ± 5.8 0 20.0 20.2 ± 0.1

20 0 364.0 370.3 ± 5.7 • 0 20.0 19.9 ± 0.2
10 0 319.0 332.8 ± 6.9 • 0 18.5 18.5 ± 0.2 •
5 0 310.0 309.7 ± 4.2 • 0 17.9 17.9 ± 0.2 •

VN ∞ 0 436.0 435.9 ± 7.0 0 21.2 21.4 ± 0.1
20 1 422.0 426.4 ± 9.8 0 21.5 21.5 ± 0.1
10 0 371.0 380.9 ± 7.7 • 0 20.4 20.3 ± 0.1 •
5 0 332.0 329.6 ± 5.1 • 0 19.0 18.8 ± 0.2 •

HC ∞ 0 420.0 425.8 ± 7.0 0 21.5 21.6 ± 0.1
20 0 408.0 410.9 ± 6.7 0 21.5 21.3 ± 0.1
10 0 379.0 378.9 ± 5.9 • 0 20.2 20.2 ± 0.2 •
5 0 320.0 326.4 ± 5.3 • 0 18.8 18.7 ± 0.2 •

SF1 ∞ 0 397.0 407.7 ± 8.7 0 20.0 20.2 ± 0.1
20 0 368.0 377.7 ± 6.2 • 0 20.0 19.9 ± 0.2
10 0 342.0 341.3 ± 6.3 • 0 18.6 18.5 ± 0.3 •
5 0 307.0 307.4 ± 4.2 • 0 18.2 17.9 ± 0.2 •

SF2 ∞ 0 414.0 417.9 ± 5.2 0 21.1 21.3 ± 0.1
20 0 398.0 402.4 ± 4.5 • 0 21.1 21.1 ± 0.2
10 0 349.0 358.2 ± 6.0 • 0 20.0 20.1 ± 0.2 •
5 0 327.0 328.6 ± 5.1 • 0 18.4 18.6 ± 0.2 •
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Table 4: Results (averaged for 20 runs) of the different island-based GAs on the
four problems considered (checkpoint). The number of times the optimum is found
(nopt), the median (x̃), the mean (x̄) and the standard error of the mean (σx) are
indicated.

TRAP HIFF
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 0 28.4 28.4 ± 0.1 1 397.0 407.9 ± 10.1

20 0 28.4 28.4 ± 0.1 0 379.0 381.1 ± 5.3 •
10 0 28.0 27.9 ± 0.2 • 0 365.5 368.0 ± 5.0 •
5 0 27.4 27.5 ± 0.2 • 0 362.5 361.1 ± 4.4 •

VN ∞ 0 30.0 30.0 ± 0.1 0 436.0 433.0 ± 6.5
20 0 30.0 30.2 ± 0.1 0 412.0 416.8 ± 7.0
10 0 30.0 29.7 ± 0.2 0 408.0 417.6 ± 6.3
5 0 29.6 29.6 ± 0.1 0 402.0 403.5 ± 5.7 •

HC ∞ 0 30.3 30.3 ± 0.1 0 436.0 433.2 ± 6.6
20 0 30.4 30.1 ± 0.1 0 426.0 428.0 ± 6.1
10 0 30.0 30.0 ± 0.1 0 406.0 411.8 ± 5.6 •
5 0 29.2 29.3 ± 0.1 • 1 391.0 403.9 ± 10.2 •

SF1 ∞ 0 29.0 28.9 ± 0.1 0 397.0 403.6 ± 7.6
20 0 28.4 28.5 ± 0.2 • 0 381.5 387.7 ± 6.9
10 0 28.0 28.1 ± 0.2 • 0 368.0 373.9 ± 7.8 •
5 0 27.6 27.6 ± 0.1 • 0 359.0 365.8 ± 5.6 •

