
Studying Self-Balancing Strategies in Island-Based
Multimemetic Algorithms

Rafael Noguerasa, Carlos Cottaa,∗

aDept. Lenguajes y Ciencias de la Computación, Universidad de Málaga,
ETSI Informática, Campus de Teatinos, 29071 Málaga, Spain

Abstract

Multimemetic algorithms (MMAs) are memetic algorithms that explicitly
exploit the evolution of memes, i.e., non-genetic expressions of problem-solving
strategies. We aim to study their deployment on an unstable environment with
complex topology and volatile resources. We analyze their behavior and perfor-
mance on environments with different churn rates, and how they are affected
by the use of self-balancing strategies aiming to compensate the loss of ex-
isting islands and react to the apparition of new ones. We investigate two
such strategies, one based on quantitative balance (in which populations are
resized dynamically to cope with node failure/recoveries) and another on qual-
itative balance (in which genetic/memetic information is actually exchanged
to achieve balance). We evaluate these on scale-free network topologies and
compare them to an unbalanced strategy that keeps island sizes constant. Ex-
perimentation firstly focuses on memetic takeover, carried out on an idealized
selecto-Lamarckian model of MMAs (used as a surrogate of the latter) and indi-
cating that the two balancing strategies exhibit complementary profiles in terms
of diversity preservation. The results also indicate that the qualitative version
is more robust to churn than both the unbalanced and the quantitatively bal-
anced counterpart. This is subsequently confirmed with an empirical evaluation
of full-fledged MMAs on a benchmark composed of four hard pseudo-Boolean
problems. The qualitative version provides the best performance in global terms,
significantly outperforming the remaining variants.

Keywords: Memetic algorithms, multimemetic algorithms, load balancing,
self-adaptation, faulty environment

1. Introduction

Memetic algorithms (MAs) [1] are optimization techniques based on the or-
chestrated interplay of elements from population-based global search methods

∗Corresponding author: Phone: +34 952 137158; Fax: +34 952 131397
Email address: ccottap@lcc.uma.es (Carlos Cotta)

Preprint submitted to Journal of Computational and Applied Mathematics March 27, 2015

and trajectory-based local search techniques [2]. A central tenet in MAs is the
notion of meme [3]: originally defined as units of imitation, memes can be in-5

terpreted in the context of MAs as computational problem-solving procedures.
While these can take different forms, they commonly represent local-search tech-
niques, often fixed or pre-defined in advance. Hence, these MAs can be regarded
as operating with static implicit memes. This is not the only possibility though.
Indeed, explicitly handling (and evolving) memes is an idea that has been around10

for some time now –cf. [4]– and is now a core idea in the concept of memetic
computing [5, 6, 7, 8]. Such an explicit treatment of memes can be found in, for
example, multimemetic algorithms (MMAs) [9, 10, 11, 12, 13]. In these tech-
niques, each solution carries memes that determine the way self-improvement
is conducted. Since these memes evolve alongside solutions, the whole system15

constitutes a self-adaptive search approach [14, 15, 16, 17].
When analyzing the way memes propagate throughout the population in an

MMA, we can observe that the propagation dynamics is more complex than that
of genes, if only because memes are only indirectly evaluated according to the
effect they exert on the latter. For this reason, mismatches between genes and20

memes may cause potentially good memes to become extinct or poor memes
to proliferate [18]. These issues are particularly relevant to multi-population
models of MMAs, in which, besides internal population dynamics, we have to
consider the effect of the communication between populations too [19]. This
is even more true in the presence of complex, dynamic computational environ-25

ments such as those emerging from the use of peer-to-peer networks [20] and
volunteer computing networks [21]. These are characterized by the volatility of
computational resources, the term churn having been coined to denote the col-
lective effect of a plethora of peers entering or leaving the system independently
over time.30

Focusing on the use of island-based evolutionary algorithms on these kinds
of unstable computational platforms, the presence of churn can cause the best
solution to be lost (if the island comprising it goes down before it has the op-
portunity to migrate [22]) and will, in general, have detrimental effects on the
overall population diversity. This can be tackled using corrective measures –e.g.,35

using a fault-management strategy to recover from failures [23, 24, 25, 26]– or
by preventive measures, whereby the algorithm self-adapts to failures as they
happen, trying to maintain a broad genetic/memetic pool at all times. The lat-
ter may have the advantage of being inherently autonomous and decentralized,
not requiring the global state of the system to be monitored or for external40

snapshots of it to be maintained. This approach is precisely the focus of this
paper: we depart from the use of fault-recovery strategies considered in previ-
ous work [27] and investigate the effect that introducing decentralized balancing
strategies has on the functioning of the algorithm. To this end, we firstly use an
idealized selecto-Lamarckian model of MMAs [18] which allows studying issues45

such as memetic diversity and convergence. This model is extended here to an
island-based context, as described in Section 2.1. Subsequently, we describe a
model of the computational environment (analogous to that used in [27]) in Sec-
tion 2.2 and present a self-balancing algorithm in Section 2.3. Then, we report a

2

broad experimental evaluation in Section 3. After analyzing the behavior of the50

surrogate model, results are reported on actual full-fledged MMAs in order to
confirm the previous findings, analyzing performance and providing a sensitivity
analysis of the self-balancing strategy. We close the paper with an overview of
conclusions and an outline of future work in Section 4.

2. Material and Methods55

2.1. Algorithmic Setting

As stated in the previous section, the first part of the experimentation has
been done using an idealized selecto-Lamarckian model so as to obtain a prelim-
inary assessment of the behavior of MMAs in terms of convergence and diversity
when deployed on a dynamic computational scenario. This model is an abstract60

characterization of MMAs, first introduced in [18]. It consists of a population
P = [〈g1,m1〉, · · · , 〈gµ,mµ〉] of µ individuals, which are subject to the evolution-
ary operations of selection, local search and replacement as shown in Algorithm
1 (selecto-Lamarckian phase). Each individual is a tuple 〈gi,mi〉 ∈ D2, for
some D ⊂ R. In each tuple, gi is the genotype (also representing fitness for65

simplicity) and mi is a meme (its potential, to be precise). The latter is an
idealized concept that tries to capture how good solutions can become by using
this meme (thus constituting an abstract notion of meme fitness [28]). More
precisely, this potential is expressed via a function f : D2 → D monotonically
increasing in the first parameter, which represents the application of a meme70

to a gene: an individual 〈g,m〉 becomes 〈f(g,m),m〉 after the application of
the meme. It must hold that (i) limn→∞ fn(g,m) = m if g < m (fn(g,m)
being the n-fold application of the meme m to g) and that (ii) f(g,m) = g if
g > m. This means that the meme has no effect on solutions whose quality is
higher than the meme’s potential, but in the case that the quality is lower it75

improves the latter, reaching its potential in the limit. While this is obviously
a highly idealized description of the action of memes (which in general depends
on the match between the genotype and the meme on a problem-specific basis)
it constitutes an initial approximation that can be used to study the generalities
of meme propagation as shown in [18].80

