International Journal of High Perfor-
mance Computing Applications
XX(X):1=11

@©The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

®SAGE

Analyzing Self-+ Island-based Memetic
Algorithms in Heterogeneous Unstable
Environments

Rafael Nogueras' and Carlos Cotta’

Abstract

Computational environments emerging from the pervasiveness of networked devices offer a plethora of opportunities
and challenges. The latter arise from their dynamic, inherently volatile nature that puts to the test the resilience of
algorithms running on them. We here consider the deployment of population-based optimization algorithms on such
environments, using the island model of memetic algorithms (MAs) for this purpose. These MAs are endowed with self-
* properties that provide them the ability to work autonomously in order to optimize their performance and to react to
the instability of computational resources. The main focus of this work is analyzing the performance of these MAs when
the underlying computational substrate is not only volatile but also heterogeneous in terms of the computational power
of each of its constituent nodes. To this end, we use a simulated environment that allows experimenting with different
volatility rates and heterogeneity scenarios (that is, different distributions of computational power among computing
nodes), and we study different strategies for distributing the search among nodes. We observe that the addition
of self-scaling and self-healing properties makes the MA very robust to both system instability and computational
heterogeneity. Additionally, a strategy based on distributing single islands on each computational node is shown to
perform globally better than placing many such islands on each of them (either proportionally to their computing power

or subject to an intermediate compromise).

Keywords

Memetic Algorithm, Island Model, Self-x Properties, Heterogeneous Environment, Unstable Environments

Introduction

The use of parallel computing has become the weapon-
of-choice for the practical resolution of complex,
computationally-intensive tasks. Traditionally, it has been
common to approach this resolution by exploiting dedicated
computational resources, whether it be a supercomputer
or a local network of computational resources. These have
the advantage of providing a rather stable and controlled
environment for the deployment of parallel algorithms.
Recent years have witnessed the emergence of other kind
of environments of a much more dynamic and unsteady
nature though. Consider for example the case of peer-to-
computing (VC) networks (Sarmenta 1998). These are
two particularly important scenarios if we consider how
prevalent computational devices which are permanently
networked (e.g., smartphones, wearables, and any other
kind of handheld devices) are nowadays, and the extent
to which their computing power (individually limited but
collectively formidable) is often under-exploited (Cotta et al.
2015). A common feature of this kind of environments is
their volatile structure: they are composed of unstable nodes
whose availability fluctuates in response to uncontrollable
external factors. Thus, computing nodes can dynamically
enter and abandon the system giving rise to an ever-changing
computational landscape. The term churn has been precisely
coined to denote the collective effect that this constant
inflow/outflow of computational units has on the system at
large.

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

Taking advantage of these environments can constitute a
practical solution for solving many complex computational
tasks, e.g., (Korpela et al. 2001; Larson et al. 2002). We
are here specifically concerned about the deployment of
evolutionary algorithms (EAs) (Eiben and Smith 2003) on
such environments. EAs —and population-based optimization
algorithms in general- are very well suited to parallel
environments thanks to their flexibility and decentralized
nature, a fact that has been put into work since the
early times of the paradigm (Grefenstette 1981; Grosso
1985; Gorges-Schleuter 1989). Indeed the performance of
population-based algorithms does improve when run in
parallel (Alba and Tomassini 2002; Sudholt 2014). Having
them work effectively on computational environments with
the features mentioned above is not exempt of difficulties
though, and puts to the test one of the salient features
of these techniques, namely resilience. In the case of
EAs this resilience is an inherent characteristic resulting
from the use of a population of solutions (Laredo et al.
2008; Lewis et al. 2009). As a matter of fact, it has

"Dept. Lenguajes y Ciencias de la Computacién, Universidad de Malaga,
ETSI Informatica, Spain

Corresponding author:

Dept. Lenguajes y Ciencias de la Computacién, Universidad de Malaga,
ETSI Informéatica, Campus de Teatinos, 29071 Malaga, Spain

Tel.: +34 952 137158

Fax: +34 952 131397

Email: ccottap@Icc.uma.es

2 International Journal of High Performance Computing Applications XX(X)

been shown that they are resilient enough to withstand a
reduction in computing resources of up to one order of
magnitude (Laredo et al. 2014) in the context of master-
slave models — see also (Lombrafia Gonzalez et al. 2010,
2012). The island-model of EAs (Tanese 1989) introduces
a more coarse level of computational granularity whereby
the continuous execution of evolutionary cycles on separate
subpopulations is distributed (as opposed to the evaluation
of single individuals as in typical master-slave models).
Not surprisingly, this makes the algorithm more sensitive
to environmental instability since the failure of whole
subpopulations has a larger effect on the progress of the
search and can lead to the loss of the current incumbent
solution (Hidalgo et al. 2007). Tackling this issue put the
focus on another of the distinctive features of EAs, namely
their capacity for adaptiveness and self-control (Hinterding
et al. 1997; Eiben 2005). This feature can be exploited in
order to make the optimization algorithm cognizant of the
volatile environment, having it adapting its functioning in
response to computational fluctuations.

Much work has been done in the area of self-adaptation in
evolutionary algorithms, e.g., (Caraffini et al. 2014; Eiben
et al. 2006; Smith 2007, 2008, 2012; Zhang et al. 2014)
in general, and in connection with unstable environments
in particular. Such strategies are often captured under the
umbrella term of self-x properties (Babaoglu et al. 2005).
In this work we build upon previous research on unstable
environments (Nogueras and Cotta 2015a,b, 2016a,c) in
order to tackle a new angle on them, namely their potential
heterogeneity (Lastovetsky 2003; Anderson and Reed 2009)
in terms of the computational power of individual nodes
(which in a setting such as the one described before
could range from tiny devices to desktop computers for
example) and ascertain to which extent this can exert an
influence in the performance of the algorithm. It must
be note that heterogeneity is not an exclusive feature of
the kind of volatile environments considered here. In fact,
it emerged as an increasingly important issue of high-
performance computing platforms in the 1990s in the
context of heterogeneous networks of workstations (Boulet
et al. 1999). In many computationally-intensive parallel
applications, heterogeneity is dealt with by adequately
balancing the load of the heterogeneous processors (Beltran
and Guzman 2009) and minimizing the cost of moving
data between the processors (Lastovetsky 2014). Several
strategies can be defined for this purpose but these are mostly
oriented to data parallel applications related to Big Data
analytics. As such, they often rely on finding an appropriate
distribution of data among processors —e.g., (Renard et al.
2006; Lastovetsky and Reddy 2007)— in order to minimize
the overall time to process these data. The case of of EAs
(and metaheuristic optimization techniques in general) is
somewhat different though. They are anytime algorithms and
—in the case of the island-model- the computation performed
is influenced by the communication between processes.
Thus, there is not a certain fixed computation to be performed
in minimal time, but a variable computation whose outcome
can have different quality (depending on the solutions found)
that has to be maximized. To study this particular setting
and determine the impact of environmental heterogeneity
on population-based optimization algorithms, we analyze

Prepared using sagej.cls

the performance of memetic algorithms (MAs) (Neri et al.
2012) when deployed on a simulated unstable computational
environment. The MAs are endowed with different self-
* properties stacked together in order to withstand this
instability, and their performance is examined in different
scenarios both in terms of the volatility of computing nodes,
the distribution of computing power among these, and the
strategy for allocating computation to them.

Materials and Methods

As stated in the previous section, we aim to analyze the
performance of an island-based MA in an heterogeneous
unstable environment. This island-based MA is composed of
n, islands. Each of these islands is a process that runs a MA
on an independent unstructured subpopulation. This involves
the standard evolutionary cycle of selection, variation and
replacement, augmented in this case with memetic local
improvement. In addition to this, islands are interconnected
among them according to a certain topology N as described
later on. This topology is important for the purposes of
intercommunication via the migration operation. This is
performed in an asynchronous way by each island, i.e., at
the beginning of each cycle the island checks if migrants
received from any neighbors are stored in the input buffer.
If so, these are inserted in the local subpopulation following
a certain migrant replacement policy. Later, at the end of
each cycle, each island decides stochastically whether to
send individuals to neighboring islands. If done, migrants are
selected using a given migrant selection policy. Following
previous analysis of migration strategies in island-based
MAs (Nogueras and Cotta 2014), we use random selection
of migrants and deterministic replacement of the worst
individuals in the receiving island.

This basic algorithm is endowed with several self-x prop-
erties as described in next section. The resulting algorithm
is subsequently deployed on a simulated distributed system
featuring heterogeneity and instability, as described later on.