SF2 ∞ 0 29.8 29.8 ± 0.1 0 402.0 413.4 ± 8.1
20 0 29.6 29.7 ± 0.2 0 405.0 414.7 ± 8.0
10 0 29.6 29.3 ± 0.2 0 404.0 408.1 ± 6.2
5 0 29.0 29.1 ± 0.1 • 0 392.5 386.5 ± 5.1 •

HXOR MMDP
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 0 389.0 394.8 ± 5.8 0 20.0 20.2 ± 0.1

20 0 368.0 371.3 ± 3.5 • 0 20.1 20.0 ± 0.2
10 0 369.0 371.6 ± 4.9 • 0 19.7 19.6 ± 0.1 •
5 0 368.0 368.9 ± 5.0 • 0 19.3 19.5 ± 0.1 •

VN ∞ 0 436.0 435.9 ± 7.0 0 21.2 21.4 ± 0.1
20 1 418.0 425.1 ± 10.0 0 21.5 21.5 ± 0.1
10 1 400.0 403.3 ± 10.8 • 0 21.1 21.1 ± 0.1
5 0 408.0 415.1 ± 5.8 • 0 20.8 20.9 ± 0.1 •

HC ∞ 0 420.0 425.8 ± 7.0 0 21.5 21.6 ± 0.1
20 0 408.0 412.0 ± 5.0 0 21.5 21.4 ± 0.1
10 0 408.0 407.1 ± 5.1 0 21.1 21.1 ± 0.1
5 0 404.0 406.1 ± 4.2 • 0 20.8 20.9 ± 0.1 •

SF1 ∞ 0 397.0 407.7 ± 8.7 0 20.0 20.2 ± 0.1
20 0 374.5 379.1 ± 6.6 • 0 19.9 19.9 ± 0.1
10 0 368.0 378.4 ± 6.5 • 0 20.0 19.8 ± 0.2
5 0 370.5 371.1 ± 6.2 • 0 19.3 19.6 ± 0.1 •

SF2 ∞ 0 414.0 417.9 ± 5.2 0 21.1 21.3 ± 0.1
20 0 392.0 400.7 ± 5.0 • 0 21.5 21.1 ± 0.2
10 0 389.0 398.6 ± 6.7 • 0 20.8 20.8 ± 0.2 •
5 0 395.0 390.3 ± 4.8 • 0 20.4 20.5 ± 0.1 •
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Table 5: Results (averaged for 20 runs) of the different island-based GAs on the four
problems considered (random reinitialization). The number of times the optimum
is found (nopt), the median (x̃), the mean (x̄) and the standard error of the mean
(σx) are indicated.

TRAP HIFF
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 0 28.4 28.4 ± 0.1 1 397.0 407.9 ± 10.1

20 0 28.3 28.4 ± 0.1 0 380.0 381.1 ± 4.6 •
10 0 27.3 27.2 ± 0.2 • 0 353.0 351.1 ± 6.0 •
5 0 24.9 25.0 ± 0.4 • 0 315.0 318.4 ± 7.2 •

VN ∞ 0 30.0 30.0 ± 0.1 0 436.0 433.0 ± 6.5
20 0 30.1 30.2 ± 0.1 0 406.0 414.7 ± 7.1
10 0 29.7 29.7 ± 0.2 0 412.0 414.7 ± 8.0 •
5 0 28.2 28.4 ± 0.2 • 0 369.0 374.5 ± 7.9 •

HC ∞ 0 30.3 30.3 ± 0.1 0 436.0 433.2 ± 6.6
20 0 30.2 30.1 ± 0.1 0 416.0 425.8 ± 6.7
10 0 29.6 29.5 ± 0.2 • 0 402.0 407.3 ± 6.6 •
5 0 28.4 28.4 ± 0.3 • 0 370.0 366.9 ± 7.2 •

SF1 ∞ 0 29.0 28.9 ± 0.1 0 397.0 403.6 ± 7.6
20 0 28.4 28.5 ± 0.2 0 380.0 383.1 ± 6.0
10 0 27.6 27.3 ± 0.3 • 0 343.5 347.1 ± 6.4 •
5 0 26.2 25.7 ± 0.4 • 0 332.0 324.4 ± 7.0 •

