The Template Design Problem: A Perspective
with Metaheuristics

David Rodriguez Rueda!, Carlos Cotta?, and Antonio J. Ferndndez-Leiva?

! Universidad Nacional Experimental del Tachira (UNET), Laboratorio de
Computacién de Alto Rendimiento (LCAR), San Cristébal, Venezuela,
drodri@unet.edu.ve
2 Universidad de Malaga, ETSI Informética, Campus de Teatinos, 29071 M4laga,
Spain, {ccottap,afdez}@lcc.uma.es

Abstract. This paper deals with the template design problem, a hard
constrained combinatorial problem with multiple applications. This prob-
lem is here formulated as a two-level combinatorial optimization problem
whose solutions are integer matrices. In the higher level, a metaheuris-
tic tackles the design of a collection of templates containing multiple
instances of a set of components to be produced; in the lower level an
integer linear programming solver is used to determine the optimal num-
ber of times each template has to be pressed in order to fulfill production
requirements as closely as possible. Three metaheuristics, i.e., hill climb-
ing, tabu search, and genetic algorithms, have been considered in the
higher level, and LPSolve, a simplex-based software for linear and inte-
ger programming problems, in the lower level. An empirical evaluation on
three scenarios of increasing complexity has been performed, indicating
the better performance of genetic algorithms. These results are compa-
rable to those shown by sequential ILP models, and hint the possibility
of hybrid approaches.

1 Introduction

Many problems in the area of manufacturing are related to reducing the waste
of the raw material used in the production process. This is precisely the case of
the Template Design Problem (TDP) considered in this article. The TDP arises
in industrial settings in which variations of certain products must be produced,
each of them requiring a particular packaging (typically with different printing
patterns). The production of these packages must be accomplished minimizing
the use of cardboard (or any other raw material used). Appropriate templates
for printing these packages must then be designed, hence leading to the TDP —
see Sect. 2 for a more detailed description of the problem.

Several methods have been proposed in the literature to attack this problem,
which turns out to be extremely hard. Our proposal is based on the use of
metaheuristics, which to the best of our knowledge is a novel approach for this
problem. More specifically, we consider both local search methods —i.e., a steepest
descent hill climbing (HC) algorithm and tabu search (TS)- and population-
based techniques, i.e., a genetic algorithm (GA) — see Sect. 3. These techniques

are deployed on the TDP aiming to find adequate template designs. Such designs
must be evaluated in terms of the optimal usage that can be done of them. For
this purpose, an ILP model shown by Proll and Smith [8] is used and solved
with an exact method, hence leading to a two-level optimization approach. As
it will be shown in Sect. 4, the resulting techniques can effectively provide high
quality solutions when applied to several instances taken from the literature.

2 The Template Design Problem

The template design problem was first described by Proll and Smith [8] who
observed this problem arising at a local color printing firm. Roughly speaking, we
can assume a certain product is manufactured with several variations (e.g., cereal
flakes of different flavors), each one requiring a similar —but different— packaging.
In order to produce the latter, a printing machine is used. This machine is
configured with a certain template, which is subsequently pressed on sheets of
raw material (e.g., cardboard). Given the large number of items required, a
template comprises several slots, each of them filled with a certain variation of
the product, which are printed on each pressing. In addition, there can be more
than one such template. This means that the problem is twofold: (i) determine
the design of each template, namely which variations are included in each slot,
and (ii) determine the optimal usage of these templates. The last point requires
a certain criterion to be optimized, for example minimizing the manufacturing
time (i.e., minimizing the number of pressings) or minimizing the waste, given
the known demands of each variation. We consider here this latter criterion, i.e.,
optimize the use of raw material.

In order to solve subproblem (ii) above, an ILP formulation provided by
Proll and Smith is used. Let V' be the number of variations to be produced;
let there be T' templates 17, - ,T,, each of them with S slots. Notice that the
particular slot in which a variation is placed is irrelevant: it only matters how
many instances of a certain variation are contained in a given template. Thus,
let p;; be the number of instances of variation ¢ in template 7). Now, let @; be
the demand for variation ¢ (deterministic and known; see [6] for an approach
under uncertainty), and let us assume that we have production tolerances [;, u;
for each variation, i.e., we can afford up to a certain underproduction Q;l; or
overproduction Q;u; for each variation i. Then, the resulting problem is

p= min » (Ui+0i) (1)
subject to:
Y PR +Ui—0i=Qi 1<i<V)
j=1...T
> PR > (1-1)Qi, 1<i<V (3)
j=1...T
Y pyR; < (1+w)Qi, 1<i<V (4)

j=1..T

R; >0, 1<j<T (5)
U,0;, >0, 1<i<V (6)

where U; and O; are slack variables that respectively represent the underpro-
duction and overproduction of variation ¢, and R; denotes the number of times
template j is punched (pressed). This ILP problem can be solved using an appro-
priate exact technique such as branch and bound or branch and cut. Of course,
there still remains the problem of determining the design of the templates, used
as input in this ILP formulation. This is precisely where metaheuristics come
into play.

