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Abstract. Finding Golomb rulers is an extremely challenging optimiza-
tion problem with many practical applications. This problem has been
approached by a variety of search methods in recent years. We consider
in this work a hybrid evolutionary algorithm that incorporates ideas from
greedy randomized adaptive search procedures (GRASP), tabu-based lo-
cal search methods (TS) and scatter search (SS). In particular, GRASP
and TS are embedded into a SS algorithm to serve as initialization and
restarting methods for the population and as improvement technique
respectively. The resulting memetic algorithm significantly outperforms
earlier approaches (including other hybrid EAs, as well as hybridizations
of local search and constraint programming), finding optimal rulers where
the mentioned techniques failed.

1 Introduction

Golomb Rulers [1, 2] are a class of undirected graphs that, unlike usual rulers,
measure more discrete lengths than the number of marks they carry. More for-
mally, a n-mark Golomb ruler is an ordered sequence of n distinct nonnegative
integers 〈m1, . . . , mn〉 (mi < mi+1) such that all distances mj −mi (1 6 i <
j 6 n) are distinct. Each integer mi corresponds to a mark on the ruler and the
length of the ruler is the difference mn −m1. By convention, the first mark m1

can be placed in position 0, in which case the length is given by mn.
The particularity of Golomb Rulers that on any given ruler, all differences be-

tween pairs of marks are unique makes them really interesting in many practical
applications (cf. [3, 4]). It turns out that finding optimal or near-optimal Golomb
rulers (a n-mark Golomb ruler is optimal if there exists no n-mark Golomb ruler
of smaller length) is an extremely challenging combinatorial problem. The search
for an optimal 19-marks Golomb ruler took approximately 36,200 CPU hours
on a Sun Sparc workstation using a very specialized algorithm [5]. Optimal so-
lutions for 20 up to 24 marks were obtained by massive parallelism projects,
taking from several months up to several years for each of those instances [4,
6–8]. Finding optimal Golomb rulers has thus become a standard benchmark to
evaluate and compare a variety of search techniques. In particular, evolutionary
algorithms (EAs), constraint programming (CP), local search (LS), and their
hybridizations have all been applied to this problem (e.g., [3, 9–13]).



In this paper, we present a hybrid EA designed to find optimal or near-
optimal Golomb Rulers. This algorithm makes use of both an indirect approach
and a direct approach in different stages of the search. More specifically, the in-
direct approach is used in the phases of initialization and restarting of the popu-
lation and takes ideas borrowed from the GRASP-based evolutionary approach
published in [9]. The direct approach is considered in the stages of recombination
and local improvement; particularly, the local improvement method is based on
the tabu search (TS) algorithm described in [14]. Experimental results show that
this algorithm succeeds where other evolutionary algorithms did not. OGRs up
to 15 marks (included) can now be found. Moreover, the algorithm produces
Golomb rulers for 16 marks that are very close to the optimal value (i.e., 1.1%
far), thus significantly improving the results reported in the EA literature.

2 Related Work

Two main approaches can be essentially considered for tackling the OGR prob-
lem with EAs. The first one is the direct approach, in which the EA conducts
the search in the space SG of all possible Golomb rulers. The second one is the
indirect approach, in which an auxiliary Saux space is used by the EA. In this
latter case, a decoder [15] must be utilized in order to perform the Saux −→ SG

mapping. Examples of the former (direct) approach are the works of Soliday et
al. [13], and Feeney [3]. As to the latter (indirect) approach, we can cite the work
by Pereira et al. [10] (based on the notion of random-keys [16]), and Cotta and
Fernández [9] (based on ideas from GRASP [17]). This latter paper is particu-
larly interesting since generalizations of the core idea presented there have been
used in this work. To be precise, the key idea was using a problem-aware pro-
cedure (inspired in GRASP) to perform the genotype-to-phenotype mapping.
This method ensured the generation of feasible solutions, and was shown to
outperform other previous approaches.