SF2 ∞ 0 29.8 29.8 ± 0.1 0 402.0 413.4 ± 8.1
20 0 29.8 29.7 ± 0.2 0 400.0 412.6 ± 8.6
10 0 28.6 28.9 ± 0.2 • 0 388.0 392.4 ± 6.4 •
5 0 27.2 27.0 ± 0.4 • 0 350.0 347.3 ± 8.5 •

HXOR MMDP
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 0 389.0 394.8 ± 5.8 0 20.0 20.2 ± 0.1

20 0 365.0 370.9 ± 5.3 • 0 20.0 19.9 ± 0.1
10 0 345.0 350.9 ± 6.5 • 0 19.3 19.3 ± 0.1 •
5 0 319.0 317.9 ± 6.4 • 0 18.5 18.3 ± 0.2 •

VN ∞ 0 436.0 435.9 ± 7.0 0 21.2 21.4 ± 0.1
20 0 422.0 422.4 ± 6.4 0 21.5 21.4 ± 0.1
10 0 390.0 392.6 ± 5.3 • 0 21.1 21.0 ± 0.1
5 0 370.0 367.2 ± 3.0 • 0 20.1 20.3 ± 0.1 •

HC ∞ 0 420.0 425.8 ± 7.0 0 21.5 21.6 ± 0.1
20 0 408.0 417.2 ± 5.6 0 21.5 21.4 ± 0.1
10 0 396.0 395.8 ± 5.8 • 0 21.0 21.0 ± 0.2 •
5 0 371.0 368.4 ± 6.4 • 0 20.4 20.1 ± 0.2 •

SF1 ∞ 0 397.0 407.7 ± 8.7 0 20.0 20.2 ± 0.1
20 0 376.0 382.2 ± 7.2 • 0 19.9 19.9 ± 0.1
10 0 357.5 357.6 ± 6.2 • 0 19.3 19.4 ± 0.2 •
5 0 337.5 337.9 ± 7.3 • 0 18.3 18.5 ± 0.2 •

SF2 ∞ 0 414.0 417.9 ± 5.2 0 21.1 21.3 ± 0.1
20 0 392.0 400.8 ± 5.5 • 0 21.3 21.2 ± 0.2
10 0 382.0 386.4 ± 7.6 • 0 20.9 20.7 ± 0.3
5 0 357.0 349.6 ± 8.0 • 0 19.7 19.5 ± 0.2 •
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Table 6: Results (averaged for 20 runs) of the different island-based GAs on the
four problems considered (probabilistic reinitialization). The number of times the
optimum is found (nopt), the median (x̃), the mean (x̄) and the standard error of
the mean (σx) are indicated.

TRAP HIFF
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 0 28.4 28.4 ± 0.1 1 397.0 407.9 ± 10.1

20 0 28.3 28.4 ± 0.2 0 379.0 380.4 ± 4.8 •
10 0 27.6 27.5 ± 0.2 • 0 358.0 361.6 ± 5.4 •
5 0 26.0 26.1 ± 0.3 • 0 332.0 341.4 ± 5.1 •

VN ∞ 0 30.0 30.0 ± 0.1 0 436.0 433.0 ± 6.5
20 0 30.1 30.2 ± 0.1 0 408.0 414.5 ± 6.8
10 0 30.0 29.8 ± 0.2 0 406.0 414.4 ± 8.5 •
5 0 29.0 28.8 ± 0.1 • 0 395.0 390.4 ± 6.7 •

HC ∞ 0 30.3 30.3 ± 0.1 0 436.0 433.2 ± 6.6
20 0 30.0 30.1 ± 0.1 0 424.0 431.0 ± 7.4
10 0 29.8 29.7 ± 0.2 • 0 401.0 415.7 ± 9.0
5 0 29.2 29.1 ± 0.2 • 0 377.0 380.6 ± 4.5 •