Interaction between individuals in a population is restricted by a spatial
structure given by a µ × µ Boolean matrix S, where Sij= true if, and only if,
the individual in the i-th location can interact with the individual in the j-th
location [29]. In this case we consider panmixia, i.e., Sij= true for all i, j. This
basic model is here extended to a multi-population setting [30, 31] as illustrated85

in Algorithm 1: nι islands are assumed to work in parallel (being interconnected
according to a certain topology N) and migration steps are added before/after
the selecto-Lamarckian phase. Migration is performed asynchronously: at the
beginning of each cycle the island checks whether or not migrants have been
received. If this is the case, they are accepted into the population following a90

given migrant replacement policy. Then, at the end of each cycle, migration
is stochastically performed just like any other evolutionary operator. If done,

3

Algorithm 1: Island-Based Selecto-Lamarckian Model

for i ∈ [1 · · ·nι] do in parallel
Initialize(popi) ; // initialize i-th population

buffer i ← ∅ ; // initialize i-th migration buffer

end
while ¬ BudgetExhausted() do

for i ∈ [1 · · ·nι] do in parallel
CheckMigrants (popi, buffer i) ; // accept migrants (if any)

// -----------Begin selecto-Lamarckian phase-----------

k ← rand(1, µi) ; // pick random location

〈g,m〉 ←Selection(popi, Si, k) ; // do tournament selection

g′ ← f(g,m) ; // local improvement

popi ← Replace(popi, Si, k, 〈g′,m〉); // replace worst parent

// -----------End selecto-Lamarckian phase-------------

if rand() < pmig then
for j ∈ Ni do

SendMigrants(popi, buffer j) ; // send migrants

end

end

end

end

some migrants are selected using a certain migrant selection policy and sent to
neighboring islands. Following the results in [19], we use random selection of
migrants and deterministic replacement of the worst individuals in the receiving95

island.
The selecto-Lamarckian model can be readily extended to a full-fledged

MMA. Following previous work –e.g., [19, 32]– we have specifically considered
an MMA inspired by the work of Smith [13, 33] wherein each individual in the
population carries a binary genotype and a single meme representing a rewrit-
ing rule A → C, where both A and C are patterns of a certain length taken
from {0, 1,#}; the symbol ‘#’ is a wildcard interpreted as “don’t care” in the
antecedent A of the rule and as “don’t change” in the consequent C. These
memes are utilized to generate neighbors of the solutions they are attached to,
by looking for instances of A and substituting them with C; for example, let a
genotype be 11101100, and let a meme be 1#1→ 0#1. A possible application
of the meme could be as follows:

11

A︷︸︸︷
101 100

meme−−−−−−−→ 11 001︸︷︷︸
C

100

Since a meme might be applied in different parts of the genotype, a parameter
w (determining the maximal number of meme applications) is used to keep the
total cost of the process under control. The best neighbor generated (if better

4

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

fa
ilu

re
 p

ro
b
a
b
ili

ty

k=20

k=10

k=5

Figure 1: (Left) Example of scale-free network generated with Barabási-Albert model (nι =
64, m = 2). (Right) Failure probabilities under a Weibull distribution with the parameters
used in Section 3.

that the current solution) is kept. Note that the length of each meme is not100

fixed rather it evolves itself, increasing or decreasing by one with probability
pr within a certain length range [lmin, lmax] – see [33]. Apart from the use of
memes embedded within individuals, this MMA otherwise resembles a steady-
state memetic algorithm in which parents are selected using binary tournament,
and recombination (one-point crossover), mutation (bit-flip) and local-search105

(conducted using the meme carried out by the individual as illustrated before)
are used to generate the offspring, which replaces the worst parent, following
the model presented in [18].

2.2. Computational Environment Model

We assume the deployment of the aforementioned island-based model on a110

simulated distributed system composed of nι nodes whose availability changes
dynamically. The interconnection network is assumed to be scale-free, a non-
regular complex topology commonly observed in many natural, social and com-
putational processes in which node degrees exhibit a power-law distribution. We
generate this kind of topology using the Barabási-Albert model [34], whereby115

a network is grown by adding a new node at a time and in which the selection
of new links is driven by preferential attachment [35] (i.e., each new node is
connected to m existing nodes, selected with a probability proportional to their
current degree). Fig. 1 (left) shows an example of this kind of network.

As to the dynamics of the system, we consider a setting analogous to [27]: the
nι nodes it comprises are assumed to be initially available but they can individ-
ually abandon the system at any point, possibly becoming available again later
on. To model the dynamics of each node we consider that failures/recoveries are
Weibull distributed [36]. This distribution is a generalization of the exponential
distribution: while the latter is memoryless (i.e., time-independent), the former
supports hazard rates increasing or decreasing over time. For this reason, it

5

Algorithm 2: Standard Balancing Procedure

procedure Standard-LB (↓ N , l A[], n[],W [])
// N: list of references to neighboring islands

// A: Boolean array to keep track of which neighbors are

// active.

// n,W:Integer arrays with the number of active neighbors

// and population sizes of each neighbor in N.

for v ∈ N do
if v.ping() then

// The neighbor is active. Balancing is attempted.

(nv,Wv, b)← Do-LB (v);
Av ← true;

else
if Av then

// The neighbor was active last time.

// Enlarging own population.

w ←GetPopSize();
SetPopSize(w +Wv/nv);
Av ← false;

end

end

end

is often utilized in survival analysis to model time-to-failure in mechanical or
biological systems [37]. Moreover, it is known that the duration of some human
tasks on the computer follows a Weibull distribution, see [38, 39]. Hence, it can
be used to model computing environments such as, for example, volunteering
computing systems in which computer nodes are contributed when idle. Math-
ematically, the distribution is controlled by a shape parameter η and a scale
parameter β. The probability of a node being available up to time t1 given that
it was available up to time t0 is

p(t0, t1, η, β) = e−[(t1/β)η−(t0/β)η].