Another very relevant proposal has been recently presented by Dotú and Van
Hentenryck [14]. They used a hybrid evolutionary algorithm (grohea) that in-
corporated a tabu-search algorithm for mutation. The basic idea was to optimize
the length of the rulers indirectly by solving a sequence of feasibility problems
(starting from an upper bound l and producing a sequence of rulers of length
l1 > l2 > . . . > li > . . .). This algorithm performed very efficiently and was
able to find OGRs for up to 14 marks. Notice that this method requires an esti-
mated initial upper bound, something that clearly favored its efficiency. At any
rate, grohea outperforms earlier approaches and will be used to benchmark our
algorithm.

3 Scatter Search for the OGR Problem

Scatter search (SS) is a metaheuristic based on population-based search whose
origin can be traced back to the 1970s in the context of combining decision rules



and problem constraints [18]. Among the salient features of SS we can cite the ab-
sence of biological motivation, and the emphasis put in the use of problem-aware
mechanisms, such as specialized recombination procedures, and LS techniques.
In a striking example of convergent evolution, these are also distinctive features
of memetic algorithms (MAs) [19]. Indeed, although SS evolved independently
from MAs, SS can be regarded with hindsight as a particular case of MA (or, at
least, as an alternative formulation of a common underlying paradigm). There
is just one remarkable methodological difference between mainstream versions
of SS and MAs: unlike other population-based approaches, SS relies more on
deterministic strategies rather than on randomization. At any rate, this general
methodological principle is flexible. This is particularly the case in our approach,
in which we use a non-deterministic component within our algorithm. For this
reason, we will use the terms MA and SS interchangeably in the context of this
work. In the following we will describe each of the components of our algorithm.

3.1 Diversification Generation Method

The diversification generation method serves two purposes in the SS algorithm
considered: it is used for generating the initial population from which the refer-
ence set will be initially extracted, and it is utilized for refreshing the reference
set whenever a restart is needed.

The generation of new solutions is performed by using a randomized pro-
cedure that tries to generate diverse solutions. The basic method utilizes the
GRASP-decoding techniques introduced in [9]. Solutions are incrementally con-
structed as follows: in the initial step, only mark m1 = 0 is placed; subsequently,
at each step i, an ordered list is built using the n first integers l1, · · · , ln such
that placing a new mark mi = mi−1 + lj , 1 6 j 6 n, would result in a feasible
Golomb ruler. A random element is drawn from this list, and used to place mark
mi. This process is iterated until all marks have been placed. Notice that the
outcome is a feasible solution.

A variant of this process is used in subsequent invocations to this method
for refreshing the population. This variant is related to an additional dynamic
constraint that is imposed in the algorithm: in any solution, it must hold that
mn < L, where L is the length of the best feasible Golomb ruler found so
far. To fulfill this constraint, new solutions are constructed by generating two
feasible rules following the procedure described before, and submitting them to
the combination method (see Sect. 3.3), which guarantees compliance with the
mentioned constraint.

3.2 Local Improvement Method

The improvement method is responsible for enhancing raw solutions produced by
the diversification generation method, or by the solution combination method. In
this case, improvement is achieved via the use of a tabu-search algorithm. This
TS algorithm works on tentative solutions that may be infeasible, i.e., there
may exist some repeated distances between marks. The goal of the algorithm



is precisely to turn infeasible rulers into feasible ones, respecting the dynamic
constraint mn < L. Whenever this is achieved, a new incumbent solution is
obviously found.

To guide the search, the algorithm uses a notion of constraint violations on
the distances. The violation υσ(d) of a distance d in a n-mark ruler σ is the
number of times distance d appears between two marks in the ruler σ beyond
its allowed occurrences, i.e.,

υσ(d) =


 ∑

16i<j6n

1(dij = d)


− 1 (1)

where dij = mj −mi, and 1(TRUE) = 1 and 1(FALSE) = 0. The overall violation
υ(σ) of a n-mark ruler σ is simply the sum of the violations of its distances d,
i.e., υ(σ) =

∑
d∈D υσ(d), where D = {dij | 1 6 i < j 6 n}.

