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ABSTRACT

This work studies a mechanism for reducing
computational cost of heuristic recombination offes The
mechanism is based on adjusting the size of theayfacmae
processed during recombination. Using the Dyndstica
Optimal Forma recombination framework as a testehatlis
shown that the computational cost can be drambtical
reduced. Moreover, intermediate granularities se&m
provide the best tradeoff between the computatiocnat and
the quality of the results.

Keywords

Genetic Algorithms, Heuristic Recombination, Sciigb

1. INTRODUCTION

Although evolutionary algorithms were originallywiged as
robust and general techniques, the necessity ofpocating
problem dependent knowledge has been shown tosbrereg
requirement both in theory [6,14], and practice. [fhese
problem-adapted algorithms are usually termégbrid
algorithms. As it can be seen in most applicatideried
scientific papers, there exists a plethora of meigmas for
carrying out hybridization. One of the most popular
techniques is the integration of a heuristic donts@pendent
algorithm within the evolutionary algorithm, e.d, local
search procedure [8,9], a construction heuristi8],[lan
exhaustive search algorithm [1], etc.

the

One of the most common problems of using theseidhybr
approaches is the increased computational costhef t
resulting algorithms (for example, consider theecamany
smart recombination operators that build locally optimal
offspring). This work studies a mechanism for aliéng this
problem, based on tuning the so-called granulasitythe
representation. The DOR framework [3] is used tesafield
for this mechanism. This choice has been made Beazfithe
strong heuristic behavior of DOR and its sensitasmnto the
problem dimensionality. Nevertheless, the pringple
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described can be generalized to other heuristiceuhares.

The remainder of the article is organized as foofirst,
some basic concepts and background information hen t
DOR operator are given in Sect. 2. Subsequentlg th
functioning of the operator is detailed in Sectin®oducing
the concept of granularity of the representationd an
evaluating its influence in the computational caoétthe
algorithm. Next, experimental results regarding éffects of
modifying the granularity are reported in Sect. Hnally,
some conclusions are presented in Sect. 5, oudlifuture
work as well.

2. DYNASTICALLY OPTIMAL FORMA
RECOMBINATION

This section is intended to provide some background
information on the functioning of the DOR operatbirst of

all, let= = {y;, ---,¢,} be a set ofs independent equivalence
relations defined over the search spasech that

OwOls OyOs O (1<i<n): ¢(x,1) =0, (1)

i.e., no pair of solutions share membership to $aene
equivalence classes for all equivalence relatiors.iln this
case,= is said tocover the search space, and each solution
x[Js can be univocally representedxas {7, ---17,} where rj;

is the equivalence class (for the sake of simpliditg, same
symbol used to denote an equivalence class iszedilifor
labeling it) to whichx belongs undery;. Each of these
equivalence classes is termeblaic forma [10].

Now, letx = {n;, ---n,} andy ={{,, ---{,} be two feasible
individuals. Thedynastic potential of x andy is defined as

r@xo) = @wod, 2)
I<i<n
i.e., the set of individuals that can be constmictsing
nothing but the information containedxirandy. Next, letX:
S x $§ xS - [0,1] be a stochastic recombination operator
(whereX(x,y,z) is the probability of generatingwhen recom-
biningx andy). Theimmediate dynastic span of x andy is

O/ {0 ={z|X(x22)>0}. ®)

If T/{x, y) OT({x »}), X is said to be aransmitting
operator. An example of such an operator is thedBian
Transmitting Recombination operator [12] defined as

Q7 Tx D1 00> 0h

RTR(x,y,z) = BD otherwise )



Thus, RTR returns a random member [ x, »}), all

individuals having the same probability of beindested,
e.g., uniform crossover in binary representatidssstated in
[3], this uniform selection is inappropriate if jtem-
dependent knowledge is available. For example,idenshe

case in which= is orthogonal, i.e., all combinations of

formae induced by different equivalence relatione a
feasible. In this case, it is clear that
F{x ) ={=z={&.-& H (&=n) O(&=4) }- ©)

Hence, RTR would simply select at
independently whethet1r; or zOJ,. However, if the formae
are epistatic, the contribution of each formto the fitness of
an individualxdn depends on the other formae to which

subsection). The parametgris termedgranularity of the
representation. Now, it is necessary to use a monotonic
function @* #(S) — IR verifying that

1. xOs: @{{x}) = ¢x), (10)
2.0s0dfs]: s < &), (11)
3.0%05 HOdR]: r< $(R), and (12)
4.0%0 5 MI0R: 9(7) < P(R) - (13)

Actually, ¢’need not be defined over all arbitrary sets of

random and Solutions but just on sets defined by the intersacof the

basic formae induced b¥. This function comprises the
available knowledge about the fithess functiog
proportionating optimistic estimations of partiakypecified

be|0ngs_ Hence, RTR may reduce to macromutationtdue solutions. These estimations are used to deterthmerder

the fact that the context in which a certain foimanmersed
is very likely to be disrupted.