SF1 ∞ 0 29.0 28.9 ± 0.1 0 397.0 403.6 ± 7.6
20 0 28.4 28.5 ± 0.2 0 382.0 382.4 ± 5.4 •
10 0 27.6 27.5 ± 0.3 • 0 354.0 355.8 ± 8.2 •
5 0 26.9 26.4 ± 0.3 • 0 343.0 343.3 ± 6.4 •

SF2 ∞ 0 29.8 29.8 ± 0.1 0 402.0 413.4 ± 8.1
20 0 29.7 29.6 ± 0.2 0 404.0 415.9 ± 8.3
10 0 29.2 29.0 ± 0.2 • 0 386.0 392.8 ± 6.4
5 0 28.0 28.1 ± 0.1 • 0 370.0 368.7 ± 4.8 •

HXOR MMDP
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 0 389.0 394.8 ± 5.8 0 20.0 20.2 ± 0.1

20 0 369.0 377.6 ± 5.6 • 0 20.0 20.0 ± 0.1
10 0 362.5 358.0 ± 6.4 • 0 19.3 19.4 ± 0.2 •
5 0 337.0 336.9 ± 3.8 • 0 18.6 18.5 ± 0.2 •

VN ∞ 0 436.0 435.9 ± 7.0 0 21.2 21.4 ± 0.1
20 1 428.0 430.4 ± 9.7 0 21.5 21.5 ± 0.1
10 0 402.0 400.1 ± 6.4 • 0 20.8 21.0 ± 0.1 •
5 0 380.0 387.2 ± 4.3 • 0 20.8 20.7 ± 0.1 •

HC ∞ 0 420.0 425.8 ± 7.0 0 21.5 21.6 ± 0.1
20 0 408.0 414.4 ± 5.5 0 21.3 21.3 ± 0.1
10 0 390.0 393.6 ± 6.2 • 0 21.1 21.0 ± 0.2 •
5 0 384.0 380.1 ± 5.6 • 0 20.4 20.4 ± 0.1 •

SF1 ∞ 0 397.0 407.7 ± 8.7 0 20.0 20.2 ± 0.1
20 0 371.5 381.7 ± 6.4 • 0 20.0 19.9 ± 0.2
10 0 360.0 364.4 ± 8.7 • 0 19.7 19.4 ± 0.2 •
5 0 358.5 351.3 ± 6.0 • 0 18.4 18.7 ± 0.2 •

SF2 ∞ 0 414.0 417.9 ± 5.2 0 21.1 21.3 ± 0.1
20 0 392.0 399.8 ± 4.6 • 0 21.5 21.1 ± 0.2
10 0 384.0 385.7 ± 5.9 • 0 20.8 20.7 ± 0.2 •
5 0 362.0 361.5 ± 3.9 • 0 20.1 20.1 ± 0.1 •
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Table 7: Results (averaged for 20 runs) of the different island-based MMAs on the
four problems considered (no action). The number of times the optimum is found
(nopt), the median (x̃), the mean (x̄) and the standard error of the mean (σx) are
indicated.

TRAP HIFF
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 17 32.0 31.8 ± 0.1 19 576.0 570.4 ± 5.6

20 19 32.0 31.8 ± 0.2 19 576.0 570.0 ± 6.0
10 17 32.0 30.0 ± 0.6 • 17 456.0 451.6 ± 20.9 •
5 12 28.1 28.6 ± 0.7 • 12 387.0 411.1 ± 22.0 •

VN ∞ 17 32.0 31.8 ± 0.1 18 576.0 565.6 ± 7.2
20 19 32.0 31.9 ± 0.1 15 576.0 550.8 ± 10.4
10 17 32.0 31.5 ± 0.2 18 576.0 556.6 ± 11.9
5 13 30.8 29.9 ± 0.5 • 12 456.0 470.0 ± 18.2 •