Self-« Properties

Self-x properties (Babaoglu et al. 2005) are those that enable
a computational system to exert advanced control on its
own functioning and/or structure. The rationale of self-x
properties can be traced back to the notion of autonomic
computing (Horn 2001), whereby the metaphor of the
autonomic nervous system is exploited in order to capture
essential system functions that are carried out without
conscious control. Thus, it is sought to endow complex
computational systems with the capacity of self-management
(Sterritt and Bustard 2003; Huebscher and McCann 2008),
hence relieving the human user/designer as much as possible
from maintenance, repairing or optimization tasks. This has
been a long-standing goal in the area of computational
systems in general, and in metaheuristics in particular,
in light of the growing complexity and sophistication of
their design (Cotta et al. 2008). As a matter of fact, it is
not uncommon to see metaheuristic techniques endowed
with self-adaptive strategies for parameter control, e.g.,
(Schwefel 1992; Beyer 1995; Angeline 1995; Hinterding
et al. 1997; Eiben et al. 2006). Self-x properties can
nevertheless encompass other advanced capabilities beyond

Nogueras and Cotta

self-parameterization such as, e.g., self-maintaining in
proper state, self-healing externally infringed damage, or
self-optimizing its behavior, just to cite a few. In the
following we will describe the particular self-x properties
with which the MA considered is endowed.

Self-Optimization. According to Berns and Ghosh (2009), a
system is self-optimized if starting from an arbitrary initial
configuration it is capable of improving a certain objetive
function of its global state. This objective function often
refers to some desired functionality or goal of the system
considered, whose attainment or efficacy is sought to be
improved. In the case of the MAs considered here, the
intended goal is optimizing a certain target function, and
therefore self-optimization refers to enhancing the capability
of the system for performing this latter optimization, i.e.,
having it finding better solutions or doing it in less time.
Much of the research in self-parameterization mentioned
before goes precisely in this direction. In addition, it is
also possible to improve the search efficiency by adjusting
qualitatively the way the search is done (Moscato 1999), that
is, by self-generating search strategies (Krasnogor and Smith
2000; Smith 2002; Krasnogor and Gustafson 2004; Ong and
Keane 2004); this is related to the current notion of memetic
computing (Ong et al. 2010) whereby memes (understood as
representations of problem solving strategies) are explicitly
represented and evolved (Neri and Cotta 2012).

We have specifically considered an MA inspired by the
work of Smith (2008, 2012) wherein each individual in the
population carries a meme that represents a rewriting rule
A — (' in this rule, both A and C are patterns of symbols
taken from the same alphabet used to represent solutions,
augmented with a wildcard symbol ‘#’. The effect of this
meme is to look for some match of the antecedent A in
the genotype being optimized (using the wildcard as “don’t
care”) and substitute it by the consequent C' (where the
wildcard now means “don’t change”); it thus follows that A
and C have the same length. For example, let a genotype be
11101101, and let a meme be 1#1 — 0#1. The meme could
be applied on the first position yielding 01101101, on the
third position yielding 11001101, and on the sixth position
yielding 11101001. The order in which these positions are
examined is randomized to avoid any positional bias, and
a maximal number of rewritings w is used to keep under
control the total cost of the process. The best neighbor
generated (if better that the current solution) is kept.

As they are attached to solutions, these memes are subject
to mutation, both in the patterns of the rule and in their
length (Smith 2008), and are transferred from parent to
offspring via local selection (offspring inherit the meme of
the best parent). As a result of this evolutionary process, self-
generation is attained.

Self-Scaling. This property involves the ability of the
system to react efficiently to changes in its scale parameters.
Such scale parameters may refer to the size of the task
being tackled, to the amount of computational resources
available, or to any other circumstance of the computation,
e.g., (Fernandez de Vega et al. 2004; Zhao and Schulzrinne
2004). The goal of a self-scaling system is to adjust its
behavior (by tuning some internal parameters or even by re-
configuring itself) so that the computation can be completed

Prepared using sagej.cls

in an effective way. Focusing on MAs deployed in unstable
environments, they must take into account the volatility of
the environment that causes the computational landscape
to shrink or expand as computing nodes go down or up
respectively. As a consequence, the overall size of the system
will fluctuate, affecting genetic diversity and resulting in the
loss of information when islands disappear, and requiring
the construction of new islands when new nodes become
available.

This instability has been dealt with using the self-
balancing policy proposed by Nogueras and Cotta (2016c).
Like other strategies oriented to handle variable-size
populations, e.g., (Fernidndez de Vega et al. 2003; Eiben
et al. 2006), this policy aims to resize dynamically islands,
having them grow when they detect a neighboring island
has gone down and, analogously, having them shrink
when new neighbors appear. More precisely, each island
keeps a local memory of the size and number of active
neighbors or neighboring islands. This memory is updated
at the beginning of each evolutionary cycle by performing
handshakes with neighbors. In normal conditions, islands
use this handshaking to perform a local balancing procedure
(Zambonelli 1999) by transferring individuals from the
larger island to the smaller one. Eventually, this handshake
may time out due to one of the islands having disappeared.
In this case, the active node expands its own population (as
described in next subsubsection) by a fraction of the size
of the lost island (determined using the local information
on its size and number of neighbors on the last balancing
attempt). Likewise, a new neighbor may appear (initially
with an empty subpopulation) and absorb a part of the
existing population in neighboring nodes. Of course, while
inaccuracies in the local memory held by each island and
simultaneous failures of neighboring nodes can still produce
fluctuations, this strategy promotes the stabilization of the
overall population size.

Self-Healing. This property focuses on the maintenance
and restoration of system attributes that may have been
affected by internal or external actions (Blair et al. 2002;
Ghosh et al. 2007). In some sense, this property has a long
tradition in the context of EAs. A very good example can be
found in the domain of constrained optimization: among the
different strategies available to deal with infeasible solutions
(generated during initialization or after the application of
variations operators) we can consider the use of ad-hoc
repairing procedures that restore the feasibility of these
solutions (Michalewicz 1997). Focusing more specifically
on the deployment of MAs on unstable computational
environments, it must be noted that there are at least two
major issues resulting from the volatility of the system:
(1) connectivity disruptions (node failures limit the flow
of information and hinder the progress of the search)
and (ii) convergence perturbations (simply using random
information when an island needs to grow produces a
mismatch with more evolved solutions in the population and
is in a way tantamount to forcing the search backwards
to the earlier stages — it may provide some benefits in
terms of diversity but the net effect is often detrimental
as shown by Nogueras and Cotta (2015b)). To deal with
the first issue, a self-rewiring strategy (Nogueras and Cotta

4 International Journal of High Performance Computing Applications XX(X)

2015a) is used. This strategy aims to keep at all times a
rich connectivity by adding new neighbors to any island
whose number of active neighbors is detected to have fallen
below a predefined threshold (the particular procedure used
to select these neighbors is described in next subsection).
As to the second issue, it is tackled by means of self-
sampling (Nogueras and Cotta 2015b): new individuals
used for enlarging a population are created by sampling a
probabilistic model of the current population, analogously to
estimation of distribution algorithms (Larrafiaga and Lozano
2002; Pelikan et al. 2015). The rationale of this procedure
is to have new individuals be diverse but at the same time
representative of the current degree of convergence of the
population. The particular probabilistic model considered in
this work is a bivariate tree-based model analogous to that
used in COMIT (Baluja and Davies 1997).

Model of the Computational Environment

This island-based model runs on a simulated distributed
system composed of n,, nodes on which n, > n,, islands are
distributed. We here assume that islands are interconnected
following a scale-free topology. This connectivity pattern
is characterized for having the degree distribution follow
a power law, and is commonly observed in many real-
world systems, particularly in P2P systems (Albert and
Barabasi 2002). To generate this topology we consider the
Barabasi-Albert (BA) model (Barabasi and Albert 1999),
a network construction approach driven by preferential
attachment: starting with a clique of m + 1 vertices (where
m is parameter of the model), new vertices are added one
at a time, selecting for each of them m neighbors among
previous vertices, selected with a probability proportional
to the number of neighbors these have (hence, the more
neighbors a vertex has, the more likely it is it will receive new
links). The resulting network is non-regular and feature hubs
(vertices with large degree) that contribute to its resilience
(Cohen et al. 2000).

Nodes in the network are volatile and can enter and
abandon the system. To model this, we consider that
failures/recoveries are Weibull distributed (Weibull 1951).
This distribution is commonly used to model survival times
in many domains (Lee and Wang 2003) and can be seen as a
generalization of the exponential distribution: while the latter
is memoryless and hence failures can take place at any time
with the same probability (determined by a so-called scale
parameter [3), the former allows failure rates to depend on
time by virtue of an additional shape parameter 7. To be
precise, the probability of a node being available up to time
t is p(t,n, B) = exp(—(t/B)"). The particular case n =1
corresponds to the exponential distribution and for values
n > 1 failure/recovery probabilities increase with time. This
is precisely the setting we have used in the experiments.
Note also in relation to the use of this particular distribution
that the duration of many tasks performed by human users
on the computer is Weibull distributed, e.g., (Liu et al.
2010), and hence it can provide a good approximation to VC
systems in which nodes become available when idle — see
also (Stutzbach and Rejaie 2006) for a detailed analysis of
the case of P2P systems.

Prepared using sagej.cls

Modeling and Tackling Heterogeneity

Heterogeneity is modeled using the constant performance
model (Dongarra and Lastovetsky 2009), a simple modeling
approach in which each network node ¢ € {1,...,n,} is
characterized just by a positive coefficient w; € NT that
indicates its computing power (no communication-related
parameters are included in this model). These coefficients
can represent some absolute performance measure, such as
for example the number of instructions computed per unit
time, or some relative measure obtained from normalizing
these values. In this work, we assume for the sake of
simplicity that these coefficients are known in advance and
indicate the number of evolutionary cycles each node can
perform per unit of time. Hence they constitute a relative
performance index, and the computing power of each node
can be understood to be proportional to its coefficient.