We use η > 1 in our experimentation –see Section 3– and hence the hazard rate120

increases with time. Fig. 1 (right) shows an example of failure probability as
a function of time. For the sake of simplicity, when a node leaves the system
we do not re-wire the interconnections between islands (as done in [22]) so as
to not introduce an additional level of complexity in the algorithm, allowing a
more focused study of the balancing strategies presented in next section.125

2.3. Self-Balancing Strategies

The instability of the system makes some islands disappear when a node goes
down and likewise, new islands must be (re-)created when a node goes up again.

6

Algorithm 3: Basic Balancing Routine

function Do-LB (l v) returns (N,N,B)
// v: neighbor to do balancing with.

w ←GetPopSize();
w′ ← v.GetPopSize();
∆← w − w′;
if |∆| > δ then

SetPopSize(w −∆/2);
v.SetPopSize(w′ + ∆/2);
b← true;

else
b← false;

end
return (v.GetActiveNeighbors(), v.GetPopSize(), b)

Algorithm 4: Balancing Procedure upon Reactivation

procedure Reactivate-LB (↓ N , ↑ A[], n[],W [])
// Parameters with the same meaning as in algorithm 2.

balanced← GetPopSize() > 0;
for v ∈ N do

if v.ping() then
// The neighbor is active. Balancing is attempted.

(nv,Wv, b)← Do-LB (v);
Av ← true;
balanced← balanced ∧ b;

else
Av ← false;

end

end
if ¬balanced then

// No balancing done. Reinitializing from scratch.

SetPopSize(C1);

end

This means that in the absence of any strategy to deal with this phenomenon,
the global population size will fluctuate (possibly wildly, depending on the churn130

rate) and so will genetic/memetic diversity. To cope with this, we can introduce
a balancing strategy. Given the inherently decentralized focus of this work, we
consider local strategies, both in the decisional and the migrational sense, i.e.,
both the decision making and the information exchange are done locally between
neighboring islands, without having global information or central control [40].135

More precisely, we use a variation of a direct-neighbor policy [41] as illustrated
in Algorithms 2–4.

7

The core of this policy is captured by Algorithm 3: therein, two nodes
communicate and try to achieve a locally-balanced status between them; if the
difference between their population sizes is above a certain threshold δ, they140

resize their populations accordingly to meet at the middle point. This basic
routine is used within the standard balancing procedure performed at each node
(see Algorithm 2), whereby the neighbors are pinged to determine whether or
not they are active and if so, balancing is attempted with them. In the case a
neighbor has just gone down (i.e., it was active in the previous balancing attempt145

but it is no longer active), the island enlarges its own population by a fraction
(proportional to the number of active neighbors of the node that went down) of
the population size of the former node. The situation is slightly different when
a node goes up: it attempts to balance with neighboring islands and in case
it cannot do this (because no neighbor is active or their population differences150

are below the balancing threshold), the node resorts to self-reinitializing using
a fixed population size C1 – see Algorithm 4. Note that a reactivated node may
have been at the passive end of a balancing attempt before entering its own
balancing procedure, and hence it may have a non-zero population at the start
of this procedure. No reinitialization is required in this case. As a final caveat,155

it is possible that the network disconnects at some point and hence a node may
go down without active neighbors to absorb a part of its population size. In
this situation, the total population size can eventually decrease; in the long run
this can be alleviated by picking a large enough value of C1.

We have approached the balancing procedure described above in two ways:160

quantitative and qualitative. In the quantitative approach resizing is done
by truncation (removing the worst individuals in the population, as many as
required) for reduction and addition of random immigrants [42] (as many as
needed) for enlarging. Thus, balancing is done just on numerical terms. In the
qualitative approach, balancing involves the actual exchange of genetic/memetic165

information: a packet of individuals of the required size is randomly selected in
(and removed from) the donating island and transferred to the receiving island.
Note that island reinitialization from scratch and population enlarging when a
neighbor goes down are always quantitative procedures in either case.

3. Experimental Results170

The experimentation with the selecto-Lamarckian model has been done us-
ing the model described in Section 2 with nι = 64 islands of µ = 50 individuals
initially. Each of these individuals 〈gi,mi〉 is initialized by picking gi ∼ U(0, 1/2)
and mi ∼ U(0, 1), thus giving genotypes room for improvement with high po-
tential memes and minimizing the chances of low-quality memes thriving by175

attaching them to high-quality genotypes [18]. The meme is applied, using a
linear combination f(g,m) = γg + (1− γ)m (for m > g). We use γ = 0.9 (i.e.,
the gap between the gene and the meme is decreased by 10% in each meme
application) to have a gentle improving curve. We denote as LB and LBQ, re-
spectively, the algorithmic variants with quantitative and qualitative balancing.180

We also use a variant without balancing –noB– in which reactivated nodes are

8

2 4 6 8 10 12 14

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

fr
a

c
ti
o

n
 o

f
c
o

p
ie

s
 o

f
d

o
m

in
a

n
t

m
e

m
e

k = ∞

k = 20
k = 10
k = 5

2 4 6 8 10 12 14

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

fr
a

c
ti
o

n
 o

f
c
o

p
ie

s
 o

f
d

o
m

in
a

n
t

m
e

m
e

k = ∞

k = 20
k = 10
k = 5

2 4 6 8 10 12 14

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

fr
a

c
ti
o

n
 o

f
c
o

p
ie

s
 o

f
d

o
m

in
a

n
t

m
e

m
e

k = ∞

k = 20
k = 10
k = 5

Figure 2: Fraction of copies of dominant meme. From left to right: no balancing, quantitative
balancing, qualitative balancing. The curve for k =∞ is common to all algorithms.

reinitialized from scratch. Parameter m in the Barabási-Albert model is set to
m = 2, and we let pmig = 1/250. Regarding node deactivation/reactivation, we
use the shape parameter η = 1.5 to have an increasing hazard rate, and scale
parameters β = −1/ log(p) for p = 1 − (knι)

−1, k ∈ {5, 10, 20,∞}. Intuitively,185

these settings correspond to an average of one island going down/up every k
iterations if the hazard rate is constant (it is not since η > 1, but this gives a
mental anchor to interpret these values – numerically, the resulting scale param-
eter can be approximated as β ' knι − 1/2). This provides different scenarios
ranging from low (k = 20) to high (k = 5) churn rates (the case k = ∞ corre-190

sponds to a static network without churn). The balancing threshold is set to
δ = 1 and the parameter C1 used during eventual island reinitialization from
scratch is set to 2µ = 100 individuals to account for the fact that the aver-
age asymptotic number of active islands with the parameters used is nι/2. We
perform 25 simulations for each algorithm and churn scenario.195