HC ∞ 16 32.0 31.6 ± 0.2 16 576.0 555.2 ± 9.6
20 19 32.0 31.9 ± 0.1 18 576.0 565.2 ± 7.5
10 17 32.0 31.7 ± 0.2 17 576.0 542.8 ± 15.6
5 14 32.0 30.6 ± 0.5 11 456.0 472.3 ± 20.2 •

SF1 ∞ 19 32.0 31.9 ± 0.1 19 576.0 568.8 ± 7.2
20 17 32.0 31.7 ± 0.2 17 576.0 554.4 ± 12.5
10 17 32.0 30.3 ± 0.6 • 14 576.0 499.7 ± 23.0 •
5 6 27.9 28.0 ± 0.7 • 11 374.5 396.9 ± 21.7 •

SF2 ∞ 19 32.0 32.0 ± 0.0 19 576.0 570.0 ± 6.0
20 18 32.0 31.8 ± 0.2 17 576.0 553.0 ± 10.7
10 16 32.0 31.1 ± 0.4 14 496.0 506.6 ± 15.5 •
5 13 32.0 29.6 ± 0.7 • 13 472.0 479.9 ± 22.4 •

HXOR MMDP
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 0 402.5 408.1 ± 7.0 7 23.6 23.0 ± 0.3

20 0 395.0 397.2 ± 6.5 12 24.0 23.4 ± 0.2
10 0 351.0 354.9 ± 5.5 • 8 20.8 21.0 ± 0.5 •
5 0 319.0 322.9 ± 5.4 • 2 19.0 20.2 ± 0.5 •

VN ∞ 0 446.0 444.0 ± 7.5 12 24.0 23.5 ± 0.2
20 1 436.0 440.3 ± 9.9 15 24.0 23.6 ± 0.2
10 0 400.0 403.1 ± 7.0 • 11 23.6 23.1 ± 0.3
5 0 332.0 336.9 ± 6.1 • 2 21.1 21.3 ± 0.4 •

HC ∞ 1 440.5 447.9 ± 8.6 13 24.0 23.5 ± 0.2
20 1 436.0 440.7 ± 8.6 14 24.0 23.6 ± 0.2
10 0 392.0 391.1 ± 7.1 • 7 22.9 22.4 ± 0.3 •
5 0 339.5 338.8 ± 4.8 • 3 20.4 20.7 ± 0.4 •

SF1 ∞ 1 396.0 412.9 ± 10.7 11 24.0 23.2 ± 0.3
20 0 405.0 406.6 ± 7.8 8 23.5 23.0 ± 0.3
10 0 355.0 356.6 ± 5.7 • 5 20.8 20.9 ± 0.4 •
5 0 318.0 321.7 ± 8.0 • 0 18.6 19.2 ± 0.4 •

SF2 ∞ 1 447.0 442.5 ± 8.7 14 24.0 23.6 ± 0.1
20 0 418.0 421.6 ± 6.7 13 24.0 23.6 ± 0.2
10 0 380.0 379.5 ± 6.7 • 8 23.5 22.5 ± 0.4 •
5 0 344.5 346.9 ± 7.5 • 3 19.9 20.3 ± 0.5 •
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Table 8: Results (averaged for 20 runs) of the different island-based MMAs on the
four problems considered (checkpoint). The number of times the optimum is found
(nopt), the median (x̃), the mean (x̄) and the standard error of the mean (σx) are
indicated.

