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Abstract. We consider the deployment of island-based evolutionary al-
gorithms (EAs) on unstable networks whose nodes exhibit correlated
failures. We use the sandpile model in order to induce such complex,
correlated failures in the system. A performance analysis is conducted,
comparing the results obtained in both correlated and non-correlated
scenarios for increasingly large volatility rates. It is observed that simple
island-based EAs have a significant performance degradation in the cor-
related scenario with respect to its uncorrelated counterpart. However,
the use of self-x properties (self-scaling and self-sampling in this case)
allows the EA to increase its resilience in this harder scenario, leading to
a much more gentle degradation profile.
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1 Introduction

The use of parallel environments is of paramount interest for tackling intensive
computational tasks. In particular, evolutionary algorithms (EAs) have a long
success story in this kind of environments, dating back to the 1980s. In this
sense, there has been during the last years an important focus on the use of
EAs in emergent computational scenarios that depart from classical dedicated
networks so common in the past. Among these we can cite cloud computing
[13], P2P networks [21], or volunteer computing [5], just to name a few. The
dynamic nature of the underlying computational substrate is one of the most
distinguished features of some of these new scenarios —consider for example a
P2P network in which nodes enter or leave the system subject to some uncon-
trollable dynamics caused by user interventions, network disruptions, eventual
crashes, etc. The term churn is used to denote this phenomenon [17]. Under
some circumstances, a potential solution to this issue might be to hide these
computational fluctuations under an intermediate layer, providing a virtual sta-
ble environment to algorithms running on it. Nonetheless, this can constitute a
formidable challenge, mainly in situations in which the underlying substrate is



composed of nodes with low computing power just providing brief, ephemeral
bursts of computation (think of, e.g., a large collection of low-end networked
devices —cell phones, smart wearables, etc.— contributing their idle time) [6].
The alternative is making the algorithm aware of the dynamic nature of the
environment, endowing it with the means for reacting and self-adapting to the
volatility of the computational substrate. EAs are in this regard well-suited to
this endeavor, since they are resilient techniques that have been shown to be
able to withstand —at least to some extent— the sudden loss of part of the pop-
ulation [11], and can be readily endowed with self-x properties [2] so as to exert
self-control on their functioning.

Recent work has precisely studied the use of self-x properties such as self-
scaling [15] and self-healing [14] in this context, providing some evidence on the
contribution of these techniques to the robustness of the algorithm when run on
unstable computational environments. Quite interestingly, these previous studies
have however only considered simple network models in which the dynamics of
each node is independent of the rest of the network, that is, the availability of
a computing node does not depend on the availability of other nodes. A more
general situation would encompass correlated availability patterns, that is, the
dynamics of each node might be affected by the dynamics of other nodes, see

, [10]. Overall, the presence of correlated failures puts to test the robustness
and resilience of the EA, and hence studying it can provide a wider perspective
on the usefulness of self-x techniques to cope with computational instability.

2 Methodology

We consider an island-based EA running on a simulated unstable environment.
Each island runs on a computational node of the system, whose availability
fluctuates along time. When a computational node goes down, its contents are
lost. Similarly, when a computational node is reactivated, the island running
on it must be created anew using some particular procedure. In the following
subsections we shall describe in more detail the model of the computational
scenario and the mechanisms used by the EA to cope with instability.

2.1 Network Model

Let us consider a network composed on n, nodes interconnected following a
certain topology. More precisely, we consider a regular lattice with von Neumann
connectivity (virtual topology used for the purposes of migration in the island
model) overlaid on a scale-free network (underlying topology for the purposes of
failure correlation) as it is often the case in P2P networks, e.g., [12]. In the latter,
node degrees are distributed following a power-law and hence there will be a few
hubs with large connectivity and increasingly more nodes with a smaller number
of neighbors. To generate this kind of networks we use the Barabasi-Albert model
[1], whereby the network is grown from a clique of m + 1 nodes by adding a
node at a time, connecting it to m of the nodes previously added (selected with



probability proportional to their degree — the so-called, preferential attatchment
mechanism) where m is a parameter of the model.