3 Solving the TDP under Deterministic Demand

The TDP exhibits a clear combinatorial structure, and can be readily trans-
formed in an optimization task. We have approached this challenging resolution
via two local search techniques (HC and TS) and a population-based technique
(GA), which will be described below. To this end, let us firstly define the repre-
sentation used, as well as possible neighborhood structures.

3.1 Representation and Evaluation

The matrix model provides a very natural way of representing the problem.
Taking the model suggested by [10] each candidate solution is represented by
a matrix M = {p;; }v xr, where as mentioned before p;; € {1,---,S} indicates
the number of copies of variation 7 in template 7. We enforce the constraint

V] . Zpij = S. (7)

Notice the inherent symmetry of the representation: columns (i.e., templates) can
be arbitrarily reordered. However, this representation does break the symmetry
inside templates (i.e., it only matters how many but not which slots are used by
each variation).

The initialization of candidate solutions can be done randomly (i.e., assigning
a random variation to each slot) or via some ad-hoc heuristic. In the latter case,
we can consider the process shown in Algorithm 1. It essentially amounts to a
biased random initialization in which variation are given slots with a probability
proportional to the fraction of the total demand they represent. A correction
mechanism was also used to avoid that some variation was associated to no slot.
This means to impose the constraint

T
VieV: Yy piy>0. (8)

j=1

Given this representation, a simple neighborhood has been considered by re-
assigning a single slot in a template to a different variation. Given the constraint

Algorithm 1: Pseudo code of initialization under demand (ID)

1 begin
p < INITIALIZETEMPLATE(T, V);
// Computes the fraction of the demand for each variation.

3 pq + COMPUTEPROBABILITIES(Q);
4 for i<+ 1toT do

// Fills the i-th template according to pq.
5 ROULETTEFILL(p, pq, i, V);

// Computes a heuristic number of pressings for the i-th
// template and updates probabilities according to the
// remaining demand.

6 R < minj=1 v {(1 - L;)Q;/pij | pij > 0}
7 for j < 1toV do

8 | Qj « Qj — Rxpij;

9 end for

10 pq < COMPUTEPROBABILITIES(Q);

11 end for

12 end

mentioned previously, this means that a variation with non-zero appearances
in a certain template must be selected (i.e., find a certain p;; > 0), its count
number has to be decreased and subsequently the number of copies of another
variation in the same template must be increased. For the sake of efficiency, the
variation ¢ whose number of copies is decreased is selected such that jPij >1
since otherwise its total count number across all templates could drop to zero
and hence no copy of it could be printed at all — recall Eq. (8). Notice that the
maximum size of the neighborhood is ©(TV?).

In order to evaluate a certain solution, the ILP model is solved by using
1p_solve [2], a simplex-based software for linear and integer programming prob-
lems, and the returned value (the waste) is minimized. Notice that it may be pos-
sible that no feasible solution exists for an arbitrary configuration of templates,
i.e., the target production cannot be reached within the desired tolerances. If
the solver indicates that this is the case, the problem is relaxed by removing the
overproduction constraint and a penalty term is added.

3.2 Metaheuristic Approaches

The hill climbing (HC) approach and a tabu search [3,4] (TS) algorithm were
defined on the basis of the neighborhood structure mentioned before.

The HC algorithms follow a steepest-descent procedure: the neighborhood of
the current solution is partially explored and the best solution is chosen unless
it is worse than the current one; if this is the case, the current solution is a
local optimum, and the process is re-started from a different point (randomly
or heuristic chosen) until the computational budget allocated is exhausted. Re-
garding the TS algorithm, the neighborhood is handled in the same way as in

the algorithm HC, moving to the best non-tabu neighbor even if it is worse than
the current solution. A move is tabu if attempts to reverse a slot reassignment
{p;;+, p,;j_} previously done and stored in the tabu list; here the notation pﬁ'

(resp. p,;j_) indicates that the number of copies of variation ¢ (resp. k different
from i) in template j have been increased (resp. decreased) in one occurrence.
To prevent cycling, the tabu tenure —i.e., the maximum number of iterations a
tabu move stays in the list— is chosen randomly in the range [3/2,33/2], where
B = V2T. The tabu status of a move can be overridden if the aspiration crite-
ria is fulfilled, namely, finding a solution better than the current best solution
found so far. After a number of n, evaluations (a parameter that we will set as
a function of the total number of evaluations) with no improvement, the search
is intensified, by returning to the best solution found so far.