We have considered three heterogeneity scenarios differ-
ing in the way that the coefficients w; are distributed. In
all of them, the overall computing power of the network
W =), w; is the same so as to not introduce any bias
towards any particular configuration:

e uniform: the overall computing power W is evenly
distributed among nodes, meaning that |W/n, | <
w; < [W/n,]. This scenario actually represents an
homogeneous distribution of computing resources
among nodes, all of which have a similar computing
power.

e random: each coefficient w; can have a random value
in {1,...,W —n, + 1}, subject to W =3, w; as
mentioned before. This is accomplished by having
w; = 1 initially, attributing random values in (0, 1)
to each node and then using D’Hondt’s method
to distribute W — n, additional units among nodes
according to these values. This way, each node is
ensured to have at least unit power, and the remaining
computing power is distributed rather proportionally
to these random values.

e powerlaw: coefficients are grouped in 7 levels, where
r €{0,..., rmax} With rpax = [logg ny | — 1, so that
there is a single node with power |n,, /2] in the highest
level, and in subsequent levels there are twice as many
nodes, each one with half as much power as in the
previous upper level (depending on the value of n, the
lowest level can have additional nodes if these are not
enough to create a new level).

The value W implied for the last configuration (powerlaw)
is used for the remaining distributions as well. Notice that
depending on the scenario considered a node failure can
have a different impact on the overall capacity of the system.
For example, under the powerlaw distribution around half
of node failures will have a low impact in this overall
capacity (they will affect to the least powerful nodes) but
larger disruptions are possible (albeit with a increasingly
lower probability). On the opposite side of the spectrum,
all failures have a priori the same moderate impact under a
uniform distribution, or a completely different impact under
the random distribution.

In order to deal with heterogeneity, the MA considers
three different strategies with regard to how the computing
resources are used. These are the following:

Nogueras and Cotta

e single-island: the MA places an island on each node
(i.e., n, = n,). Given the different computing power
of each node, this means that certain islands will
progress faster than others.

e multi-island: the MA places on each node ¢ as many
islands as the corresponding coefficient w;. With
this setting, there will be more islands than in the
previous case (now n, = W) but all of them will
progress at about the same speed. Notice that the space
requirements of MAs are typically low (even large
populations are very unlikely to saturate the computer
memory), and therefore placing more than one island
in a node does not imply any unrealistic assumption.

e hybrid: this is a combination of the previous two,
whereby the number of islands placed on a node ¢ is
more than one but fewer than the node power w;. Thus,
the fewer islands placed on the node, the faster they
will progress and conversely the more islands placed,
the closer to unit speed they will be. Clearly, such
a distribution has the previous two configurations as
limiting cases. We have opted for picking a midpoint
between these two extremes: the number of islands n!
placed on node i is set as n’ = |\/w; 4+ r| where r
is a random number in (0,1) — thus |/w;| < n! <
[/w;]. The total w; evolutionary cycles performed by
unit time in this node are evenly distributed among
these islands. This means node 7 has approximately
\/w; islands, each performing about ,/w; cycles per
unit of time.

Notice how the single-island and multi-island scenarios
represent two different approaches for taking advantage
of the heterogeneity of resources: the former is oriented
to maximize the depth of the search in some islands,
exploiting the larger speed of some nodes, and the latter
focuses on the breadth of the search, using this power to
diversify the search in new islands. The hybrid would fall
in between these two strategies. Obviously, in all cases
the overall computational cost (measured in terms of the
number of fitness evaluations) in the experiments has to
be the same, in order to establish a fair comparison. Next
section describes the experimentation conducted with these
distributions to determine more quantitatively the effect they
exert on performance.

Results
Experimental Setting

We consider n,, = 32 nodes in the network. The topology is
determined in each run of the algorithm using the Barabasi-
Albert model with parameter m = 2. This model is also
used for self-rewiring when an island has less than m
active neighbors. Regarding node deactivation/reactivation,
we use the shape parameter 7 = 1.5 to have an increasing
hazard rate, and scale parameters = —1/log(p) for p =
1— (kn,)™ ', k € {1,2,5,10,20}. To grasp the meaning of
these parameters, consider that they would correspond to an
average of one node going down/up every k cycles were
the failure rate constant (that is, if n = 1; we use a larger
value and therefore the failure rate is somewhat smaller at
the beginning of a node’s stint and gets larger as time passes).

Prepared using sagej.cls

This provides different scenarios ranging from low volatility
(k = 20) to very high volatility (k = 1). As to heterogeneity,
the total computational power of the network is W = 81,
a value dictated by the powerlaw distribution described in
the previous section. The other two heterogeneity scenarios
consider this same total computational power.

The MA is composed of islands whose initial size is
1 = 16 individuals. We use tournament selection, one-point
crossover (with probability px = 1.0), bit-flip mutation
(with probability pp; = 1/¢, where ¢ is the genotype
length), replacement of the worst parent and migration
probability pp,;; = 1/80. Memes are applied using w =
1 and their lengths evolve within [, =3 and lp.x =
9 (this length mutates with probability p, = 1/9). We
consider the following four algorithmic variants (the self-
* properties involved are shown in parentheses — note that
all variants use self-generation): LBQ{, ;. (self-rewiring,
self-sampling, self-scaling), LBQcomit (self-sampling, self-
scaling), noB" (self-rewiring) and noB. The experimental
benchmark comprises three test functions, namely Deb’s trap
function (Deb and Goldberg 1993) (concatenating 32 four-
bit traps), Watson et al.’s Hierarchical-if-and-only-if function
(Watson et al. 1998) (using 128 bits) and Goldberg et al.’s
Massively Multimodal Deceptive Problem (Goldberg et al.
1992) (using 24 six-bit blocks). We perform 25 simulations
for each algorithm, problem, volatility value, heterogeneity
scenario and island distribution strategy. Each run consider a
total of 50 000 fitness evaluations.

Experimental Results

Figure 1 provides a global view of the results (full numerical
data is provided in Tables 3-11 in the appendix). First of all,
Figure 1a shows the average deviation from the optimal for
each of the four algorithmic variants across all problems,
heterogeneity scenarios and island distribution strategies.
The variants with self-scaling and self-sampling outperform
variants without them, even in the presence of self-
rewiring, particularly as volatility increases. This confirms
the robustness of these strategies across the different
scenarios considered. In fact, LBQ(_ ;. is significantly better
than the remaining algorithms (Quade test p-value =~ 0,
Holm test passed at a = 0.05 as shown in Table 1). Thus,
from a global point of view endowing the MA with self-
* properties appears to be an advantageous option to cope
with instability and heterogeneity, behaving in a relatively
robust way with respect to the island distribution strategy
chosen (we shall return to this point later on). Now, if
we turn our attention to the overall results obtained under
each island distribution strategy —Figure 1b— there seems to
a trend of superiority of the single-island strategy (again
Quade test p-value ~ 0, and Holm test passed at o = 0.05
as shown in Table 2). The results are actually consistent in
highlighting the global appropriateness of the depth-based
strategy as opposed to the breadth-based (multi-island) one,
since the hybrid also falls in between these two in terms
of performance. Clearly, the larger diversification of multi-
island in low-volatility scenarios does not seem to pay-off
with respect to the more intensive behavior of single-island.
The latter also appears to be more sensitive to churn in high-
volatility scenarios, in which single node failures can lead
to the loss of many islands. Another interesting reading of

6 International Journal of High Performance Computing Applications XX(X)

(o)
o

40

—B—single-island
—©— multi-island
—&— hybrid

A
[$)]

w

[8)]

IS
o

w
o

w
(63}

w

o
N
(&)}

deviation from optimum (%)
N
[6)]

deviation from optimum (%)
N
o

20 15
15
10
10
5 5
0 1 L L L L L O L L L L L
0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
1/k 1/k

(a (b)
Figure 1. Average deviation from the optimal solution across all problems and heterogeneity scenarios. (a) According to

algorithmic variant for all island distribution strategies. (b) According to island distribution strategy for all algorithmic variants. Note
that volatility is larger as we move away from 0 in the X axis.

Table 1. Results of Holm Test (o« = 0.05) using LBQ{,,,;c as control algorithm.

7 strategy z-statistic p-value afi
1 LBQcomit 3.840e+00 6.154e—05 5.000e—02
2 noB 9.351e+00 4.329e—21 2.500e—02
3 noB” 1.211e+01 4.848e—34 1.667e—02

Table 2. Results of Holm Test (« = 0.05) using single-island as control algorithm.