The Dynastically Optimal Forma Recombination Oparat
(DOR) tries to solve this problem by consideringtiph
knowledge about the fitness function. To be predistep: §
- IR be the fitness function, using the notatigh®] to
represent the image af 0 s underg@ Assume that a partial
order relationk is defined ovew[s], such thak is better than

in which the formae¥,/ are generated. They are also used to
discard those formae for whiafes<@{ Y7), where @eq be
the fitness of the best-so-far generated solufidvis value is
updated whenever a form#’ such thatg{ W/ )<@es iS
generated. InitiallygesJinf { d5]}).

3.2 Basic Granularity of the Representation
The structure of the construction units (and herice
granularity parameteg) is determined by the characteristics

y if, and only if, ¢(x) < @(y). Then, DOR is defined as a of the representation. The simplest scenario it ithavhich

transmitting recombination operator for which

DOR(, y,2) > 00 ¢(z) Osup (@[ {xp})]) (6)
holds. Hence, DOR returns the best individual (oe of the
best individuals) of the dynastic potential. Notiteat,
ideally, it would be desirable that DOR defined m@farm
probability distribution over all members of thepseme set
sup_(@[l {x}])- Nevertheless, this is difficult to achieve in
many situations for practical reasons. As a maifeiact, it
may be hard even finding a single member of this ae
shown in next section.

3. REPRESENTATION GRANULARITY

According to the definition of the DOR operator @ivin
Sect. 2, an exhaustive search must be performethen

the representation is orthogonal. In this case,amedrding to
Eq. (5), the dynastic potentidi({x, y}) is the Cartesian
product of all pairs §;, ¢}, xOn, yOf, 1 < i < n. For this
reason, it is possible to extend any partially 8getsolution
by considering a single basic forma at a time, i.e.

(W, w,u)=5(W/, {&, &L w=& . (14)

This small granularity g=1) is not always possible if the
representation is non-orthogonal. As an examplesider the
position-based representation of permutations [2b]this
representatiore = {¢;, ---, ¢}, where ¢(x, y) = 1 if, and
only if, x andy have the same element in thb position.
Each of these equivalence relatiogisinducer equivalence
classesr;, each one comprising all solutions in whigh

dynastic potential ({,y}) in order to determine the returned occurs in theith position. Clearly, using the construction

child. For this purpose, the most efficient optierto use an
A*-like mechanism for incrementally constructinglg@mns.

units defined in Eqg. (14) would be a waste of cotapanal
resources since many of the generated formae vwmsider

This mechanism is described below in more detail,repeated elements and hence would be empty (i.e.,

introducing the concept of granularity of the regemtation.

3.1 The Internal Functioning of DOR

Let W/, 0<i<n, 2'<;j< 21, represent a forma of order

i.e., apartially specified solution whose membership ito
equivalence classes is specified (or, alternatjubky set of all

solutions that belong to the currently specifiediieglence

classes). Initially; =.s; subsequently,

Wi=Wnx(¥ , xy), and (7)

Wit =W (W, y) (8)

are considered, where thenstruction units (W, , w, u) are
defined as

S(Wowawy= (& wl&
I<ks<g
i.e., the intersection of some of the basic formaegelongs to
(the purpose of the third parametewill be seen in the next

9)

infeasible). Moreover, even when a particular foria/
were not infeasible per se, it might happen tat n ' ({x,
v} ={}. This would be detected when at a further stephbo
(W, x,y)andZ(W/, y, x) were empty for all descendants
of W/. All the computational effort needed to extettf to
W,/ would have been useless.

In the above-mentioned case, construction units fmeisnore
complex. To be precise, let thempatibility set of a basic
forman (x O n) be defined as

KW/ .n,xy) = (¥ nT{x) nnam= (15)

i.e., the intersection of all formag, (x(r;) that must be
included along withn to preserve feasibility within the
dynastic potential. Then, the construction units lsa built as

S(W o wou) = K(W/ & w,u), (16)
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where & (wé) is a forma not yet considered i/ .
Considering again the example of position formae,
compatibility sets are recursively defined as fato

,701) DK( Lpijvnabv X,y) (17)

Nea DK( l.|J[/ 1’7¢7b1x1y)1yD’7a’1XD’7ﬁ>D ,7_/’0 DK( lp,/ 1’7:1b1x1y)- (18)
These compatibility sets are termadies, and constitute the
basic units that can be transferred from parentsfgpring in
order to have a transmitting recombination of posit
formae. Notice that the user does not have exgaitrol on
the size of these cycles.

3.3 Granularity and the Complexity of DOR
The granularity of the representation has an urigpresble
impact on the time complexity of the algorithm. Gmlter that
the size of the dynastic potential is O2wherem is the
number of construction units that can be identifindthe
selected individuals. Thus, in the case of orthadon
representations, the size of the dynastic poteistifl{x, y})|
= 2" since each construction unit comprises a singlmdo
Obviously, this size is only relevant when epigtass
involved. Otherwise, DOR must simply scan the relciowed
individuals, selecting the formae that individuatiptimize
the fitness function. Hence it has linear-time ctaxipy.