TRAP HIFF
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 17 32.0 31.8 ± 0.1 19 576.0 570.4 ± 5.6

20 20 32.0 31.9 ± 0.1 18 576.0 564.8 ± 7.7
10 18 32.0 31.6 ± 0.3 17 576.0 556.0 ± 11.4
5 16 32.0 31.5 ± 0.2 18 576.0 559.0 ± 9.3

VN ∞ 17 32.0 31.8 ± 0.1 18 576.0 565.6 ± 7.2
20 19 32.0 31.9 ± 0.1 15 576.0 550.8 ± 10.4
10 19 32.0 31.9 ± 0.1 18 576.0 565.2 ± 8.1
5 18 32.0 31.9 ± 0.1 19 576.0 570.4 ± 5.6

HC ∞ 16 32.0 31.6 ± 0.2 16 576.0 555.2 ± 9.6
20 19 32.0 31.9 ± 0.1 17 576.0 559.6 ± 9.0
10 18 32.0 31.9 ± 0.1 17 576.0 555.6 ± 11.4
5 17 32.0 31.7 ± 0.1 18 576.0 565.2 ± 7.5

SF1 ∞ 19 32.0 31.9 ± 0.1 19 576.0 568.8 ± 7.2
20 17 32.0 31.7 ± 0.2 17 576.0 555.0 ± 12.0
10 18 32.0 31.7 ± 0.2 18 576.0 558.4 ± 9.6
5 17 32.0 31.7 ± 0.2 18 576.0 560.6 ± 8.8

SF2 ∞ 19 32.0 32.0 ± 0.0 19 576.0 570.0 ± 6.0
20 18 32.0 31.7 ± 0.2 17 576.0 558.6 ± 9.6
10 17 32.0 31.7 ± 0.2 16 576.0 552.5 ± 12.0
5 16 32.0 31.6 ± 0.2 • 18 576.0 563.2 ± 8.9

HXOR MMDP
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 0 402.5 408.1 ± 7.0 7 23.6 23.0 ± 0.3

20 0 396.0 400.2 ± 5.9 10 23.8 23.5 ± 0.2
10 0 382.0 385.4 ± 3.6 • 9 23.6 23.1 ± 0.3
5 0 378.0 383.6 ± 5.3 • 11 23.8 22.8 ± 0.4

VN ∞ 0 446.0 444.0 ± 7.5 12 24.0 23.5 ± 0.2
20 1 447.0 444.3 ± 9.3 14 24.0 23.6 ± 0.2
10 1 448.5 444.1 ± 10.2 16 24.0 23.7 ± 0.2
5 0 428.0 428.8 ± 6.5 12 24.0 23.4 ± 0.2

HC ∞ 1 440.5 447.9 ± 8.6 13 24.0 23.5 ± 0.2
20 1 432.0 441.2 ± 8.2 16 24.0 23.7 ± 0.2
10 1 418.0 431.4 ± 9.7 • 8 23.6 23.4 ± 0.2
5 0 418.0 423.6 ± 6.5 • 10 23.6 23.3 ± 0.2

SF1 ∞ 1 396.0 412.9 ± 10.7 11 24.0 23.2 ± 0.3
20 0 400.0 407.8 ± 8.7 7 23.5 23.0 ± 0.3
10 0 390.0 393.4 ± 5.2 8 23.1 22.6 ± 0.3
5 0 376.0 379.8 ± 4.5 • 8 23.1 22.9 ± 0.3

SF2 ∞ 1 447.0 442.5 ± 8.7 14 24.0 23.6 ± 0.1
20 0 422.0 428.6 ± 6.5 14 24.0 23.7 ± 0.1
10 0 401.0 405.3 ± 4.6 • 13 24.0 23.2 ± 0.3
5 0 400.0 410.9 ± 8.0 • 11 23.8 23.4 ± 0.2
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Table 9: Results (averaged for 20 runs) of the different island-based MMAs on the
four problems considered (random). The number of times the optimum is found
(nopt), the median (x̃), the mean (x̄) and the standard error of the mean (σx) are
indicated.