7 strategy z-statistic p-value afi
hybrid 4.427e+00 4.773e—06 5.000e—02
multi-island 1.146e+01 1.009e—30 2.500e—02

b gsm?l_e—\‘s\agd % gsm?l_e—ilslagd - gsm?!e_—llslazd “© jsin(_‘ﬂe_—ilslazd

|| —6—hybrid a 5ol [==hybrid 351 —6—hybrid 357 —6—hybrid

deviation from optimum (%)

deviation from optimum (%)
8

deviation from optimum (%)

deviation from optimum (%)

0.2 0.4 0.6 0.8 1
1k 1k 1/k

(a (b) (c) (d)

Figure 2. Average deviation from the optimal solution across all problems and heterogeneity scenarios for each algorithmic
variant. (a) noB (b) noB" (¢) LBQcomit (d) LBQLomis- Notice the different range of the Y scale in the figures.

this multi-island scenario emerges from its interpretation as In addition to the previous global view of the results, it
a single-island situation with a larger number of computing is interesting to take a more detailed look at the behavior of
nodes and in which node failures are not independent. It thus each algorithmic variant separately. This is shown in Figure
turns out that the single-island model would be sensitive to 2. The behavior of noB and noB" is similar and in both cases
catastrophic simultaneous failures (albeit probably less than single-island provides the best results (Quade test p-value ~
multi-island, if the trends observed here were extrapolated). 0 and 3.519e—14 respectively, and Holm test passed at o =

Prepared using sagej.cls

Nogueras and Cotta

30

o
[=)

—5—powerlaw
—©—random
[—©— uniform

—&— powerlaw
—S—random
—&— uniform

w
o

n
o

n w
o o

deviation from optimum (%)
>
@

deviation from optimum (%)
n
o

o

&)

40

—5—powerlaw
—©—random
351 —&—uniform

deviation from optimum (%)

0.2 0.4 0.6 0.8 1 0.2 0.4
1k

(a) (b)

0.6 0.8 1
1k

(c)

Figure 3. Average deviation from the optimal solution across all problems and algorithmic variants depending on the
heterogeneity scenario for a certain island distribution strategy. (a) single-island (b) multi-island (c) hybrid. Notice the different range

of the Y scale in the figures.

0.05). The qualitative difference with LBQ variants is clear
(and in turn, these two also have distinctive features from
each other). LBQcomit exhibits more graceful degradation
thanks to the use of self-scaling and self-sampling. In this
case, multi-island and hybrid also behave significantly worse
than singe-island with statistical significance at a global
level (Quade test p-value = 1.788e—5, Holm test passed
at a = 0.05). The addition of these self-x properties has
made the algorithm somewhat more robust and less sensitive
to the actual island distribution strategy, at least on low-
volatility scenarios since single-island is not significantly
better than hybrid for £ > 5 (low to moderate volatility).
This is further vindicated by the results of LBQ7, ., Whose
behavior is much more robust and constant, to the point that
the difference between the island distribution strategies is not
statistically significant (Quade test p-value = 0.2816).

Consider now the complementary perspective of the
heterogeneity of the environment, and how it affects
performance in light of the distribution strategy used. This
is shown in Figure 3. Generally speaking, all strategies seem
to be robust to this factor, in the sense that for a given strategy
there does not seem to be statistically significant differences
in performance depending on the heterogeneity scenario
when all volatility values are considered. It is however
interesting to note that for low volatility, the performance
of single-island significantly degrades under the powerlaw
scenario (Quade test p-value = 0.0011, Holm test passed
at o = 0.05 against powerlaw using uniform as control
strategy, k > 5) — see Figure 3a. This can be due to the
unbalance of search progress among islands caused by the
decompensation of computational power of nodes in this
moderate-high stability situation. On the contrary, when
larger volatility values are considered, all strategies perform
better in the powerlaw scenario even if not always with
statistical significance (for the hybrid strategy and k < 5,
Quade test p-value = 8.410e—03, Holm test passed at o« =
0.05 against uniform and random). This can interpreted
in light of nodes with high computational power pushing
forward the search during their short availability stint in a
much more cost-effective way than less powerful nodes. Be

Prepared using sagej.cls

it as it may, from a global point of view the single-island
strategy provides the best results in each of the heterogeneity
scenarios, outperforming multi-island and hybrid in all of
them (the superiority of uniform is always statistically
significant at a = 0.05 according to Quade and Holm tests,
except against hybrid under the powerlaw scenario). This
single-island strategy thus seems to be the most robust
approach to tackle heterogeneity in the scenarios considered
here.

Conclusions

Resilience is an essential property that algorithms deployed
on unstable environments must feature. Population-based
optimization algorithms in general and memetic algorithms
in particular are no exception and, although their structure
provides some inherent resilience to a certain degree,
they require being augmented with adequate mechanisms
to counteract fluctuations in the computational landscape.
In this sense, endowing them with self-x properties has
been shown as an effective solution to respond to both
system instability and computational heterogeneity. These
properties generally capture the capability of a system
for self-management in any aspect, and are reflected in
this case by the capability of the EA for reacting to the
instability of the system, reconfiguring itself to counteract
churn. The combined use of self-scaling (whereby islands
are dynamically resized and balanced in order to spread
the search effort among the nodes available at each
moment) and self-healing (to thwart the damage infringed
by churn, either in terms of island connectivity or in island
contents) seems robust under different configurations of
the system, even in scenarios with large heterogeneity and
volatility. Furthermore, they seem to perform synergistically
as indicated by the results provided by LBQ[;. where
these properties are stacked together. Another important
factor to be taken into account is the utilization pattern of the
heterogeneous resources. With regard to this, we have shown
that a simple strategy based on placing single islands on each
computational node ultimately offers the best results when
compared to placing many of them (either proportionally

8 International Journal of High Performance Computing Applications XX(X)

to the power of the node or looking for an intermediate
compromise). This is particularly interesting due to the fact
that such a strategy (one computational node, one island)
does not require a-priori knowledge of the computational
power of nodes in the system. This strategy is less sensitive to
single-node failures and seems to behave more robustly with
increasing churn. Future work will be directed to confirm
these findings extending the range of scenarios considered
both in terms of heterogeneity and of the volatility patterns of
the system. In particular, we plan to study scenarios featuring
correlated node failures to analyze more in depth how they
affect performance and which counter-measures could be
taken to deal with it.

Acknowledgements

This work is a substantially extended version of (Nogueras and
Cotta 2016b). We have expanded the background and description
of methods, and completely refurbished the experimentation and
the analysis by adding two new island distribution strategies.

Funding

We acknowledge support from Spanish Ministry of Economy
and Competitiveness (MinEco) and European Regional Develop-
ment Fund (FEDER) under project EphemeCH (TIN2014-56494-
C4-1-P).

References

Alba E and Tomassini M (2002) Parallelism and evolutionary
algorithms. [EEE Transactions on Evolutionary Computation
6(5): 443-462.

Albert R and Barabasi AL (2002) Statistical mechanics of complex
networks. Review of Modern Physics 74(1): 47-97.

Anderson DP and Reed K (2009) Celebrating diversity in volunteer
computing. In: Proceedings of the 42nd Hawaii International
Conference on System Sciences, HICSS *09. Washington, DC,
USA: IEEE Computer Society, pp. 1-8.

Angeline P (1995) Morphogenic evolutionary computations:
Introduction, issues and example. In: et al JM (ed.)
Fourth Annual Conference on Evolutionary Programming.
Cambridge, Massachusetts: MIT Press, pp. 387-402.

Babaoglu O, Jelasity M, Montresor A, Fetzer C, Leonardi S, van
Moorsel A and van Steen M (eds.) (2005) Self-star Properties
in Complex Information Systems, Lecture Notes in Computer
Science, volume 3460. Berlin Heidelberg: Springer-Verlag.

Baluja S and Davies S (1997) Using optimal dependency-trees
for combinatorial optimization: Learning the structure of the
search space. In: /4th International Conference on Machine
Learning. Morgan Kaufmann Publishers, pp. 30-38.

Barabasi AL and Albert R (1999) Emergence of scaling in random
networks. Science 286(5439): 509-512.

Beltran M and Guzman A (2009) How to balance the load
on heterogeneous clusters.
Performance Computing Applications February 23: 99-118.

Berns A and Ghosh S (2009) Dissecting self-x properties. In:
Third IEEE International Conference on Self-Adaptive and
Self-Organizing Systems - SASO 2009. San Francisco, CA:
IEEE Press, pp. 10-19.

Beyer H (1995) Toward a theory of evolution strategies: Self-
adaptation. Evolutionary Computation 3(3): 311-348.

International Journal of High

Prepared using sagej.cls

Blair G, Coulson G, Blair L, Duran-Limon H, Grace P, Moreira
R and Parlavantzas N (2002) Reflection, self-awareness and
self-healing in openORB. In: First Workshop on Self-healing
Systems. New York, NY, USA: ACM Press, pp. 9-14.

Boulet P, Dongarra J, Rastello F, Robert Y and Vivien F (1999)
Algorithmic issues on heterogeneous computing platforms.
Parallel Processing Letters 9(2): 197-213.

Caraffini F, Neri F and Picinali L (2014) An analysis on separability
for memetic computing automatic design.
Sciences 265: 1-22.

Cohen R, Erez K, ben Avraham D and Havlin S (2000) Resilience
of the internet to random breakdowns. Physical Review Letters
85: 4626-4628.