Let us firstly focus on memetic takeover. Fig. 2 shows the fraction of copies
in the whole population corresponding to the most spread meme. As expected,
while the whole population eventually converges to a homogeneous state for
k =∞, values k <∞ lead to a semi-stable state in which only a fraction of the
population is taken-over by a dominant meme. We can see in Fig. 2 (left) that200

this semi-stable fraction becomes increasingly lower with the increasing churn
rate, which is explained by the continuous loss of islands in advanced state of
convergence and reintroduction of new fresh islands. A more qualitative view of
this situation is provided in Fig. 3 (top row). Therein, memes are represented
by gray shades1 (the darker the color the worse the meme), and each vertical205

slice of the figure represents the distribution of memes at a certain moment.
The white area representing high-quality memes starts to grow and stabilizes
at a certain level under the pressure of low-quality memes being reintroduced
into the population (bottom half of each plot). The situation is more marked in

1For better visualization, a color version of this figure is available online at http:

//figshare.com/s/c050e114635011e4939706ec4bbcf141.

9

http://figshare.com/s/c050e114635011e4939706ec4bbcf141
http://figshare.com/s/c050e114635011e4939706ec4bbcf141

Figure 3: Meme maps for the different strategies. (Top) No balancing (Middle) Quantitative
balancing (Bottom) Qualitative balancing. In each row, from left to right: k = 20, k = 10
and k = 5.

the case of quantitative balance, due to the additional diversity provided by the210

introduction of random migrants for population enlargement, as shown in Fig.
3 (middle row). This results in the dominant meme taking over only a small
fraction of the whole population – Fig. 2 (middle). This is completely different
to the behavior of qualitative balancing: it looks to be a more robust strategy,
providing a similar level of convergence regardless of the churn rate – see Fig. 2215

(right). Indeed, using local balancing to reconstruct islands upon reactivation
allows keeping the momentum of the search, redistributing the existing popula-
tion among the new nodes without having to resort to random reinitialization
so frequently as noB and LB; hence it can cope better with churn.

In order to confirm the behavioral patterns observed, we now turn our at-220

tention to a full-fledged MMA as described in Section 2.1. We consider nι = 32
islands whose initial size is µ = 16 individuals and use pmig = 1/80 and maxevals
= 50000. Meme evolution and application are controlled by parameters w = 1,

10

1 2 3 4 5

x 10
4

200

250

300

350

400

450

500

550

evaluations

b
e
s
t
fi
tn

e
s
s

k = ∞

k = 20
k = 10
k = 5

1 2 3 4 5

x 10
4

200

250

300

350

400

450

500

550

evaluations

b
e
s
t
fi
tn

e
s
s

k = ∞

k = 20
k = 10
k = 5

1 2 3 4 5

x 10
4

200

250

300

350

400

450

500

550

evaluations

b
e
s
t
fi
tn

e
s
s

k = ∞

k = 20
k = 10
k = 5

Figure 4: Best fitness for the HIFF function depending on parameter k. From left to right:
no balancing, quantitative balancing, qualitative balancing. The curve for k =∞ is common
to all algorithms.

Table 1: Results (25 runs) of the different MMAs on the four problems considered. The
median (x̃), mean (x̄) and standard error of the mean (σx) are indicated. The symbols •
and ◦ indicate whether numerical differences are significant or not according to a Wilcoxon
ranksum test (α = 0.05). The first symbol in the pair corresponds to the comparison with
k = ∞, and the second one to the comparison with the best algorithm (marked with ?) for
the corresponding problem and k.

TRAP HIFF
strategy k x̃ x̄± σx̄ x̃ x̄± σx̄
– ∞ 32.0 31.8 ± 0.1 576.0 570.2 ± 5.8

20 31.6 31.3 ± 0.2 •• 576.0 549.6 ± 11.3 ◦◦
no balancing 10 30.0 29.6 ± 0.4 •• 576.0 496.7 ± 19.7 •◦

5 22.4 22.4 ± 0.4 •• 308.0 332.1 ± 18.6 ••
20 30.8 30.5 ± 0.3 •• 576.0 557.1 ± 8.8 ◦?

quantitative 10 27.4 27.4 ± 0.5 •• 450.0 464.2 ± 17.9 ••
5 21.2 20.6 ± 0.4 •• 266.0 266.6 ± 7.1 ••

20 32.0 31.9 ± 0.1 ◦? 576.0 546.9 ± 12.1 ◦◦
qualitative 10 32.0 31.7 ± 0.1 ◦? 576.0 540.3 ± 12.2 •?

5 30.6 30.5 ± 0.2 •? 576.0 521.2 ± 15.7 •?
HXOR MMDP

strategy k x̃ x̄± σx̄ x̃ x̄± σx̄
– ∞ 408.0 418.9 ± 8.4 23.6 23.5 ± 0.1

20 372.0 383.4 ± 7.1 •• 23.3 22.9 ± 0.2 ••
no balancing 10 343.0 348.8 ± 6.4 •• 20.8 20.7 ± 0.2 ••

5 263.0 267.4 ± 5.3 •• 17.5 17.4 ± 0.2 ••
20 376.0 370.6 ± 5.8 •• 21.8 21.7 ± 0.2 ••

quantitative 10 317.0 319.7 ± 6.2 •• 19.8 19.9 ± 0.2 ••
5 253.0 254.1 ± 4.3 •• 16.5 16.7 ± 0.2 ••

20 400.0 407.3 ± 6.8 ◦? 23.6 23.5 ± 0.1 ◦?
qualitative 10 384.0 389.7 ± 7.1 •? 23.3 23.2 ± 0.2 ◦?

5 371.0 373.2 ± 4.6 •? 22.8 22.0 ± 0.2 •?