A move in the local search consists of changing the value of a single mark.
Since marks are ordered, a mark mx can only take a value in the interval Iσ(x) =
[mx−1 + 1,mx+1 − 1]. As a consequence, the set of possible moves is M(σ) =
{(x, p) | (1 < x < n) ∧ (p ∈ Iσ(x))}. Observe that m1 is fixed to 0, and mn is
not allowed to grow. To prevent cycling, a tabu list of movements is kept. The
list stores triplets 〈x, p, i〉, where x is a mark, p is a possible position for mark
x, and i represents the first iteration where mark x can be assigned to p again.
The tabu tenure, i.e., the number of iterations (x, p) stays in the list, is dynamic
and randomly generated in the interval [4, 100]. For a ruler σ and an iteration
k, the set of legal moves is thus defined as

M+(σ, k) = {(x, p) ∈M(σ) | ¬tabu(x, p, k)}. (2)

where tabu(x, p, k) holds if the assignment mx ← p is tabu at iteration k. The
tabu status can be overridden whenever an assignment reduces the smallest
number of violations found so far. Thus, if σ∗ is the ruler with the smallest
number of violations found so far, the neighborhood also includes the moves

M∗(σ, σ∗) = {(x, p) ∈M(σ) | υ(σ[mx ← p]) < υ(σ∗)} (3)

where σ[mx ← p] denotes the ruler σ where variable mx is assigned to p. To
intensify the search, the current solution is reinitialized to the initial ruler σ0

(in the current TS run) whenever no improvement in the number of violations
took place for maxStable iterations. The algorithm returns the best solution σ∗

found. Fig. 1 shows the complete pseudocode of the TS algorithm.

3.3 Solution Combination Method

The combination of solutions is performed using a procedure that bears some
resemblance with the GRASP-decoding mentioned in Sect. 3.1. There are some
important differences though: firstly, the procedure is fully deterministic; sec-
ondly, the solution produced by the method is entirely composed of marks taken



1. TS(σ0)
2. tabu ← {};
4. σ∗ ← σ0; σ ← σ0;
5. k ← 0;
6. s ← 0;
7. while k 6 maxIt & υ(σ) > 0 do
8. select (x, p) ∈M+(σ, k) ∪ M∗(σ, σ∗) minimizing υ(σ[mx ← p]);
9. τ ← random([4,100]);
10. tabu ← tabu ∪ {〈x, p, k + τ〉};
11. σ ← σ[mx ← p];
12. if υ(σ) < υ(σ∗) then
13. σ∗ ← σ;
14. s ← 0;
15. else if s > maxStable then
16. σ ← σ0;
17. s ← 0;
18. tabu ← {};
19. else
20. s++;
21. k++;
22. return σ∗;

Fig. 1. Pseudocode of the TS algorithm

from either of the parents; finally, the method ensures that the mn < L con-
straint is fulfilled.

The combination method begins by building a list L of all marks x present
in either of the parents, such that x < L 4. Then, starting from m1 = 0, a new
mark x is chosen at each step i such that (i) mi−1 < x, (ii) there exist n−i marks
greater than x in L, and (iii) a local quality criterion is optimized. This latter
criterion is minimizing

∑i−1
j=1 υσ(x −mj)2 + (x −mi−1), where σ is the partial

ruler. This expression involves minimizing the number of constraints violated
when placing the new mark, as well as the subsequent increase in length of the
ruler. The first term is squared to raise its priority in the decision-making.

3.4 Subset Generation and Reference Set Update

This subset generation method creates the groups of solutions that will undergo
combination. The combination method used is in principle generalizable to an
arbitrary number of parents, but we have considered the standard two-parent
recombination. Hence the subset generation method has to form pairs of solu-
tions. This is done exhaustively, producing all possible pairs. It must be noted

4 It might happen that the number of such marks is not enough to build a new ruler.
In that case, a dummy solution with length ∞ (the worst possible value) is returned.



that since the combination method utilized is deterministic, it does not make
sense to combine again pairs of solutions that were already coupled before. The
algorithm keeps track of this fact to avoid repeating computations.

As to the reference set update method, it must produce the reference set
for the next step by using the current reference set and the newly produced
offspring (or by using the initial population generated by diversification at the
beginning of the run or after a restart). Several strategies are possible. Quality
is an obvious criterion to determine whether a solution can gain membership to
the reference set: if a new solution is better than the worst existing solution,
the latter is replaced by the former. In the OGR, we consider a solution x is
better than a solution y if the former violates less constraints, or violates the
same number of constraints but has a lower length. It is also possible to gain
membership of the reference set via diversity. To do so, a subset of diverse
solutions (i.e., distant solutions to the remaining high-quality solutions in the
set – an appropriate definition of a distance measure is needed for this purpose)
is kept in the reference set, and updated whenever a new solution improves the
diversity criterion.