Cotta C, Fernandez-Leiva AJ, Fernidndez de Vega F, Chdvez
F, Merelo JJ, Castillo PA, Bello G and Camacho D
(2015) Ephemeral computing and bioinspired optimization
- challenges and opportunities. In: 7th International
Joint Conference on Evolutionary Computation Theory and
Applications. Lisboa, Portugal, pp. 319-324.

Cotta C, Sevaux M and Sorensen K (eds.) (2008) Adaptive
and Multilevel Metaheuristics, Studies in Computational
Intelligence, volume 136. Berlin Heidelberg: Springer-Verlag.

Deb K and Goldberg D (1993) Analyzing deception in trap
functions. In: Whitley L (ed.) Second Workshop on
Foundations of Genetic Algorithms. Vail, Colorado, USA:
Morgan Kaufmann Publishers, pp. 93-108.

Dongarra J and Lastovetsky AL (2009) High Performance
Heterogeneous Computing. John Wiley & Sons.

Information

Eiben AE (2005) Evolutionary computing and autonomic
computing: Shared problems, shared solutions? In: Babaoglu
O et al. (eds.) Self-star Properties in Complex Information
Systems, Lecture Notes in Computer Science, volume 3460.
Berlin Heidelberg: Springer-Verlag, pp. 36—48.

Eiben AE, Schut MC and de Wilde AR (2006) Is self-adaptation of
selection pressure and population size possible? - a case study.
In: Runarsson T et al. (eds.) Parallel Problem Solving from
Nature - PPSN IX, Lecture Notes in Computer Science, volume
4193. Berlin Heidelberg: Springer-Verlag, pp. 900-909.

Eiben AE and Smith JE (2003) Introduction to Evolutionary
Computation. Natural Computing Series. Berlin Heidelberg:
Springer-Verlag.

Fernandez de Vega F, Canti-Paz E, Lopez J and Manzano T (2004)
Saving resources with plagues in genetic algorithms. In: Yao
X et al. (eds.) Parallel Problem Solving from Nature - PPSN
VIII, Lecture Notes in Computer Science, volume 3242. Berlin
Heidelberg: Springer-Verlag, pp. 272-281.

Fernidndez de Vega F, Vanneschi L and Tomassini M (2003) The
effect of plagues in genetic programming: A study of variable-
size populations. In: Ryan C et al. (eds.) Genetic Programming,
Lecture Notes in Computer Science, volume 2610. Berlin
Heidelberg: Springer-Verlag, pp. 317-326.

Ghosh D, Sharman R, Rao H and Upadhyaya S (2007) Self-healing
systems - survey and synthesis.
42(4): 2164-2185.

Goldberg D, Deb K and Horn J (1992) Massive multimodality,
deception and genetic algorithms. In: Méanner R and Manderick
B (eds.) Parallel Problem Solving from Nature - PPSN II. New
York, NY, USA: Elsevier Science Inc., pp. 37-48.

Gorges-Schleuter M (1989) ASPARAGOS: an asynchronous

In: Schaffer J (ed.)

Decision Support Systems

parallel genetic optimization strategy.

Nogueras and Cotta

Third International Conference on Genetic Algorithms. San
Francisco, CA: Morgan Kaufmann Publishers, pp. 422-427.

Grefenstette JJ (1981) Parallel adaptive algorithms for function
optimization. Technical Report CS-81-19, Vanderbilt
University, Nashville, TN.

Grosso P (1985) Computer simulation of genetic adaptation:
Parallel subcomponent interaction in a multilocus model. PhD
Thesis, University of Michigan, Ann Arbor.

Hidalgo J, Lanchares J, Ferndndez de Vega F and Lombrafia D
(2007) Is the island model fault tolerant? In: Thierens D et al.
(eds.) Genetic and Evolutionary Computation - GECCO 2007.
New York, NY, USA: ACM Press, pp. 2737 — 2744.

Hinterding R, Michalewicz Z and Eiben A (1997) Adaptation

In: Fourth IEEE
Conference on Evolutionary Computation. Piscataway, New
Jersey: IEEE Press, pp. 65-69.

Horn P (2001) Autonomic computing: IBM’s perspective on
the state of information technology. Technical report, IBM
Research.

in evolutionary computation: A survey.

URL http://people.scs.carleton.
ca/~soma/biosec/readings/autonomic_
computing.pdf. Accessed 14/05/2015.

Huebscher M and McCann J (2008) A survey of autonomic
computing -degrees, models and applications. ACM Computing
Surveys 40(3). Article 7.

Korpela E, Werthimer D, Anderson D, Cobb J and Leboisky M
(2001) Seti@home-massively distributed computing for seti.
Computing in Science Engineering 3(1): 78-83.

Krasnogor N and Gustafson S (2004) A study on the use of “self-
generation” in memetic algorithms. Natural Computing 3(1):
53-76.

Krasnogor N and Smith JE (2000) A memetic algorithm with self-
adaptive local search: TSP as a case study. In: Whitley D et al.
(eds.) Genetic and Evolutionary Computation - GECCO 2000.
San Francisco, CA, USA: Morgan Kaufmann Publishers, pp.
987-994.

Laredo J, Bouvry P, Gonzdlez D, Ferndndez de Vega F, Arenas M,
Merelo JJ and Fernandes C (2014) Designing robust volunteer-
based evolutionary algorithms. Genetic Programming and
Evolvable Machines 15(3): 221-244.

Laredo J, Castillo P, Mora A, Merelo JJ and Fernandes C
(2008) Resilience to churn of a peer-to-peer evolutionary
algorithm. International Journal of High Performance Systems
Architecture 1(4): 260-268.

Larrafiaga P and Lozano J (eds.) (2002) Estimation of Distribution
Algorithms, Genetic Algorithms and Evolutionary Computa-
tion, volume 2. Berlin Heidelberg: Springer Verlag.

Larson SM, Snow CD, Shirts MR, and Pande VS (2002) Fold-
ing@home and genome@home: Using distributed computing
to tackle previously intractable problems in computational
biology. arXiv:0901.0866.

Lastovetsky A (2014) Heterogeneous parallel computing: from
clusters of workstations to hierarchical hybrid platforms.
Supercomputing Frontiers and Innovations 1(3): 70-87.

Lastovetsky A and Reddy R (2007) Data partitioning with a
functional performance model of heterogeneous processors.
International Journal of High Performance Computing
Applications 21: 76-90.

Lastovetsky AL (2003) Parallel Computing on Heterogeneous
Networks. New York, NY, USA: John Wiley & Sons, Inc.

Prepared using sagej.cls

Lee E and Wang J (eds.) (2003) Statistical Methods for Survival
Data Analysis. Hoboken, NJ, USA: John Wiley & Sons.

Lewis A, Mostaghim S and Scriven I (2009) Asynchronous multi-
objective optimisation in unreliable distributed environments.
In: Lewis A, Mostaghim S and Randall M (eds.) Biologically-
Inspired Optimisation Methods: Parallel Algorithms, Systems
and Applications, Studies in Computational Intelligence,
volume 210. Berlin Heidelberg: Springe-Verlag, pp. 51-78.

Liu C, White R and Dumais S (2010) Understanding web browsing
behaviors through Weibull analysis of dwell time. In:
33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval - SIGIR 2010. New
York, NY, USA: ACM Press, pp. 379-386.

Lombrafia Gonzélez D, Jiménez Laredo J, Ferniandez de Vega F
and Merelo Guervés JJ (2010) Characterizing fault-tolerance
of genetic algorithms in desktop grid systems. In: Cowling P
and Merz P (eds.) Evolutionary Computation in Combinatorial
Optimization, Lecture Notes in Computer Science, volume
6022. Berlin Heidelberg: Springer-Verlag, pp. 131-142.

Lombrafia Gonzélez D, Jiménez Laredo J, Ferniandez de Vega F
and Merelo Guervés JJ (2012) Characterizing fault-tolerance in
evolutionary algorithms. In: Ferndndez de Vega F et al. (eds.)
Parallel Architectures and Bioinspired Algorithms, Studies in
Computational Intelligence, volume 415. Berlin Heidelberg:
Springer-Verlag, pp. 77-99.

Michalewicz Z (1997) Repair algorithms. In: Béack T et al. (eds.)
Handbook of Evolutionary Computation. Bristol, New York:
Institute of Physics Publishing and Oxford University Press,
pp. C5.4:1-5.

Richard B, Rollins S and Xu Z (2002) Peer-to-peer computing.
Technical Report HPL-2002-57, Hewlett-Packard Labs.

Moscato P (1999) Memetic algorithms: A short introduction.
In: Corne D, Dorigo M and Glover F (eds.) New Ideas in
Optimization. Maidenhead, Berkshire, England, UK: McGraw-
Hill, pp. 219-234.

Neri F and Cotta C (2012) Memetic algorithms and memetic
computing optimization: A literature review.
Evolutionary Computation 2: 1-14.

Neri F, Cotta C and Moscato P (eds.) (2012) Handbook of Memetic
Algorithms, Studies in Computational Intelligence, volume
379. Berlin Heidelberg: Springer-Verlag.