As stated before, these nodes are volatile, and may abandon the system and
re-enter it at a later time, eventually repeating the process over and over again.
To model this instability we consider two scenarios: (i) independent or non-
correlated failures and (ii) correlated failures. The first one is the simplest model.
Therein, the dynamics of each node is independent of other nodes. Each of them
can switch from active to inactive or vice versa independently of other nodes with
some probability p(t) that only depends on the time it has been in its current
state. Following previous work, as well as the commonly observed behavior of
e.g., P2P systems [17], p(t) follows a Weibull distribution. This distribution is
controlled by two parameters § and 7. The first one is the scale parameter
and captures the spread of the distribution. The larger this parameter, the less
frequent failure events are. The second one is the shape parameter and captures
the effect that time has on failure events: for n > 1 (resp. n < 1), the longer the
time elapsed, the more (resp. less) likely a failure event will be. If  was exactly
1, failures would be time-independent and hence exponentially distributed.

As to the correlated scenario, it features node failures that will be influenced
by neighboring nodes. Consider for example the case of sensor networks in which
nodes with a large number of active neighbors have their energy depleted faster
due to the increased energy toll for communications, or the case of networks
that carry load and in which the failure of a node makes other ones absorb the
load of the latter, eventually resulting in additional overload failures [10]. This
can be modeled in different ways, e.g., [4,20]. In this work we have considered
the sandpile model in order to induce cascading failures [8]. Much like in the
previous case, we consider micro-failure events happening on each node with a
certain probability p(t). Now, each node ¢ will have an associated threshold value
0;, indicating the number of micro-failure events required for it to go down. When
the number of such micro-failures effectively equals this threshold, the node is
disconnected from the system, and each of the active neighbors of this node
receives an additional micro-failure event'. In case any of these neighbors now
accumulated a number of micro-failures equal to its own threshold, it would go
down as well, propagating in turn another micro-failure to its active neighbors,
and so on (hence the possibility of cascading failures). Fig. 1 shows an example:
after node b (which was in a critical state, i.e., one event short of going down)
fails, neighboring nodes a and e (which were also in such a critical state) fail as
well. We have considered for simplicity that the threshold 6; of each node i is
constant and equal to the number of neighbors (active or inactive) of the node.
As to reactivation, just like in the non-correlated case a single event is required.

2.2 Algorithmic Model

Two variants of the island-based EA are considered: (i) a basic one (termed
noB) in which every island has a fixed size and random reinitialization is used

1 Tt must be noted that these so-called micro-failures are not intended to represent any
real phenomenon, but are just used as a means to introduce failure interdependencies.
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Fig. 1: Example of failure propagation in the sandpile model. Active (resp. inac-
tive) nodes are depicted with solid (resp. dashed) borders. The numbers next to
each active node indicate the cumulated number of failure events. The threshold
6; for each node equals here its degree. (a) Initial state (b) Failure on node b (c)
Failure propagation to nodes a and e (d) Final state.
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whenever a new node enters the system, and (ii) a self-x EA (termed LBQ) that
uses self-scaling and self-sampling to re-size each island individually in response
to fluctuations in the number of active neighbors and in the population sizes of
these. In both cases, the islands run a basic steady-state EA and stochastically
perform migration (with probability p.,is) of a single individual to neighboring
islands. In each migration event the migrant is randomly selected from the cur-



rent population and the receiving island inserts it in its population by replacing
the worst individual.

Regarding the self-x properties considered, self-scaling attempts to attain a
rather stable global population size across the islands active in each moment.
To this end, each island periodically monitors the state of its neighbors to de-
termine: whether they are active or not, their population sizes and the number
of active neighbors they have in turn. When a neighboring island is detected
to have just gone down, the island increases its own population size in order to
compensate the loss of the former. This is done by calculating the fraction of the
population size of the deactivated island corresponding to the number of active
neighbors it had. On the other hand, if all neighboring islands are active then
they exchange individuals in order to balance their population sizes. See [15]
for details. Note that this is a completely autonomous and decentralized policy
and therefore each node cannot comprehend the global state of the network, for
instance, a node does not account for the simultaneous failure of nodes that are
themselves neighbors, hence the interest of studying the robustness of the EA in
the correlated scenario.

As to self-sampling, it amounts to maintaining within each island a prob-
abilistic model of its current population in order to sample it whenever the
population needs to grow. This has the advantage of introducing diversity due
to the stochastic sampling, keeping as well the momentum of the search since the
newly created individuals are coherent with the current state of the population
(unlike the case of using random individuals to this end). In this work we have
considered the use of a tree-like bivariate probabilistic model such as that used
in the COMIT estimation of distribution algorithm [3] — see also [14] for details.