11

Table 2: Results of Holm Test (α = 0.05) using LBQ as the control algorithm.

i strategy z-statistic p-value α/i
1 noB 2.04124 0.02061 0.05
2 LB 4.08248 0.00002 0.025

2 4 6 8 10 12 14

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

fr
a

c
ti
o

n
 o

f
c
o

p
ie

s
 o

f
d

o
m

in
a

n
t

m
e

m
e

δ = 1
δ = 10
δ = 20
δ = 40

2 4 6 8 10 12 14

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

fr
a

c
ti
o

n
 o

f
c
o

p
ie

s
 o

f
d

o
m

in
a

n
t

m
e

m
e

δ = 1
δ = 10
δ = 20
δ = 40

2 4 6 8 10 12 14

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

fr
a

c
ti
o

n
 o

f
c
o

p
ie

s
 o

f
d

o
m

in
a

n
t

m
e

m
e

δ = 1
δ = 10
δ = 20
δ = 40

Figure 5: Fraction of copies of dominant meme in the selecto-Lamarckian model using the
LBQ strategy with different values of the balancing threshold parameter δ (from left to right:
k = 20, 10 and 5).

pr = 1/9, lmin = 3 and lmax = 9 analogously to [32]. We also use crossover prob-
ability pX = 1.0, and mutation probability pM = 1/`, where ` is the genotype225

length. We have considered four test functions, namely Deb’s trap (TRAP)
function [43] (concatenating 32 four-bit traps), Watson et al.’s Hierarchical-if-
and-only-if (HIFF) and Hierarchical-Exclusive-OR (HXOR) functions [44] (us-
ing 128 bits) and Goldberg et al.’s Massively Multimodal Deceptive Problem
(MMDP) [45] (using 24 six-bit blocks) – see Appendix A for a description of230

these functions.
Table 1 shows the results. As seen, there is a marked performance degra-

dation in both noB and LB for decreasing k (that is, increasing churn rates) –
the differences with the faultless (k = ∞) scenario are statistically significant
(α = 0.05) in all cases except for the HIFF function with k = 20. However,235

LBQ is much more robust, with a much less noticeable performance loss for
increasing volatility, in accordance with the behavior observed in the surrogate
model. Indeed, the differences between the faultless algorithm and LBQ are
not significant for k = 20 in either problem and in problems such as TRAP or
MMDP they only become statistically significant in the most volatile scenario240

(k = 5). Another perspective on this is provided in Fig. 4 (for the HIFF func-
tion). Note how the convergence of LBQ is affected by increasing volatility in
a much gentler way than noB and LB (the situation is analogous or even more
marked in favor of LBQ in the other problems). Moreover, as shown in Table 1
the superiority of LBQ over noB and LB for a given value of k is almost always245

statistically significant. From a global point of view, if we consider the results
of each strategy for each pair 〈k, problem〉 Quade test [46] indicates that at

12

Table 3: Results (25 runs) of the LBQ strategy for different values of the balancing threshold
parameter δ on the four problems considered. The median (x̃), mean (x̄) and standard error
of the mean (σx) are indicated. The symbols • and ◦ indicate whether numerical differences
are significant or not according to a Wilcoxon ranksum test (α = 0.05) with respect to the
best value of δ (marked with ?) for the corresponding problem and k. Results for δ = 1 are
taken from Table 1 and included for the convenience of the reader.

TRAP HIFF
δ k x̃ x̄± σx̄ x̃ x̄± σx̄

20 32.0 31.9 ± 0.1 ? 576.0 546.9 ± 12.1 ◦
1 10 32.0 31.7 ± 0.1 ? 576.0 540.3 ± 12.2 ◦

5 30.6 30.5 ± 0.2 ? 576.0 521.2 ± 15.7 ◦
20 32.0 31.8 ± 0.1 ◦ 576.0 562.6 ± 7.4 ?

10 10 31.2 31.2 ± 0.2 • 576.0 537.8 ± 13.1 ◦
5 29.8 29.8 ± 0.3 ◦ 576.0 529.6 ± 15.0 ?

20 32.0 31.7 ± 0.1 ◦ 576.0 562.3 ± 8.3 ◦
20 10 31.2 30.8 ± 0.2 • 576.0 535.6 ± 13.9 ◦

5 28.8 28.2 ± 0.4 • 576.0 502.5 ± 20.0 ◦
20 31.6 31.0 ± 0.2 • 576.0 543.6 ± 13.7 •

40 10 29.0 28.8 ± 0.3 • 576.0 550.2 ± 12.3 ?
5 23.6 23.6 ± 0.4 • 418.0 426.6 ± 23.5 •

HXOR MMDP
δ k x̃ x̄± σx̄ x̃ x̄± σx̄

20 400.0 407.3 ± 6.8 ◦ 23.6 23.5 ± 0.1 ?
1 10 384.0 389.7 ± 7.1 ? 23.3 23.2 ± 0.1 ?

5 371.0 373.2 ± 4.6 ? 22.8 22.0 ± 0.2 ?
20 403.0 411.4 ± 7.0 ? 23.3 23.0 ± 0.1 •

10 10 385.0 381.4 ± 4.7 ◦ 22.2 22.4 ± 0.2 •
5 356.0 358.4 ± 3.8 • 21.2 21.4 ± 0.2 •

20 400.0 406.2 ± 6.3 ◦ 23.3 22.9 ± 0.1 •
20 10 370.0 368.8 ± 4.6 • 21.8 21.8 ± 0.2 •

5 329.0 329.2 ± 4.8 • 20.0 19.9 ± 0.1 •
20 383.0 384.7 ± 5.4 • 22.2 22.3 ± 0.1 •

40 10 348.0 352.8 ± 5.4 • 20.8 20.6 ± 0.2 •
5 286.0 285.0 ± 2.6 • 17.8 17.9 ± 0.1 •

least one of the strategies performs significantly differently (p-value ' 0) so we
perform a post-hoc test [47], namely a Holm test [48] using LBQ as the con-
trol strategy. As illustrated in Table 2, both noB and LB pass the test thus250

confirming that LBQ performs significantly better than the other two strategies.
Let us take a closer look at LBQ and at the effect that the threshold pa-

rameter δ has on its behavior. To this end, we have repeated the experiments
for this strategy using values δ ∈ {10, 20, 40}. As shown in Fig. 5 for the
selecto-Lamarckian model, by increasing the threshold δ, takeover is slower and255

the dominating meme stabilizes around a lower fraction of the population. This
can be explained by the information spread pattern of LBQ. The information

13

Table 4: Results of Holm Test (α = 0.05) using δ = 1 as the control algorithm.

i value of δ z-statistic p-value α/i
1 10 0.79057 0.21460 0.05
2 20 3.00416 0.00133 0.025
3 40 4.42719 < 0.00001 0.017

diffusion process works in bursts triggered by the deactivation/reactivation of
islands: a node going down makes neighboring islands enlarge, causing a flow
of information in the opposite direction; to the contrary, a new node becoming260

available causes neighboring nodes to donate part of their populations to it, trig-
gering in turn, a flow of information in its direction. Low values of the threshold
parameter causes the effect of these bursts last longer and reversely, high values
of δ introduce a damping effect in the propagation of balancing waves.