Swarm and

Nogueras R and Cotta C (2014) An analysis of migration strategies
in island-based multimemetic algorithms. In: Bartz-Beielstein
T et al. (eds.) Parallel Problem Solving from Nature - PPSN
XIII, Lecture Notes in Computer Science, volume 8672. Berlin
Heidelberg: Springer Verlag, pp. 731-740.

Nogueras R and Cotta C (2015a) Self-balancing multimemetic
algorithms in dynamic scale-free networks. In: Mora A and
Squillero G (eds.) Applications of Evolutionary Computing,
Lecture Notes in Computer Science, volume 9028. Berlin
Heidelberg: Springer Verlag, pp. 177-188.

Nogueras R and Cotta C (2015b) Self-sampling strategies
for multimemetic algorithms in unstable computational
environments. In: Ferrandez Vicente J et al. (eds.) Bioinspired
Computation in Artificial Systems, Lecture Notes in Computer
Science, volume 9108. Berlin Heidelberg: Springer Verlag, pp.
69-78.

http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf
http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf
http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf

10 International Journal of High Performance Computing Applications XX(X)

Nogueras R and Cotta C (2016a) Self-healing strategies for
memetic algorithms in unstable and ephemeral computa-
tional environments. Natural Computing DOI:10.1007/
s11047-016-9560-7.

Nogueras R and Cotta C (2016b) A study of the performance
of self-x memetic algorithms on heterogeneous ephemeral
environments. In: Handl J et al. (eds.) Parallel Problem Solving
from Nature — PPSN XIV, Lecture Notes in Computer Science,
volume 9921. Berlin Heidelberg, pp. 91-100.

Nogueras R and Cotta C (2016c) Studying self-balancing strategies
in island-based multimemetic algorithms. Journal of
Computational and Applied Mathematics 293: 180-191.

Ong Y and Keane A (2004) Meta-lamarckian learning in memetic
algorithm. [EEE Transactions on Evolutionary Computation
8(2): 99-110.

Ong Y, Lim M and Chen X (2010) Memetic computation —past,
present and future. I[EEE Computational Intelligence Magazine
5(2): 24-31.

Pelikan M, Hauschild M and Lobo F (2015) Estimation of
distribution algorithms. In: Kacprzyk J and Pedrycz W (eds.)
Handbook of Computational Intelligence. Berlin Heidelberg:
Springer Verlag, pp. 899-928.

Renard H, Robert Y, and Vivien F (2006) Data redistribution
algorithms for heterogeneous processor rings.
Journal of High Performance Computing Applications Febru-
ary 20: 31-43.

Sarmenta L (1998) Bayanihan: Web-based volunteer computing

International

using java. In: Masunaga Y, Katayama T and Tsukamoto M
(eds.) Worldwide Computing and Its Applications - WWCA
1998, Lecture Notes in Computer Science, volume 1368. Berlin
Heidelberg: Springer-Verlag, pp. 444-461.

Schwefel H (1992) Imitating evolution: Collective, two-level
learning processes. In: Explaining Process and Change -
Approaches to Evolutionary Economics. Ann Arbor, Michigan:
University of Michigan Press, pp. 49-63.

Smith JE (2002) Co-evolution of memetic algorithms: Initial
investigations. In: Merelo Guervds JJ et al. (eds.) Parallel
Problem Solving from Nature - PPSN VII, Lecture Notes in
Computer Science, volume 2439. Berlin Heidelberg: Springer
Verlag, pp. 537-548.

Smith JE (2007) Coevolving memetic algorithms: A review and
progress report. IEEE Transactions on Systems, Man and
Cybernetics, Part B 37(1): 6-17.

Smith JE (2008) Self-adaptation in evolutionary algorithms for
combinatorial optimisation. In: Cotta C, Sevaux M and
Sorensen K (eds.) Adaptive and Multilevel Metaheuristics,
Studies in Computational Intelligence, volume 136. Berlin
Heidelberg: Springer-Verlag, pp. 31-57.

Smith JE (2012) Self-adaptative and coevolving memetic algo-
rithms. In: Neri F, Cotta C and Moscato P (eds.) Handbook
of Memetic Algorithms, Studies in Computational Intelligence,
volume 379. Berlin Heidelberg: Springer-Verlag, pp. 167-188.

Sterritt R and Bustard D (2003) Towards an autonomic computing
environment. In: 14th International Workshop on Database
and Expert Systems Applications. pp. 694—698.

Stutzbach D and Rejaie R (2006) Understanding churn in peer-to-
peer networks. In: 6th ACM SIGCOMM Conference on Internet
Measurement - IMC 2006. New York, NY, USA: ACM Press,
pp. 189-202.

Prepared using sagej.cls

Sudholt D (2014) Parallel evolutionary algorithms. In: Kacprzyk
J and Pedrycz W (eds.) Handbook of Computational
Intelligence. Berlin Heidelberg: Springer-Verlag, pp. 929-959.

Tanese R (1989) Distributed genetic algorithms. In: 3rd Interna-
tional Conference on Genetic Algorithms. San Francisco, CA,
USA: Morgan Kaufmann Publishers, pp. 434-439.

Watson R, Hornby G and Pollack J (1998) Modeling building-block
interdependency. In: Eiben A et al. (eds.) Parallel Problem
Solving from Nature - PPSN V, Lecture Notes in Computer
Science, volume 1498. Berlin Heidelberg: Springer Verlag, pp.
97-106.

Weibull W (1951) A statistical distribution function of wide
applicability. Journal of Applied Mechanics 18(3): 293-297.

Zambonelli F (1999) Exploiting biased load information in direct-
neighbour load balancing policies. Parallel Computing 25(6):
745-766.

Zhang G, Rong H, Neri F and Pérez-Jiménez M (2014) An
optimization spiking neural p system for approximately solving
combinatorial optimization problems. International Journal of
Neural Systems 24(5): 1440006.

Zhao W and Schulzrinne H (2004) Dotslash: A self-configuring and
scalable rescue system for handling web hotspots effectively.
In: International Workshop on Web Caching and Content
Distribution - WCW 2004. pp. 1-18.

Nogueras and Cotta 11

Numerical Results

Table 3. Results (averaged for 25 runs) of the different MMAs on the three problems considered using the single-island distribution
strategy in uniform environment The median (z), mean (z) and standard error of the mean (oz) are indicated.

TRAP H-IFF MMDP
strategy k T T +oz T T+oz T T+oz
noB 20 0.00 0.25+0.20 0.00 0.78 £0.78 300 2.82+0.35

10 0.00 1.65 +£0.48 0.00 1.61 £1.12 5.99 6.29 + 0.56

5.63 6.33 +£0.99 0.00 7.13+2.74 1048 11.96 = 0.91

2875 28.88 +1.16 50.52 44.24 £2.80 27.46 26.93 £ 0.60

1 43.13 43.21 +0.89 60.90 60.61 4 0.40 35.13 35.23+0.59

LBQcomit 20 0.00 0.254+0.20 0.00 281 +1.62 1.50 1.81 +0.37
10 0.00 0.38=£0.15 0.00 5.00+1.93 1.50 2144040

0.00 0.10£0.10 0.00 250+£1.41 300 243+0.39

2 1.25 2.03 + 0.46 0.00 11.49+2.62 599 583+£0.73

1 8.13 8.71 £ 0.94 0.00 1242 +3.24 13.48 13.81 +0.80

noB” 20 0.00 0.85+0.44 0.00 0.67 £ 0.67 3.00 2.86+0.49
10 0.00 1.00 £ 0.45 0.00 439+1.87 449 4.89 +0.78

5 6.25 7.10 £ 1.30 20.83 13.53 +2.84 10.48 10.12 4+ 0.82

29.37 2891 +1.28 51.52 49.60 + 1.35 29.62 27.38 +1.01

1 46.25 45.33 £0.98 61.81 60.65+ 0.77 35.13 35.38 +0.60

LBQ,, it 20 0.00 0.00 £ 0.00 0.00 3.67£1.60 0.00 0.59+0.20
10 0.00 0.00+£0.00 0.00 3.92+1.88 0.00 1.12 +0.27

5 0.00 0.50+0.33 0.00 592+221 1.50 1.86 £ 0.34

2 0.00 0.75+0.38 0.00 8.61 +242 4.49 3.87 2042

1 2.50 3.12 + 0.60 0.00 10.22+2.72 3.00 3.40+0.56

Table 4. Results (averaged for 25 runs) of the different MMAs on the three problems considered using the hybrid distribution
strategy in uniform environment The median (z), mean (z) and standard error of the mean (o) are indicated.