TRAP HIFF
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 17 32.0 31.8 ± 0.1 19 576.0 570.4 ± 5.6

20 19 32.0 31.8 ± 0.1 19 576.0 570.0 ± 6.0
10 17 32.0 31.1 ± 0.4 16 576.0 536.6 ± 14.1 •
5 13 28.1 28.1 ± 0.6 • 14 440.5 441.0 ± 22.9 •

VN ∞ 17 32.0 31.8 ± 0.1 18 576.0 565.6 ± 7.2
20 19 32.0 31.9 ± 0.1 15 576.0 550.8 ± 10.4
10 19 32.0 31.9 ± 0.1 18 576.0 565.7 ± 7.6
5 17 32.0 31.6 ± 0.2 17 576.0 557.0 ± 10.5

HC ∞ 16 32.0 31.6 ± 0.2 16 576.0 555.2 ± 9.6
20 19 32.0 31.9 ± 0.1 16 576.0 554.8 ± 9.8
10 17 32.0 31.8 ± 0.1 17 576.0 555.3 ± 11.5
5 15 32.0 31.0 ± 0.5 18 576.0 555.6 ± 11.3

SF1 ∞ 19 32.0 31.9 ± 0.1 19 576.0 568.8 ± 7.2
20 17 32.0 31.7 ± 0.2 17 576.0 555.6 ± 11.5
10 19 32.0 31.2 ± 0.4 • 14 576.0 522.2 ± 15.9 •
5 12 29.2 28.6 ± 0.7 • 14 576.0 500.6 ± 19.9 •

SF2 ∞ 19 32.0 32.0 ± 0.0 19 576.0 570.0 ± 6.0
20 18 32.0 31.8 ± 0.2 17 576.0 558.6 ± 9.6
10 17 32.0 31.7 ± 0.2 15 576.0 545.5 ± 13.2
5 14 31.4 29.7 ± 0.6 • 17 576.0 503.9 ± 22.4 •

HXOR MMDP
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 0 402.5 408.1 ± 7.0 7 23.6 23.0 ± 0.3

20 0 396.0 398.7 ± 6.2 11 24.0 23.4 ± 0.2
10 0 371.0 371.4 ± 5.8 • 6 22.0 22.1 ± 0.4
5 0 338.0 338.1 ± 6.4 • 6 20.0 20.5 ± 0.5 •

VN ∞ 0 446.0 444.0 ± 7.5 12 24.0 23.5 ± 0.2
20 1 450.0 445.9 ± 9.0 14 24.0 23.6 ± 0.2
10 0 428.0 422.2 ± 7.0 12 23.8 23.4 ± 0.2
5 0 388.5 394.9 ± 8.1 • 6 22.6 22.6 ± 0.3 •

HC ∞ 1 440.5 447.9 ± 8.6 13 24.0 23.5 ± 0.2
20 1 436.0 445.3 ± 8.0 15 24.0 23.7 ± 0.2
10 0 408.0 416.1 ± 6.9 • 12 24.0 23.3 ± 0.3
5 0 380.0 378.8 ± 6.1 • 8 23.1 22.5 ± 0.4 •

SF1 ∞ 1 396.0 412.9 ± 10.7 11 24.0 23.2 ± 0.3
20 0 392.0 404.1 ± 7.9 8 23.5 22.9 ± 0.3
10 0 378.0 387.3 ± 7.5 • 7 22.7 22.3 ± 0.4
5 0 337.5 344.4 ± 7.8 • 3 20.3 20.8 ± 0.4 •

SF2 ∞ 1 447.0 442.5 ± 8.7 14 24.0 23.6 ± 0.1
20 0 412.0 419.6 ± 6.5 • 14 24.0 23.6 ± 0.2
10 0 393.0 394.7 ± 4.7 • 11 23.6 23.1 ± 0.3
5 0 360.0 357.4 ± 8.2 • 6 22.7 22.4 ± 0.4 •
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Table 10: Results (averaged for 20 runs) of the different island-based MMAs on
the four problems considered (probabilistic reinitialization). The number of times
the optimum is found (nopt), the median (x̃), the mean (x̄) and the standard error
of the mean (σx) are indicated.