We have also conducted an analogous experimentation with the full MMA265

on the problems in the test bed. The results are given in Table 3. As seen,
the results of LBQ markedly degrade for the largest values of the balancing
threshold, in particular for the most volatile scenarios. While it is clear that by
tuning this parameter the LBQ strategy will asymptotically reduce to noB, it is
also interesting to note that for a moderately small value of δ, namely δ = 10,270

the results are comparable to the lower limit δ = 1. In fact, performing a
multiple-comparison statistical test on the different values of δ indicates that no
statistically significant difference can be established between δ = 1 and δ = 10 –
see Table 4 (Quade test p-value ' 0). This suggests that the LBQ is somewhat
robust to small variations of this parameter and that there may be room for275

fine-tuning it in specific situations.

4. Conclusions

This paper has focused on the study of self-balancing strategies in multi-
memetic algorithms. The deployment of these techniques on volatile environ-
ments such as those arising in peer-to-peer networks and volunteer computing280

networks requires them to be able to cope with the instability of computing
nodes, being resilient to the churn phenomenon. In this sense, the use of self-
balancing techniques is appealing since they provide a means for correcting (or
at least alleviating) in a decentralized way, the perturbation exerted by the
unstable environment on the search dynamics of the algorithm. The results ob-285

tained have been promising in this sense, since they suggest that a qualitative
balancing strategy can provide resilience to the algorithm. Further research con-
ducted on the balancing threshold parameter δ indicates that the performance
of the qualitative balancing strategy degrades for large values of δ but is ro-
bust for values around the lower end of parameter values. Looking beyond, this290

opens up new avenues for developing balancing strategies, such as fine-tuning
the balancing threshold, ideally adaptively. Current work is directed towards

14

the use of dynamic topologies, re-wiring connections so as to keep all nodes
with a certain minimum number of active neighbors at all times, as well as us-
ing other network topologies. Also of interest for future developments is the use295

of detached models in which memes and genes co-evolve in separate populations
[49].

Acknowledgements

This work is partially funded by the MINECO project ANYSELF (TIN2011-
28627-C04-01) and EphemeCH (TIN2014-56494-C4-1-P), by Junta de An-300

dalućıa project DNEMESIS (P10-TIC-6083) and by Universidad de Málaga,
Campus de Excelencia Internacional Andalućıa Tech.

References

[1] F. Neri, C. Cotta, P. Moscato, Handbook of Memetic Algorithms, Vol. 379
of Studies in Computational Intelligence, Springer, Berlin Heidelberg, 2012.305

[2] P. Moscato, On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts: Towards Memetic Algorithms, Tech. Rep. Caltech Concur-
rent Computation Program, Report. 826, California Institute of Technol-
ogy, Pasadena, California, USA (1989).

[3] R. Dawkins, The Selfish Gene, Clarendon Press, Oxford, 1976.310

[4] P. Moscato, Memetic algorithms: A short introduction, in: D. Corne,
M. Dorigo, F. Glover (Eds.), New Ideas in Optimization. Mcgraw-Hill’s
Advanced Topics In Computer Science Series, McGraw-Hill, London UK,
1999, pp. 219–234.

[5] Y.-S. Ong, M.-H. Lim, X. Chen, Memetic computation-past, present and315

future, IEEE Computational Intelligence Magazine 5 (2) (2010) 24–31.

[6] X. Chen, Y.-S. Ong, M.-H. Lim, K. C. Tan, A multi-facet survey on
memetic computation, IEEE Transactions on Evolutionary Computation
15 (5) (2011) 591–607.

[7] X. Chen, Y.-S. Ong, A conceptual modeling of meme complexes in stochas-320

tic search, IEEE Transactions on Systems, Man, and Cybernetics, Part C
42 (5) (2012) 612–625.

[8] F. Neri, C. Cotta, Memetic algorithms and memetic computing optimiza-
tion: A literature review, Swarm and Evolutionary Computation 2 (2012)
1–14.325

[9] N. Krasnogor, B. Blackburne, E. Burke, J. Hirst, Multimeme algorithms for
protein structure prediction, in: J. Merelo, et al. (Eds.), Parallel Problem
Solving From Nature VII, Vol. 2439 of Lecture Notes in Computer Science,
Springer, Berlin, 2002, pp. 769–778.

15

[10] N. Krasnogor, S. Gustafson, A study on the use of “self-generation” in330

memetic algorithms, Natural Computing 3 (1) (2004) 53–76.

[11] J. E. Smith, Coevolving memetic algorithms: A review and progress report,
IEEE Transactions on Systems, Man, and Cybernetics, Part B 37 (1) (2007)
6–17.

[12] F. Neri, V. Tirronen, T. Kärkkäinen, T. Rossi, Fitness diversity based adap-335

tation in multimeme algorithms: A comparative study, in: IEEE Congress
on Evolutionary Computation – CEC 2007, IEEE Press, Singapore, 2007,
pp. 2374–2381. doi:10.1109/CEC.2007.4424768.

[13] J. E. Smith, Self-adaptative and coevolving memetic algorithms, in:
F. Neri, C. Cotta, P. Moscato (Eds.), Handbook of Memetic Algorithms,340

Vol. 379 of Studies in Computational Intelligence, Springer-Verlag, Berlin
Heidelberg, 2012, pp. 167–188. doi:10.1007/978-3-642-23247-3_11.

[14] R. Hinterding, Z. Michalewicz, A. E. Eiben, Adaptation in evolutionary
computation: A survey, in: Fourth International Conference on Evolution-
ary Computation – ICEC 97, IEEE Press, 1997, pp. 65–69.345

[15] W. Jakob, Towards an adaptive multimeme algorithm for parameter opti-
misation suiting the engineers’ needs, in: T. P. Runarsson, et al. (Eds.),
Parallel Problem Solving from Nature - PPSN IX, Vol. 4193 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, 2006, pp.
132–141. doi:10.1007/11844297_14.350

[16] A. Berns, S. Ghosh, Dissecting self-? properties, in: Third IEEE Inter-
national Conference on Self-Adaptive and Self-Organizing Systems, IEEE
Press, San Francisco CA, 2009, pp. 10–19. doi:10.1109/SASO.2009.25.

[17] Y.-S. Ong, M.-H. Lim, N. Zhu, K.-W. Wong, Classification of adaptive
memetic algorithms: a comparative study, IEEE Transactions on Systems,355

Man, and Cybernetics, Part B: Cybernetics 36 (1) (2006) 141–152. doi:

10.1109/TSMCB.2005.856143.