If at a certain iteration of the algorithm no update of the reference set takes
place, the current population is considered stagnated, and the restart method
is invoked5. This method works as follows: let µ be the size of the reference
set; the best solution in the reference set is preserved, λ = µ(µ− 1)/2 solutions
are generated using the diversification generation method and the improvement
method, and the best µ − 1 out of these λ solutions are picked and inserted in
the reference set.

4 Experimental Results

To evaluate our memetic approach, a set of experiments for problem sizes rang-
ing from 10 marks up to 16 marks has been realized. In all the experiments, the
maximum number of iterations for the tabu search was set to 10, 000, the size of
the population and reference set was 190 and 20 respectively, and the arity of the
combination method was 2. The reference set is only updated on the basis of the
quality criterion. One of the key points in the experimentation has been analyz-
ing the influence of the local search strategy with respect to the population-based
component. To this end, we have experimented with partial Lamarckism [20],
that is, applying the local improvement method just on a fraction of the mem-
bers of the population. To be precise, we have considered a probability pts for
applying LS to each solution. The values pts ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1.0} have
been considered. All algorithms were run 20 times until an optimal solution was
found, or a limit in the whole number of evaluations was exceeded. This number
of evaluations was set so as to allow a fixed average number e of LS invocations
5 Notice that the TS method used for local improvement is not deterministic. Thus,

it might be possible that further applications of TS on the stagnated population
resulted in an improvement. However, due to the computational cost of this process,
it is advisable to simply restart.



number of marks
10 11 12 13 14 15 16

hgrasp Best N/A 2.8 10.6 4.7 6.3 7.3 6.8
Median N/A 2.8 11.8 7.5 9.4 11.9 11.3

grohea Best N/A 0 0 0 3.1 4.6 5.6
Median N/A 0 7.1 5.6 7.1 8.6 10.2

MA1.0 Best 0 0 0 0 1.6 0 4.0
Median 0 0 0 0 2.4 4.0 6.2

MA0.8 Best 0 0 0 0 0.8 1.3 2.3
Median 0 0 0 0 1.6 3.3 5.6

MA0.6 Best 0 0 0 0 0.8 0 2.8
Median 0 0 0 0 1.6 4.0 6.2

MA0.4 Best 0 0 0 0 0 1.3 1.1
Median 0 0 0 0 1.6 4.0 5.6

MA0.2 Best 0 0 0 0 0 0.7 3.4
Median 0 0 0 0 1.6 4.0 6.2

MA0.1 Best 0 0 0 0 0 0.7 3.4
Median 0 0 0 0 1.6 3.3 5.6

Table 1. Relative distances to optimum for different probabilities of the MA and
the algorithms grohea and hgrasp. Globally best results (resp. globally best median
results) for each instance size are shown in boldface (resp. underlined). Results of
hgrasp and grohea are not available for 10 marks.

(e = 10, 000 TS runs). Thus, the number of evaluations was limited in each of
the instances to e/pts. This is a fair measure since the computational cost is
dominated by the number of TS invocations.

Table 1 reports the experimental results for the different instances consid-
ered. Row MAxx corresponds to the execution of the MA with a local improve-
ment rate of pts = xx. The table reports the relative distance (percentage)
to the known optimum for the best and median solutions obtained. The table
also shows the results obtained by the algorithms described in [9] (hgrasp)
and [14] (grohea). Algorithm hgrasp is grounded on the evolutionary use of
the GRASP-based solution generation method used in the basic diversification
method of our algorithm. As to grohea, it provides the best results reported
in the literature for this problem via a population-based approach, and there-
fore it is the benchmark reference for our algorithm. Specifically for this latter
algorithm, as reported in [14], the maximum number of iterations for the tabu
search was also 10, 000, the size of the population was 50, and the probabilities
pm and pX were both set to 0.6. Both algorithms (grohea and hgrasp) were
run 30 times for each ruler.