3 Experimental Results

We consider n, = 64 islands whose initial size is p = 32 individuals and a to-
tal number of evaluations mazevals = 250 000. Each island runs a steady-state
EA with one-point crossover, bit-flip mutation, binary tournament selection and
replacement of the worst parent. We use crossover probability px = 1.0, mu-
tation probability py; = 1/¢, where ¢ is the genotype length, and migration
probability pn;; = 1/160. Regarding the network parameters, we use m = 2
in the Barabdsi-Albert model in order to define the topology; as for node de-
activation/reactivation, we use the shape parameter n = 1.5 (larger than 1
and hence implying an increasing hazard rate with time), and scale parame-
ters 3 = —1/log(p) for p=1— (kn,) %, k € {1,2,5,10,20}. To interpret these
parameters, note that they would correspond to an average of one micro-failure
event every k cycles if the failure rate was constant. This provides different sce-
narios ranging from low volatility (k = 20) to very high volatility (k = 1). To
gauge the results, we also perform experiments with k = oo (situation corre-
sponding to a stable network without failures). Also, in order to have a more
meaningful comparison between both scenarios (accommodating the fact that
several micro-failure events are required in order to take down a node in the
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Fig. 2: Average deviation from the optimal solution across all problems for each
algorithmic variant and network failure model. (a) noB (b) LBQ

correlated case but only one is needed in the non-correlated case), in the non-
correlated scenario we adjust k values as k' = k6, where 6 is the average of all
6; values in the correlated scenario (which in this case is also the average degree
of the network). Note at any rate that the main focus of the experimentation is
the relative behavior of the algorithms considered in either scenario rather than
a comparative between scenarios in absolute terms.

As stated in Sect. 2.2, we consider two algorithmic variants: noB (a standard
island-based EA with fixed island sizes and random reinitialization of islands
upon reactivation) and LBQ (the island-based EA endowed with self-sampling
and self-scaling). The experimental benchmark comprises three test functions,
namely Deb’s trap function [7] (TRAP, concatenating 32 four-bit traps), Wat-
son et al.’s Hierarchical-if-and-only-if function [19] (HIFF, using 128 bits) and
Goldberg et al.’s Massively Multimodal Deceptive Problem [9] (MMDP, using 24
six-bit blocks). We perform 25 simulations for each algorithm, problem, volatility
scenario and failure model.

Fig. 2 shows a summary of the results (detailed numerical data for each
problem, algorithm, and network model are provided in Tables 1-2). Let us
firstly focus on noB (Fig. 2a). As expected, the performance of the algorithm
degrades as node volatility increases (that is, as we move to the right along the
X axis). It is nevertheless interesting to note how the degradation profile of noB
is more marked in the correlated scenario. More frequent and simultaneous node
failures have a clear toll on performance. If we now consider the case of LBQ, two
major observations stand out: on one hand, the performance of LBQ is notably
better than that of noB for the same volatility rate. This had been already



Table 1: Results (averaged for 25 runs) of the different EAs on the three problems
considered under the network model with non-correlated failures. The median
(Z), mean (Z) and standard error of the mean (o) are indicated.

TRAP H-IFF MMDP
strategy k T Tt oz T T+t oz T T+t oz
- oo 0.00 0.00 + 0.00 0.00 5.33 4+ 1.49 1.50 1.50 &+ 0.17
noB 20 0.00 0.10 = 0.07 0.00 3.78 & 1.27 1.50 1.84 £ 0.20
10 0.00 0.25 4+ 0.10 11.11 9.44 £ 1.42 3.00 2.73 &+ 0.26
5 1.25 1.20 + 0.23 16.67 14.47 £ 1.53 4.49 4.74 £ 0.31

2 10.00 9.20 £ 0.61
1 30.00 29.88 + 0.80

32.64 31.97 £ 0.96
53.65 53.35 £ 0.58

13.1513.21 £ 0.34
28.96 28.25 £+ 0.57

LBQ 20 0.00 0.05 £ 0.05 0.00 6.22 £+ 1.37 0.00 0.30 £ 0.12
10 0.00 0.00 £ 0.00 11.11 9.11 £ 1.66 0.00 0.06 + 0.06
5 0.00 0.10 £ 0.07 16.67 13.00 & 1.66 0.00 0.30 & 0.12
2 0.00 0.35 £0.11 19.44 18.22 + 1.39 0.00 0.48 + 0.14
1 0.00 0.90 £ 0.22 22.22 22.28 £ 0.87 0.00 0.96 + 0.23

Table 2: Results (averaged for 25 runs) of the different EAs on the three problems
considered under the network model with correlated failures. The median (%),
mean (Z) and standard error of the mean (oz) are indicated.