In addition to the local search approaches mentioned before, a genetic algo-
rithm [1] (GA) is also considered. This GA handles a population of candidate
solutions that are iteratively selected, bred and replaced. To be precise selection
is done by binary tournament, and replacement is done following a (p, 1)—policy,
i.e., a new individual is generated and inserted in the population replacing the
worst one. As to breeding, it is done by recombination and mutation as usual.
The recombination operator used is a variant of uniform crossover (UX) [9]:
firstly, the templates are compared to find the best matching among them (re-
call the symmetry of the problem, and the fact that templates can be arbitrarily
reordered). Subsequently, a template-level exchange of information is done, by
randomly choosing a template out of each pair of matched templates (one from
each of the parents). Notice that this amounts to a column-wise exchange in
matrix M = {p;;}. The mutation is handled the same way as in the previously
mentioned neighborhood.

A final remark must be done regarding the overall resolution approach: an
incremental process is attempted, by trying first to solve the problem with a low
number of templates (e.g., one template), and then using the solutions found in
this scenario as initial solutions (either for local search or for inclusion in the GA
population) for the resolution of the problem with a higher number of templates.
To this end, the candidate solutions must be obviously completed (e.g., a solution
for the problem with T' = 1 needs to be expanded with an additional template
to be a tentative solution for the problem with 7' = 2). this is done following the
same initialization techniques sketched above.

4 Experimental results

Three instances of the problem, with the same demand requirements as those de-
scribed in [8], has been considered for the experiments. Table 1 shows a summary
of the results obtained by Proll and Smith (see Tables 3 and 7 and equations
from (7)—(10) in [8].

All our algorithms have been run 20 times per problem instance. The num-
ber of evaluations for each scenario is subject to the number of variations and
templates: n, = 1000-7 -V - (V — 1) - %,, where %, represents the percent-

Table 1. Result for the TDP instances in [8].

sequential ILP solutions

Problem No. Template Overall % Dev. Maximum % Dev.
Cat Food Cartons 3 —2.59 —7.27
Herbs Cartons 3 —2.91 —8.70
Magazine Inserts 4 —2.49 —10.00

goal program adjustment of constraint programming solutions

Problem No. Template Overall % Dev. Maximum % Dev.
Cat Food Cartons 3 -14 -1.9
Herbs Cartons 2 —3.2 +10/ — 6.7
Magazine Inserts 3 —24 +7.4/—83

Table 2. Results for Hill Climbing (20 runs per instance).

Problem Number of Templates Templates Pressings Overall Desv. T.Desv
Cat Food 2 0,0,0,0,0,2,7 157143
1,1,1,2,2,2,0 250000 0.80 -3.85/ 1.79
3 0,1,1,0,0,7,0 7143
150000
250000 0.14 -1.10/ 0.84
Hb.Cartons 2 10,
1, 16669
[
1, 65554 2.98 -8.64/ 9.88
3 0,
3, 3333
(©
1, 16666
[,
1, 63335 0.76 -4.76/ 7.41
Mz Inserts 3 [0,0,0,0,0,0
3,3,0,3,3,0,0 21666
[0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,
1,1,1,1,1,1,1,0,1, 11,0,1,0,1,1,1,0,1,1,1, 135000
[11,1,1,1,1,0,1,0,0,
0,0,10,0,1,1,2,1,1,0, 3.0.1, 3 83333 5.83 -10.00/ 66.67
3
12500
25000
125000
75000 2.60 -4.41/ 50.00

age of neighbors to be evaluated (note that a full exploration schema of the
neighborhood is very costly) with V' = 50 and T = 4, evaluating just 5% of the
neighborhood means to evaluate 4.9 - 10° neighbors- and thus a partial explo-
ration policy was considered). For LS algorithms we set n, = n, /10. As to the
GA, we set population size= 100, crossover and mutation probabilities px = .9
and pyr = 1/(VT).

Tables 2 and 3 show the results obtained by applying HC and TS respectively.
Initially the LS algorithms were executed with %, = 5% and %, = 1% respec-
tively for the instances Herbs Cartons and Magazine Insert but the performance
was poor; as to the less complex scenario, that is to say Cat food, we employed
a full neighborhood exploration schema but again the results were really poor.
After executing a number of preliminar experiments, we set %, to 50% for Cat
Food, 10% for Herbs Cartons, and 5% for Magazine Inserts. Observe that TS
provides the best results, and that both TS and HC provides better results in the

Table 3. Results for Tabu Search (20 runs per instance).