[18] R. Nogueras, C. Cotta, Analyzing meme propagation in multimemetic algo-
rithms: Initial investigations, in: 2013 Federated Conference on Computer
Science and Information Systems, IEEE Press, Cracow (Poland), 2013, pp.360

1013–1019.

[19] R. Nogueras, C. Cotta, An analysis of migration strategies in island-based
multimemetic algorithms, in: T. Bartz-Beielstein, J. Branke, B. Filipič,
J. Smith (Eds.), Parallel Problem Solving From Nature – PPSN XIII, Vol.
8672 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg,365

2014, pp. 731–740.

[20] D. S. Milojičić, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, Z. Xu, Peer-to-peer computing, Tech. Rep. HPL-
2002-57, Hewlett-Packard Labs (2002).

16

http://dx.doi.org/10.1109/CEC.2007.4424768
http://dx.doi.org/10.1007/978-3-642-23247-3_11
http://dx.doi.org/10.1007/11844297_14
http://dx.doi.org/10.1109/SASO.2009.25
http://dx.doi.org/10.1109/TSMCB.2005.856143
http://dx.doi.org/10.1109/TSMCB.2005.856143
http://dx.doi.org/10.1109/TSMCB.2005.856143

[21] L. F. Sarmenta, Bayanihan: Web-based volunteer computing using java, in:370

Y. Masunaga, T. Katayama, M. Tsukamoto (Eds.), Worldwide Computing
and Its Applications – WWCA’98, Vol. 1368 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 1998, pp. 444–461. doi:10.1007/

3-540-64216-1_67.

[22] J. I. Hidalgo, J. Lanchares, F. Fernández de Vega, D. Lombraña, Is the375

island model fault tolerant?, in: Proceedings of the 9th Annual Confer-
ence Companion on Genetic and Evolutionary Computation, GECCO ’07,
ACM, New York, NY, USA, 2007, pp. 2737–2744. doi:10.1145/1274000.
1274085.

[23] D. Lombraña González, J. L. Jiménez Laredo, F. Fernández de Vega, J. J.380

Merelo Guervós, Characterizing fault-tolerance of genetic algorithms in
desktop grid systems, in: P. Cowling, P. Merz (Eds.), Evolutionary Com-
putation in Combinatorial Optimization, Vol. 6022 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2010, pp. 131–142.

[24] D. Lombraña González, J. L. J. Laredo, F. F. de Vega, J. J. M.385

Guervós, Characterizing fault-tolerance in evolutionary algorithms, in:
F. Fernández de Vega, J. I. H. Pérez, J. Lanchares (Eds.), Parallel Archi-
tectures and Bioinspired Algorithms, Vol. 415 of Studies in Computational
Intelligence, Springer, 2012, pp. 77–99.

[25] Y. Sato, M. Sato, Parallelization and fault-tolerance of evolutionary compu-390

tation on many-core processors, in: IEEE Congress on Evolutionary Com-
putation, IEEE, 2013, pp. 2602–2609.

[26] J. L. Jiménez Laredo, P. Bouvry, D. Lombraña González, F. Fernández de
Vega, M. Garćıa Arenas, J. J. Merelo Guervós, C. M. Fernandes, De-
signing robust volunteer-based evolutionary algorithms, Genetic Program-395

ming and Evolvable Machines 15 (3) (2014) 221–244. doi:10.1007/

s10710-014-9213-5.

[27] R. Nogueras, C. Cotta, Studying fault-tolerance in island-based evolution-
ary and multimemetic algorithms, Journal of Grid Computing (2015) .
doi:10.1007/s10723-014-9315-6.400

[28] J. E. Smith, Meme fitness and memepool sizes in coevolutionary memetic
algorithms, in: 2010 IEEE Congress on Evolutionary Computation, IEEE
Press, Barcelona, Spain, 2010, pp. 1–8. doi:10.1109/CEC.2010.5586401.

[29] M. Tomassini, Spatially Structured Evolutionary Algorithms, Natural
Computing Series, Springer-Verlag, 2005.405

[30] E. Cantu-Paz, Efficient and Accurate Parallel Genetic Algorithms, Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

17

http://dx.doi.org/10.1007/3-540-64216-1_67
http://dx.doi.org/10.1007/3-540-64216-1_67
http://dx.doi.org/10.1007/3-540-64216-1_67
http://dx.doi.org/10.1145/1274000.1274085
http://dx.doi.org/10.1145/1274000.1274085
http://dx.doi.org/10.1145/1274000.1274085
http://dx.doi.org/10.1007/s10710-014-9213-5
http://dx.doi.org/10.1007/s10710-014-9213-5
http://dx.doi.org/10.1007/s10710-014-9213-5
http://dx.doi.org/10.1007/s10723-014-9315-6
http://dx.doi.org/10.1109/CEC.2010.5586401

[31] R. Schaefer, A. Byrski, M. Smo lka, The island model as a Markov dynamic
system, International Journal of Applied Mathematics and Computer Sci-
ence 22 (4) (2012) 971–984.410

[32] R. Nogueras, C. Cotta, On meme self-adaptation in spatially-structured
multimemetic algorithms, in: I. Dimov, S. Fidanova, I. Lirkov (Eds.), Nu-
merical Methods and Applications, Vol. 8962 of Lecture Notes in Computer
Science, Springer, Berlin-Heidelberg, 2015, pp. 70–77.

[33] J. E. Smith, Self-adaptation in evolutionary algorithms for combinato-415

rial optimisation, in: C. Cotta, M. Sevaux, K. Sörensen (Eds.), Adap-
tive and Multilevel Metaheuristics, Vol. 136 of Studies in Computational
Intelligence, Springer Berlin Heidelberg, 2008, pp. 31–57. doi:10.1007/

978-3-540-79438-7_2.

[34] R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Re-420

view of Modern Physics 74 (1) (2002) 47–97. doi:10.1103/RevModPhys.

74.47.

[35] A.-L. Barabási, R. Albert, Emergence of Scaling in Random Networks,
Science 286 (5439) (1999) 509–512.

[36] W. Weibull, A statistical distribution function of wide applicability, Journal425

of Applied Mechanics 18 (3) (1951) 293–297.

[37] E. T. Lee, J. W. Wang, Statistical Methods for Survival Data Analysis,
John Wiley & Sons, Inc., Hoboken, NJ, 2003.