The results are particularly impressive. Firstly, observe that our memetic
algorithm systematically finds optimal rulers for up to 13 marks. grohea is also
capable of eventually finding some optimal solutions for these instance sizes,
but notice that the median values are drastically improved in the MA. In fact,
the median values obtained by the MA for these instances correspond exactly



0.1 0.2 0.4 0.6 0.8 1.0
0.1 • − + + − − − − + + + − − − − + + + − − − − + + + − − − − + + + − − − −
0.2 − + + − − − − • − − − − − − − + + − − − − − + + − − − − − + + + − − − −
0.4 + + + − − − − − − − − − − − • + + − − − − − + − − − − − + + + − − − − −
0.6 + + + − − − − + + − − − − − + + − − − − − • + + − − − − − + + + − − − −
0.8 + + + − − − − + + − − − − − + − − − − − + + + − − − − − • + + − − − − −
1.0 + + + − − − − + + + − − − − + + − − − − − + + + − − − − + + − − − − − •

Fig. 2. (Top) Computational effort (measured in number of TS invocations) to find
the best solution. (Bottom) Statistical comparison of the computation effort. In each
cell, the results (‘+’=significant, ‘−’=non-significant) correspond from left to right to
instance sizes from 10 up to 16.

to their optimal solutions. Comparatively, the results are even better in larger
OGR instances: our MA can find optimal ORGs even for 14 and 15 marks,
and computes high-quality near-optimal solutions for 16 (i.e., 1.1% from the
optimum). These results clearly outperform grohea; indeed, the latter cannot
provide optimal values for instance sizes larger than 14 marks. Moreover, all
MAxx significantly improve the median values obtained by grohea on the larger
instances of the problem. These results clearly indicate the potential of hybrid
EAs for finding optimal and near-optimal rulers.

We have also conducted statistical tests to ascertain whether there are sig-
nificant performance differences between the different LS application rates. This
has been done using a non-parametric Wilcoxon ranksum test (results are not
normally distributed). Except in three head-to-head comparisons for 14 marks
(pts = 1.0 vs pts = 0.8 and pts = 0.1, and pts = 0.4 vs pts = 0.1), there is
no statistically significant difference (at the standard 0.05 level) in any instance



size for the different values of pts. While this is consistent with the fact that the
average number of TS invocations is constant, it raises the issue of whether the
associated computational cost is the same or not. The answer to this question
can be seen in Fig. 2. As expected, the computational cost increases with the
size of the problem. Quite interestingly, the average cost decreases for 16 marks.
This behavior owes to the higher difficulty of the problem for this latter size:
the algorithm quickly reaches a near-optimal value (a remarkable result), and
then stagnates (longer runs would be required to improve the solutions from that
point on). The table at the bottom of Fig. 2 shows the outcome of the statistical
comparison between the computational cost of the MAxx for a given instance
size. As it can be seen, the differences are almost always significant for the lower
range of sizes, and progressively become non-significant as the size increases. For
16 marks, there is just one case of statistically significant difference of computa-
tional cost (pts = 0.4 vs pts = 0.8). Since the small values of pts imply a lower
computational cost for instance sizes in the low range, and there is no significant
difference in either quality or computational cost with respect to higher values
of pts in the larger instances, it seems that values pts ∈ {0.1, 0.2} are advisable.

5 Conclusions

We have presented a memetic approach for the optimal Golomb ruler problem.
The MA combines, in different stages of the algorithm, a GRASP-like procedure
(for diversification and recombination) and tabu search (for local improvement)
within the general template of scatter search. The results of the MA have been
particularly good, clearly outperforming other state-of-the-art evolutionary ap-
proaches for this problem. One of the aspects on which we have focused is the
influence of the LS component. We have shown that lower rates of Lamarckism
achieve the best tradeoff between computational cost and solution quality.

We are currently exploring alternatives for some of the operators used in our
algorithm. Preliminary experiments with multi-tier reference sets –i.e., including
a diversity section– do not indicate significant performance changes. A deeper
analysis is nevertheless required here. In particular, it is essential that the par-
ticular distance measure used to characterize diversity correlates well with the
topology of the search landscape induced by the reproductive operators. Related
to this issue, we plan to test alternative recombination methods based on exhaus-
tive techniques used in constraint programming. Defining appropriate distance
measures in this context (and indeed, checking their usefulness in practice) will
be the subsequent step.
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