TRAP H-IFF MMDP
strategy k T Tt oz T Tt oz T Tt oz
- oo 0.00 0.00 + 0.00 0.00 5.33 4+ 1.49 1.50 1.50 & 0.17
noB 20 1.25 1.47 +0.21 16.67 13.18 & 1.68 4.49 4.93 £+ 0.41
10 6.87 7.15 4+ 0.41 25.87 26.97 £ 1.05 11.98 12.19 £ 0.43
5 26.2526.15 & 0.85  47.40 47.67 & 0.63  25.97 25.35 & 0.48
2 46.88 46.33 + 0.58  61.46 61.19 4+ 0.29  35.46 35.87 4 0.40
1 51.2551.27 £ 0.50 63.72 63.80 £ 0.21 39.95 40.08 £+ 0.36
LBQ 20 0.00 0.05 + 0.05 11.11 7.22 4+ 1.49 0.00 0.06 4 0.06
10 0.00 0.10 £+ 0.07 16.67 14.06 + 1.57 0.00 0.60 £+ 0.23
5 0.00 0.70 + 0.18 19.44 20.61 + 1.19 0.00 0.78 £ 0.21
2 250 2.10 + 0.21 27.78 27.08 + 0.83 4.49 3.95 + 0.37
1 5.00 5.68 4+ 0.41 31.94 30.53 + 1.04 7.49 6.83 £ 0.42

observed in the non-correlated case (albeit for multimemetic algorithms — this
behavior is hence extended for plain EAs as well) and is now confirmed in the
correlated scenario, indicating than the self-x properties seem to keep providing
robustness to the algorithm in this case too. As a matter of fact —and this leads
to the second observation— the degradation of performance in the correlated case
is much less marked for LBQ than it was for noB. More precisely, if we conduct
a ranksum test on the results obtained by each algorithm on each problem and
network scenario we observe that the performance of noB significantly (at level
a = 0.01) degrades in the correlated scenario with respect to the non-correlated
one for all churn rates, whereas LBQ is only significantly degraded for moderate
and high churn rates (k < 5 for TRAP and HIFF and &k < 2 for MMDP). This
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Fig.3: Genetic diversity for the TRAP function. The top row corresponds to
noB and the bottom row to LBQ; the left column corresponds to non-correlated
failures, and the right row to correlated failures.

is not to say that LBQ is not adversely affected by the new scenario (in the non-
correlated case the performance of LBQ was only significantly degraded with
respect to the stable k = oo case for k < 5 in HIFF and k£ < 2 in TRAP, whereas
in the correlated scenario there are statistically significant differences for k& < 2
in MMDP, & < 5in TRAP and k < 10 in HIFF) but this degradation is mostly in
the most volatile cases (unlike noB, whose performance is degraded with respect
to k = oo in the correlated case for all churn rates in all three problems) and
not so large in magnitude as for noB. A result consistent with this can also
be seen in Fig. 3, in which the genetic diversity of the population (measured
using Shannon’s entropy) is depicted for each algorithm and scenario (the data
corresponds to the TRAP function, but the behavior is qualitatively similar in



the remaining problems). Notice how noB faces increasingly large difficulties to
converge as the volatility goes up, and how these difficulties are noticeable even
for low-volatility settings in the correlated scenario. LBQ can however maintain
a better focus on the search, and seems mostly affected in the most volatile
settings of the correlated scenario.

4 Conclusions

The presence of correlated failures constitutes a major threat to the robustness
of computing networks. We have analyzed in this work how this phenomenon
may affect the performance of an island-based EA, and observed a marked degra-
dation of the results in absence of appropriate policies to deal with this harder
scenario. Endowing the EA with self-x properties can however increase its re-
silience and make it able to withstand from low up to moderately high volatility.

There are several avenues for further work. First of all, other topologies could
be tried. Work is under way here. Also, different models of correlated failures
could be tried, using either dynamic thresholds (work is in progress in this area
[16]) or other alternative models [4,20]. In the longer term, a related problem
is the optimization of the network itself to cope with this kind of failures. Some
recent work has tackled this issue [18], paving the way for other developments
in this direction.
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