[38] C. Liu, R. W. White, S. Dumais, Understanding web browsing behaviors
through weibull analysis of dwell time, in: Proceedings of the 33rd Interna-430

tional ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’10, ACM, New York, NY, USA, 2010, pp. 379–386.
doi:10.1145/1835449.1835513.

[39] D. Stutzbach, R. Rejaie, Understanding churn in peer-to-peer networks, in:
Proceedings of the 6th ACM SIGCOMM Conference on Internet Measure-435

ment, IMC ’06, ACM, New York, NY, USA, 2006, pp. 189–202.

[40] R. Lüling, B. Monien, F. Ramme, Load balancing in large networks: a com-
parative study, in: Third IEEE Symposium on Parallel and Distributed
Processing, 1991, IEEE, 1991, pp. 686–689. doi:10.1109/SPDP.1991.

218196.440

[41] F. Zambonelli, Exploiting biased load information in direct-neighbour load
balancing policies, Parallel Computing 25 (6) (1999) 745 – 766. doi:http:
//dx.doi.org/10.1016/S0167-8191(99)00030-7.

[42] J. Grefenstette, Genetic algorithms for changing environments, in:
R. Männer, B. Manderick (Eds.), Parallel Problem Solving from Nature445

II, Elsevier, Brussels, Belgium, 1992, pp. 137–144.

18

http://dx.doi.org/10.1007/978-3-540-79438-7_2
http://dx.doi.org/10.1007/978-3-540-79438-7_2
http://dx.doi.org/10.1007/978-3-540-79438-7_2
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1145/1835449.1835513
http://dx.doi.org/10.1109/SPDP.1991.218196
http://dx.doi.org/10.1109/SPDP.1991.218196
http://dx.doi.org/10.1109/SPDP.1991.218196
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-8191(99)00030-7
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-8191(99)00030-7
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-8191(99)00030-7

[43] K. Deb, D. E. Goldberg, Analyzing deception in trap functions., in: L. D.
Whitley (Ed.), Second Workshop on Foundations of Genetic Algorithms,
Morgan Kaufmann, Vail, Colorado, USA, 1993, pp. 93–108.

[44] R. A. Watson, G. S. Hornby, J. B. Pollack, Modeling building-block inter-450

dependency, in: A. Eiben, T. Bck, M. Schoenauer, H.-P. Schwefel (Eds.),
Parallel Problem Solving from Nature – PPSN V, Vol. 1498 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, 1998, pp.
97–106. doi:10.1007/BFb0056853.

[45] D. E. Goldberg, K. Deb, J. Horn, Massive multimodality, deception, and455

genetic algorithms, in: Parallel Problem Solving from Nature – PPSN II,
Elsevier, Brussels, Belgium, 1992, pp. 37–48.

[46] D. Quade, Using weighted rankings in the analysis of complete blocks with
additive block effects, Journal of the American Statistical Association 74
(1979) 680–683.460

[47] J. Derrac, S. Garćıa, D. Molina, F. Herrera, A practical tutorial on the use
of nonparametric statistical tests as a methodology for comparing evolu-
tionary and swarm intelligence algorithms, Swarm and Evolutionary Com-
putation 1 (1) (2011) 3–18.

[48] S. Holm, A simple sequentially rejective multiple test procedure, Scandi-465

navian Journal of Statistics 6 (1979) 65–70.

[49] J. E. Smith, Coevolving memetic algorithms: A review and progress report,
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
37 (1) (2007) 6–17. doi:10.1109/TSMCB.2006.883273.

Appendix A. Description of the Test Suite470

Deb’s 4-bit fully deceptive function (TRAP) has a single global optimum
surrounded by low-fitness solutions and a local optimum surrounded by increas-
ingly good solutions. Hence, gradient-based methods are deceived to follow the
path towards this local optimum. In mathematical terms, TRAP is defined as:

f(b1 · · · b4) =

{
0.6− 0.2 · u(b1 · · · b4) if u(b1 · · · b4) < 4

1 if u(b1 · · · b4) = 4
(A.1)

where u(s1 · · · si) =
∑
j sj is the unitation (number of 1s) of the binary string.

A higher-order problem is built by concatenating k 4-bits blocks, and defin-
ing the fitness of this 4k-bit string as the sum of the function value for all
blocks/subproblems. In our experiments we have considered k = 32 subprob-
lems (and hence opt = 32).475

As to the hierarchically consistent test problems, these are recursive epistatic
functions defined for 2k-bit strings. They use two auxiliary functions, namely
f : {0, 1,×} → {0, 1} and t : {0, 1,×} → {0, 1, •}, the first one being used to

19

http://dx.doi.org/10.1007/BFb0056853
http://dx.doi.org/10.1109/TSMCB.2006.883273

score the contribution of building blocks, and the second one to capture their
interaction. In the case of the Hierarchical if-and-only-if (HIFF) function f and
t are defined as:

f(a, b) =

{
1 a = b 6= •
0 otherwise

(A.2)

t(a, b) =

{
a a = b

• otherwise
(A.3)

These two functions are used as follows:

HIFFk(b1 · · · bn) =

n/2∑
i=1

f(b2i−1, b2i) + 2 ·HIFFk−1(b′1, · · · , b′n/2) (A.4)

where b′i = t(b2i−1, b2i) and HIFF0(·) = 1. The Hierarchical-XOR (HXOR)
works similarly but changing f so as to provide a fitness contribution of 1 when
a = 1 and b = 0 or vice versa, and having in that case t(a, b) = a (and t(a, b) = •
otherwise). We have considered k = 7 (i.e., 128-bit strings, opt = 576).

Finally, the Massively Multimodal Deceptive Problem (MMDP) is a bipolar
deceptive function with two global optima located at extreme unitation values
(and hence far apart from each other), and with a local deceptive attractor
halfway between them. This location of the deceptive attractor results in mas-
sively more local optima than global optima (i.e.,

(
L
L/2

)
local vs 2 global, where

L is the number of bits in each block). The basic MMDP is defined for 6-bit
blocks as follows:

f(b1 · · · b6) =


1 u(b1 · · · b6) ∈ {0, 6}
0 u(b1 · · · b6) ∈ {1, 5}
0.360384 u(b1 · · · b6) ∈ {2, 4}
0.640576 u(b1 · · · b6) = 3

(A.5)

We concatenate k copies of this basic block to create a harder problem. We480

have considered k = 24 (thus, opt = 24).

20

	Introduction
	Material and Methods
	Algorithmic Setting
	Computational Environment Model
	Self-Balancing Strategies

	Experimental Results
	Conclusions
	Description of the Test Suite