TRAP H-IFF MMDP
strategy k T T +oz T T +oz T T +oz
noB 20 0.00 1.33 £ 0.44 0.00 0.83+0.83 599 535+0.64

10 5.00 5.03+0.83 0.00 239+1.32 899 9.76 + 1.00
5 13.75 14.17+1.34 21.88 21.73 +£3.82 1498 15.86 +0.88
2 3875 36.67+0.96 56.94 5497+ 1.54 31.30 3091 4+ 0.64
1 46.25 47.14+0.79 6198 61.26 + 0.48 3579 36.30 + 0.56
LBQcomit 20 0.00 0.55+0.25 0.00 0.78+0.78 449 5.13+£0.55
10 0.00 0.62+0.26 0.00 1.56 + 1.08 449 4734045
5 0.00 1.05 £ 0.41 0.00 2.89+141 7.16 7.02 £0.65
2 5.00 5.92+0.87 0.00 2.82+1.59 11.65 11.55+0.42
1 17.50 1744 +£1.23 0.00 13.12+3.14 2246 2144 +0.94
noB” 20 0.00 1.50 +£ 0.47 0.00 1.67 £ 1.15 599 5.62+0.63
10 250 4.12+0.89 0.00 8.00 £2.49 8.99 9.80+0.62
5 16.25 16.83 +£1.33 21.53 20.61 +£3.84 17.97 1735+ 0.77
2 3750 3536+ 1.24 56.77 5499 + 1.56 31.11 3094 +£0.54
1 46.88 46.43 £0.73 62.16 62.35+0.39 38.02 37.65 +£0.41
LBQ,,.i: 20 0.00 0.25=£0.16 0.00 1.33 £ 0.92 449 453+0.52
10 0.00 0.35+0.15 0.00 256+ 1.45 300 3.4740.53
5 0.00 0.25+0.10 0.00 6.50+1.98 300 3.334+0.54
2 0.00 1.20 +0.40 0.00 456+ 1.66 5.66 5.53+0.50
1 1.25 2454061 0.00 7.44+235 449 4.65+0.61

Prepared using sagej.cls

12 International Journal of High Performance Computing Applications XX(X)

Table 5. Results (averaged for 25 runs) of the different MMAs on the three problems considered using the multi-island distribution
strategy in uniform environment. The median (Z), mean (Z) and standard error of the mean (oz) are indicated.

TRAP H-IFF MMDP
strategy k T T +toz T T +toz T T +toz
noB 20 437 4.12+0.56 0.00 1.56 + 1.08 11.65 11.01 +0.59

10 11.25 10.38 +1.00 0.00 6.88+2.65 16.14 15.64 + 0.65

5 2500 2520+1.29 41.67 36.68 +3.36 24.47 24.00 £ 0.70

2 4563 45.17 £0.69 59.38 59.31 £0.63 3579 3529 +0.52

1 51.25 51.00 +0.52 64.12 64.09 +0.16 40.46 40.51 £0.35

LBQcomit 20 3775 5.11+£0.70 0.00 0.67 £0.67 10.48 10.95 + 0.56
10 250 3.00£0.41 0.00 0.00 +0.00 11.65 11.61 £0.46

500 5.10+£0.67 0.00 256+1.44 12.82 12.90 + 0.61

2 16.86 16.14 £1.12 0.00 7.8442.52 21.47 21.50+£0.73

1 35.00 34.25+0.95 35.59 30.324+3.90 32.80 32.87+0.70

noB” 20 625 578 £0.80 0.00 0.78£0.78 11.65 11.32+£0.53
10 11.88 10.42 +1.00 0.00 698 +243 16.14 15.36 + 0.65

25.62 26.67 +1.31 39.06 3290 £ 3.41 23.63 24.11 =0.82

2 46.25 45.60+0.70 60.76 59.40 £ 0.68 3546 3546 +0.51

1 53.13 52.86 £0.39 64.06 63.83 £0.29 40.46 40.34 +0.45

LBQ’,,..; 20 437 442+0.62 0.00 0.00 & 0.00 11.65 11.86 £0.40
10 1.25 1.75 £ 0.30 0.00 0.00 & 0.00 9.82 9.4540.49

5 2,50 2.50 +0.40 0.00 1.44 £+ 1.00 1132 11.324+0.44

2 3.13 3.484+045 0.00 231+1.28 10.15 10.55 £0.56

1 5.00 5.80+0.71 0.00 5.81+225 7.49 820+0.44

Table 6. Results (averaged for 25 runs) of the different MMAs on the three problems considered using the single-island distribution
strategy in random environment. The median (%), mean (z) and standard error of the mean (o) are indicated.

TRAP H-IFF MMDP
strategy k T T +oz T T +oz T T toz
noB 20 0.00 045+£0.24 0.00 239+1.33 1.50 1.62 +0.31

10 0.00 1.65 + 0.55 0.00 3.00+1.45 3.00 3.88 +0.59

5 5.00 7.02+1.33 19.44 17.36 4+ 3.04 10.15 1022 +1.11

2 2625 26.83+1.50 5191 46.55+2.73 26.63 26.59 4+ 0.81

1 40.63 40.88 +£0.92 58.85 58.11 +£0.77 3495 3441+ 0.64

LBQcomit 20 0.00 0.50+£0.29 0.00 4.00 £ 1.65 1.50 1.86 +0.47
10 0.00 0.40+0.28 0.00 5.334+2.03 1.50 1.92 +0.37

5 0.00 142 +0.44 0.00 794 +222 1.50 2.164+042

1.25 2.70 4+ 0.64 0.00 997 +248 7.16 6.58 £0.60

1 8.13 8.64 +0.82 0.00 1450 4+3.28 1348 12.81 =0.79

noB” 20 0.00 0.75+0.41 0.00 1.56 + 1.09 1.50 2.04 +£0.38
10 0.00 1.97 + 0.55 0.00 3.99 +£2.28 3.00 4.07 £0.67

8.75 8.70 £ 1.37 20.83 19.62 = 3.54 10.15 10.82 £+ 1.09

2 2875 2921+1.44 51.74 49.35 +£2.34 28.12 28.22 £ 0.58

1 41.87 41.54 £1.03 60.24 59.61 + 0.61 3429 34.20 +0.59

LBQ?, it 20 0.00 0.054+0.05 0.00 283 +1.61 1.50 1.24 £ 0.27
10 0.00 0.2040.14 0.00 794 +2.31 1.50 1.42 +0.32

5 0.00 0.50=£0.20 0.00 6.17 +=2.08 0.00 0.96 £0.32

2 0.00 1.50 £ 0.49 0.00 9.06 £2.84 3.00 3.08£0.40

1 0.00 1.90 + 0.54 19.44 13.33 +2.36 3.00 3.48 £0.36

Prepared using sagej.cls

Nogueras and Cotta

13

Table 7. Results (averaged for 25 runs) of the different MMAs on the three problems considered using the hybrid distribution

strategy in random environment. The median (Z), mean (z) and standard error of the mean (o) are indicated.

TRAP H-IFF MMDP
strategy k T T +toz T T +toz T T +toz
noB 20 1.25 1.58 +0.39 0.00 233+1.29 449 479 +£045

10 3.13 3.63+£0.60 0.00 10.58 +-2.48 899 924 4+0.74
5 11.88 12.55+£1.50 21.53 16.85 £ 3.17 13.48 1542 +£1.23
2 3750 36.85+1.02 54.86 5229 £2.37 30.13 30.21 £ 0.56
1 4754 46.48 £0.84 61.46 61.09 +0.73 38.46 38.00 & 0.54
LBQcomit 20 0.00 1.42 +£0.44 0.00 0.67 £0.67 449 4.80+0.57
10 0.00 0.95+0.29 0.00 3.78+£1.55 599 6.124+0.49
5 0.00 1.42 +£0.44 0.00 4.11+1.70 599 621 +£0.58
2 6.25 6.39+0.85 0.00 628 £2.11 11.65 11.57£0.72
1 20.00 19.83 £1.02 0.00 13.44 4-3.09 23.48 22.24 £1.00
noB” 20 0.00 1.20 +£0.32 0.00 4.83+1.77 449 497+048
10 250 3.97+0.85 19.44 16.35 + 3.05 749 8.46+0.74
5 1438 14.88 £1.25 21.88 26.09 £+ 3.34 16.47 17.42 £0.96
2 3375 3436+1.02 56.94 55.06 £ 1.17 31.12 30.87 + 0.67
1 46.88 46.64 £+ 0.93 61.63 61.37 £0.41 36.63 36.24 + 0.67
LBQ’,,..; 20 0.00 0.57+£032 0.00 2.56+1.28 449 3914+043
10 0.00 0.15£0.11 0.00 1.11 £ 0.79 3.00 3.3940.35
5 0.00 0.50+0.24 0.00 6.19+2.15 449 3.79 +0.46
2 250 2254044 0.00 7.94+245 449 454+£045
1 125 250+£0.74 0.00 9.72+2.09 300 3.16 £0.55

Table 8. Results (averaged for 25 runs) of the different MMAs on the three problems considered using the multi-island distribution
strategy in random environment. The median (%), mean (z) and standard error of the mean (o) are indicated.