TRAP HIFF
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 17 32.0 31.8 ± 0.1 19 576.0 570.4 ± 5.6

20 19 32.0 31.8 ± 0.1 19 576.0 570.0 ± 6.0
10 16 32.0 31.1 ± 0.5 16 576.0 528.3 ± 15.6 •
5 16 32.0 30.6 ± 0.5 • 17 460.0 470.0 ± 22.1 •

VN ∞ 17 32.0 31.8 ± 0.1 18 576.0 565.6 ± 7.2
20 19 32.0 31.9 ± 0.1 15 576.0 550.8 ± 10.4
10 19 32.0 31.9 ± 0.1 17 576.0 560.3 ± 9.2
5 19 32.0 32.0 ± 0.0 18 576.0 564.0 ± 8.3

HC ∞ 16 32.0 31.6 ± 0.2 16 576.0 555.2 ± 9.6
20 19 32.0 31.9 ± 0.1 16 576.0 554.8 ± 9.8
10 18 32.0 31.9 ± 0.1 16 576.0 552.8 ± 10.7
5 18 32.0 31.7 ± 0.2 13 576.0 537.6 ± 12.1

SF1 ∞ 19 32.0 31.9 ± 0.1 19 576.0 568.8 ± 7.2
20 17 32.0 31.7 ± 0.2 17 576.0 558.8 ± 9.4
10 17 32.0 30.9 ± 0.5 13 576.0 521.0 ± 17.3 •
5 11 31.6 30.1 ± 0.5 • 14 520.0 498.9 ± 19.4 •

SF2 ∞ 19 32.0 32.0 ± 0.0 19 576.0 570.0 ± 6.0
20 18 32.0 31.8 ± 0.2 17 576.0 558.6 ± 9.6
10 17 32.0 31.6 ± 0.2 14 576.0 544.2 ± 12.2 •
5 17 32.0 31.4 ± 0.3 15 576.0 529.4 ± 16.1 •

HXOR MMDP
topology k nopt x̃ x̄± σx nopt x̃ x̄± σx
Ring ∞ 0 402.5 408.1 ± 7.0 7 23.6 23.0 ± 0.3

20 0 396.0 400.6 ± 7.1 12 24.0 23.5 ± 0.2
10 0 377.0 377.2 ± 4.7 • 8 22.9 22.7 ± 0.3
5 0 355.0 354.4 ± 5.0 • 3 22.0 21.7 ± 0.4 •

VN ∞ 0 446.0 444.0 ± 7.5 12 24.0 23.5 ± 0.2
20 1 449.0 444.4 ± 9.3 14 24.0 23.6 ± 0.2
10 0 422.0 429.1 ± 8.1 15 24.0 23.7 ± 0.1
5 0 400.0 416.2 ± 9.3 • 14 24.0 23.7 ± 0.1

HC ∞ 1 440.5 447.9 ± 8.6 13 24.0 23.5 ± 0.2
20 1 442.0 445.7 ± 8.2 15 24.0 23.7 ± 0.1
10 1 413.0 424.8 ± 10.3 • 11 24.0 23.5 ± 0.2
5 0 416.0 416.1 ± 6.8 • 6 22.7 22.5 ± 0.3 •

SF1 ∞ 1 396.0 412.9 ± 10.7 11 24.0 23.2 ± 0.3
20 0 402.5 404.9 ± 7.6 9 23.5 23.1 ± 0.3
10 0 384.0 388.9 ± 6.9 • 8 22.7 22.3 ± 0.4
5 0 364.0 365.2 ± 5.8 • 5 20.4 20.9 ± 0.4 •

SF2 ∞ 1 447.0 442.5 ± 8.7 14 24.0 23.6 ± 0.1
20 0 420.0 425.1 ± 6.3 14 24.0 23.7 ± 0.1
10 0 388.0 393.9 ± 5.7 • 10 23.8 23.2 ± 0.3
5 0 380.0 391.6 ± 6.3 • 9 23.1 22.9 ± 0.3 •