Problem Number of Templates Templates Pressings Overall Desv. T.Desv
Cat Food 157143
250000 0.80 -3.85/ 1.79
3 7143
150000
250000 0.14 -1.10/ 0.84
Hb.Cartons 2
16400
66000 3.02 -8.44/ 10.00
3
3274
17091
63090 0.73 -2.73/ 8.08
Mz.Inserts 3
38250
150000
50000 4.00 -10.00/ 42.86
s
27750
38250
111750
55000 2.59 -8.33/ 10.00

instances Cat Food and Herbs Cartons but worse in the instance Magazine insert
with 4 templates than those given in [8]. The results for the GA are provided in
Table 4. The GA matches the results obtained by the LS methods in the smaller
instances but outperforms them in the most complex scenario (i.e., em Magazine
Insert) producing here results close to those reported by Smith and Proll.

5 Conclusions and Future Work

The application of metaheuristics to the template design problem has resulted in
very encouraging and positive results. An empirical comparison of three different
techniques (i.e., a hill climbing method, a tabu search algorithm, and a genetic
algorithm) has been conducted in an incremental scenario. The results of the
population-based approach are better than those of the LS approaches, and
get very close to (and actually in two out of three instances improve) the results
reported in the literature for this problem, without requiring manual intervention
as in [8].

We believe that further improved results can be attained with a hybrid pro-
posal combining different algorithmic approaches, i.e., a memetic combination
of HC/TS and GAs [5]. The form of this combination is an issue of further work.

Acknowledgements This work is supported by project NEMESIS (TIN-2008-
05941) of the Spanish Ministerio de Ciencia e Innovacién, and project TIC-6083
of Junta de Andalucia.

Table 4. Results for Genetic Algorithms (20 runs per instance).

Problem No. Template Templates Pressings Overall Desv. T.Desv
Cat Food 2 1,1,1,2,2,2,0 250000
0,0,0,0,0,2,7; 157143 0.80 -3.85/ 1.79
3 T,1,1,2,2,2,0 250000
0,0,0,0,0,2,7 150000
7143 0.14 -1.10/ 0.84
Hb.Cartons 2 T
1, 66000
(]
1 16400 3.02 -8.44/ 10.00
3 T
1, 62944
[0,
17348
3236 0.76 -2.36/ 8.49
Mz.Inserts 3
150000
54500
30500 3.65 -9.75/ 10.00
4
140000
55000
30000
10000 1.41 -6.00/ 10.00
References

=~

10.

. Béck, T., Fogel, D., Michalewicz, Z.: Evolutionary Computation 1: Basic Algo-

rithms and Operators. Institute of Physics Publishing (2000)

Berkelaar, M., Eikland, K., Notebaert, P.: 1p_solve, open source (mixed-integer)
linear programming system (2004), http://Ipsolve.sourceforge.net/5.0/

Glover, F.: Tabu search — part I. ORSA Journal of Computing 1(3), 190-206 (1989)
Glover, F.: Tabu search — part II. ORSA Journal of Computing 2(1), 4-31 (1989)
Moscato, P., Cotta, C.: A modern introduction to memetic algorithms. In: Gen-
drau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics (2nd Edition), Inter-
national Series in Operations Research and Management Science, vol. 146, pp.
141-183. Springer-Verlag, New York (2010)

Prestwich, S.D., Tarim, S.A., Hnich, B.: Template design under demand uncer-
tainty by integer linear local search. International Journal of Production Research
44(22), 4915-4928 (November 2006)

Proll, L., Smith, B.: ILP and constraint programming approaches to a template
design problem. INFORMS Journal on Computing 10, 265-275 (1997)

Proll, L., Smith, B.: ILP and constraint programming approaches to a template
design problem. Tech. Rep. 97.16, School of Computer Studies — Research Report
Series (1998)

Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J. (ed.) 3rd
International Conference on Genetic Algorithms. pp. 2-9. Morgan Kaufmann, San
Mateo, CA (1989)

Uppsala, P.F., Flener, P., Frisch, A.M., Hnich, B., Kzltan, Z., Miguel, I., Walsh, T.:
Matrix modelling. In: CP-01 Workshop on Modelling and Problem Formulation.
International Conference on the Principles and Practice of Constraint Program-
ming (2001)