TRAP H-IFF MMDP
strategy k T T +oz T T +oz T T toz
noB 20 3.75 4.03 £0.62 0.00 0.83+0.83 11.65 11.06 & 0.53

10 11.25 11.2541.00 0.00 11.89 +2.89 1498 15.10 £ 0.55
5 23.12 22.63 +1.25 3142 24.85+3.52 23.30 22.92 4+ 0.87
2 4375 43.38 +£0.81 59.72 58.66 + 0.78 3429 34.36 4+ 0.61
1 52.50 51.96 +0.55 63.89 63.49 +0.36 39.63 39.93 4+ 0.57
LBQcomit 20 5.00 476 £0.51 0.00 0.78 £0.78 13.15 11.92 £ 0.45
10 3.75 4.41 £0.56 0.00 0.67 +£0.67 10.48 10.96 4 0.47
5 5.63 5.88 +£0.72 0.00 3.97+1.51 13.15 13.21 £ 0.58
2 15.00 14.66 = 1.29 000 372+1.84 20.31 20.50 £ 0.80
1 35.62 35.15+0.89 27.02 3097 £2.41 3396 33.66 £+ 0.64
noB” 20 5.00 4.72+£0.60 0.00 0.78 £0.78 11.98 12.09 4+ 0.63
10 10.62 10.05+0.97 0.00 10.49 +£2.99 1797 16.96 + 0.61
5 25.00 24.66 = 1.29 46.01 3494 +3.46 25.13 26.16 = 0.68
2 4375 4390 +0.82 60.76 60.31 £ 0.66 36.96 36.45 +0.48
1 51.88 51.52 +0.43 64.06 63.63 +0.48 39.29 39.38 +0.42
LBQ?, it 20 3.75 4.05 +0.43 0.00 0.67 £0.67 11.32 10.93 +£0.49
10 1.25 1.52 £0.36 0.00 0.00 £ 0.00 10.15 9.88 £0.43
5 1.25 1.62 +0.37 0.00 3.72+1.53 11.65 11.17 +£0.41
2 1.88 2.28 £0.42 0.00 428 +£1.78 9.82 10.02 +0.59
1 3.75 4.65 £0.62 0.00 11.06 £2.74 7.49 6.54 +£0.61

Prepared using sagej.cls

14 International Journal of High Performance Computing Applications XX(X)

Table 9. Results (averaged for 25 runs) of the different MMAs on the three problems considered using the single-island distribution
strategy in powerlaw environment. The median (&), mean (Z) and standard error of the mean (oz) are indicated.

TRAP H-IFF MMDP
strategy k T T +toz T T +toz T T +toz
noB 20 0.00 1.02 +0.38 32.64 28.30 4+ 2.87 0.00 054+0.17

10 0.00 2.00£0.72 25.00 21.10£3.22 0.00 1.26 +0.42

5 0.00 2.75+0.79 3472 25.08 +3.44 1.50 3.154+0.87

2 1438 14.79 4+ 1.69 44,10 34.74 +£3.94 11.98 14.45 4+ 1.58

1 31.25 2998 +1.76 54.86 48.27 +3.82 2820 28.09 +1.22

LBQcomit 20 0.00 1.40 £ 0.68 23.61 19.69 + 3.33 0.00 042+0.18
10 0.00 1.10 £ 0.37 25.00 23.89 £ 3.46 0.00 0.54+0.21

0.00 1.50 + 0.57 33.33 28.00 +2.92 0.00 048 +0.17

2 250 3.50+£0.84 33.33 30.69 £ 2.49 0.00 1.57 £0.53

1 563 6.70 +:1.03 21.53 21.28 £3.01 749 7.87+0.88

noB” 20 0.00 0.40=£0.31 29.86 26.60 £ 3.14 0.00 0.60 +0.21
10 250 3.07+£0.71 30.56 23.85 4+ 3.64 1.50 2.73£0.80

10.00 9.89 +1.24 28.13 2598 +3.49 899 1028 &£ 1.15

2 2937 28.574+1.27 47.92 46.17 4+ 2.00 2696 2578 £1.14

1 39.38 39.29 + 1.52 5724 5690 £ 1.17 31.12 31.87 +1.01

LBQ’,,..; 20 0.00 1.25+£0.48 27.78 20.75 +3.59 0.00 035+0.15
10 0.00 0.75+0.43 2778 24.11 £3.12 0.00 0.3640.16

5 0.00 1.22 +0.50 23.61 2522 +3.07 1.50 1.32 £ 0.26

2 0.00 1.70 £ 0.50 26.39 21.96 £ 3.39 3.00 3.124+0.51

1 250 3.65+0.74 30.56 26.55 +2.86 300 2.714+048

Table 10. Results (averaged for 25 runs) of the different MMAs on the three problems considered using the hybrid distribution
strategy in powerlaw environment. The median (&), mean (Z) and standard error of the mean (oz) are indicated.

TRAP H-IFF MMDP
strategy k T T +oz T T +oz T T toz
noB 20 0.00 1.22 +0.37 0.00 2.89+1.62 5.99 5.53 +£0.72

10 5.00 4.9240.82 0.00 5.86+2.19 8.99 8.56 £ 0.82

5 13.12 13.77 £ 1.77 19.44 18.02 4+ 3.49 1498 15.51 +1.22

2 36.97 36.21 +1.24 55.03 5143 +2.11 29.95 30.14 +0.96

1 48.75 46.87 £ 1.36 6198 61.05 + 0.69 36.12 36.69 £+ 0.66

LBQcomit 20 0.00 0.80=£0.36 0.00 233+1.29 3.00 3.73£0.60
10 0.00 1.15+0.34 0.00 3.89+1.65 4.49 3.87 £ 047

5 0.00 1.70 + 0.45 0.00 3.78 £1.55 449 4.09 £0.51

3.75 4.26 + 0.67 0.00 11.734+£2.90 11.65 11.40 £ 0.66

1 1542 14.62 +1.30 0.00 12.25+3.07 20.31 20.35+0.78

noB” 20 1.25 2.37 £+ 0.60 0.00 2.19+1.57 4.49 5.38 £0.61
10 8.13 8.08 + 1.09 0.00 10.90 £2.73 8.99 8.80 + 0.80

11.88 11.07 £1.18 21.88 20.38 £ 3.83 1498 16.21 £1.07

2 3562 3442 4+1.23 53.30 52.08 + 1.67 31.30 30.85+0.77

1 46.88 47.04 + 1.08 61.98 60.58 4+ 0.86 36.12 3591 4+ 0.77

LBQ?, it 20 0.00 0.65+0.27 0.00 3.11+1.46 3.00 2.614+0.39
10 0.00 0.154+0.11 0.00 4.78 £1.80 3.00 3.26 +0.45

5 0.00 030£0.13 0.00 6.25+2.09 4.49 3.58 £ 0.54

2 0.00 0.65£0.33 0.00 9.61 £2.54 3.00 3.84+0.61

1 2.50 3.00 £ 0.65 0.00 794 +271 1.50 2.32+0.33

Prepared using sagej.cls

Nogueras and Cotta

15

Table 11. Results (averaged for 25 runs) of the different MMAs on the three problems considered using the multi-island distribution

strategy under powerlaw environment. The median (Z), mean (Z) and standard error of the mean (oz) are indicated.

TRAP H-IFF MMDP
strategy k T T +toz T T +toz T T+ oz
noB 20 3775 3.80%£0.66 0.00 4.61+1.94 11.98 11.66 + 0.55

10 10.62 11.544+1.19 0.00 8.67 +2.68 1581 15.52+£0.75
5 2438 25.10+£1.33 43.06 37.79 4+ 3.31 23.63 24.344+0.93
2 45.00 45.15+0.59 59.20 58.32+£0.72 36.12 35.83 +0.48
1 51.25 51.00 +0.61 63.84 63.49+0.33 39.96 39.74 + 0.60
LBQcomit 20 500 5.10£0.53 0.00 0.83+0.83 11.98 11.96 £ 0.49
10 250 3.25+0.56 0.00 1.64 £ 1.16 11.65 10.81 & 0.55
5 500 5.5040.75 0.00 2.89+1.36 11.65 11.83 £0.63
2 13.75 13.87 +0.81 0.00 11.36+£2.85 19.98 18.50 & 0.84
1 35.00 33.53+1.03 31.42 29.53 +3.16 3229 322240.75
noB” 20 437 3.80+£0.57 0.00 497 +1.88 11.65 11.50 £ 0.65
10 11.88 11.15+1.09 0.00 8.05+344 1692 16.63 +0.73
5 28.13 27.06 +1.08 42.19 38.11 £3.53 24.47 2475+ 0.85
2 4438 43.770 £0.89 61.28 60.96 + 0.31 34.62 35.24 +0.58
1 51.88 51.70 £0.50 64.06 63.71 £0.32 39.62 39.64 + 0.43
LBQ.,,.it 20 5.00 4.454+0.55 0.00 0.00 +0.00 899 9.89 +£0.50
10 1.25 1.50 £0.42 0.00 0.67 +£0.67 899 8.90+0.48
5 0.00 0.4340.16 0.00 539+1.85 8.66 8.2440.50
2 0.00 1.50 = 0.41 0.00 8.94+2.14 5,66 5.3340.50
1 375 3.99+0.64 0.00 12.17 £3.04 449 530+£0.59

Prepared using sagej.cls

	Introduction
	Materials and Methods
	Self- Properties
	Self-Optimization.
	Self-Scaling.
	Self-Healing.

	Model of the Computational Environment
	Modeling and Tackling Heterogeneity

	Results
	Experimental Setting
	Experimental Results

	Conclusions
	Numerical Results