In the case of epistatic representations, the esptial
growth of the dynastic potential becomes very ingur As
an example, Figure 1 (left) shows the time requifed
performing one hundred recombinations of randomly
generated individuals as a function of the dimeamelity of
the problem. To be precise, the design of a braohlgsone
[7] and the Rosenbrock function have been tisad it can
be seen, the computational cost grows extremely fias

! These two problems are defined over real-valugthives.
Different definitions of formae are possible in shtase
(e.g., see [11]. The equivalence relatiahfx ,y) =1 =
(x; = ;) have been used in this work.

dimensionalities above 10 in the first problem dridin the
second one, thus confirming the influence of thenber of
construction units. Of course, there exist othectois
affecting the time complexity of the operator, nmthe
amount of knowledge used in tigefunction. If this function
were defined to return a constant value for undmifipd
solutions (i.e., if no problem-knowledge were usddpR
would reduce to an exhaustive enumeration of athbes of
the dynastic potential and henceidividuals would have to
be evaluated. On the contrarygifprovides good estimations
of the fitness function this quantity can be draogsly
reduced, so as to become affordable for a cerege of
dimensionalities.

It is interesting to notice that, as the algoritltonverges,
individuals tend to be more similar and hence thlgimastic
potential is reduced. To be precise, suppose that t
individuals to be recombined share membership &etaof
basic formae® = 6, n --- n g, If the representation is
separablé? (i.e., it is possible to create a childn {n & pro-
vided thatx(06n ¢, andy06n & where6,  and £ are any three
basic formae), it is clear th&{{x,y}) O ©. The search can be
subsequently started froW; =0, thus, reducing the search
space to, at most,?' solutions.

Nevertheless, it must be taken into account thatnevhen
the above consideration is true, it does not necigsmply
that the number of construction units in non-ortrea
representations decrease as well. As an exampkdarthe
permutations 12345678 and 23156784. From the paint
view of position formae, they do not belong to @mynmon
basic forma, existing two compatibility sets in leac
permutation: {12#mmmm} and {mmm45678} from the first
one and {23mmmmm} and {mmm56784} from the second

2 Non-separable representations (e.g., the edgetbagee-
sentation of permutations) are difficult to hanfileseveral
reasons (see [2]). Thus, they are deferred totaduwork.
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Figure 2 (Left) Times required for performing 100 recombinatiohsamdom individuals in the brachystochrone
design problem. The results are shown for diffegranularities(Right) Lowest dimensionalities for which the
time required for performing 100 recombinationsaxfdom individuals is greater than 30 seconds.

one. Thus, there aré Bolutions in their dynastic potential.
On the other hand, the permutations 12345678 aBd6EB7
belong to two common position formae. However, ¢hexist
three compatibility sets in each of themm2CEEEEE},
{mmmm56mm} and {wmmmEmm78} in the first one and
{m3’ummnn}, {EmEmGSEEm} and {mEmEEES7} in the
second one. Hence their dynastic potential A@®Ritions.

This effect is illustrated in Figure 1 (right), mvhich the
evolution of the number of non-trivial constructiamits
considered during recombination is shown for a 1FEM
instance of 100 elements (theEMP is a generalization of
the min-permutation problem presented in [3], inickihk
indicates the degree of epistasis). As it can ba,3he size of
the dynastic potential of recombined solutions graluaring
the initial stage of the search, reaching a maxirafter a few
thousands of recombinations, decreasing and mgjlfrom
that point.

3.4 Tuning the Representation Granularity

As discussed in the previous subsection, the siz¢h®
dynastic potential plays an important réle in
computational cost of DOR. If this cost becomeshjiritive
for the dimensionality of the problem under congadien, it
may be appropriate to modify the granularity of the
representation so as to reduce the number of oohiti
comprised in the dynastic potential.

the

First of all, consider the case of orthogonal repngations.
The granularity may be increased by making constmc
units contain more than one basic forma. Thesederoan be
selected at random or using a priori knowledge aliba
epistatic relations of these formae. To be predis¢he two
orthogonal problems considered, there exist estalations
between adjacent variables. For this reason, ¢bis/enient
to choose consecutive variables, thus preservilagger part
of their context. Hence,
(W, w,u)=5(W/, {&,

"fn}: u) = ﬂ{ﬁk .

I<k<min(g,n—i)

(19)

Figure 2 (left) shows the results of the same bewck
depicted in Figure 1 (left). As it can be seen, withe
granularity is increased, the algorithm reduces
computational cost, being capable of tackling lamg®blem
instances. Moreover, and as it can be seen in &ig\right),
there exists a very good linear relation betweer th
granularity of the representation and the highdfsirdable
dimensionality of the problem when a constant caaanal
cost is kept.

its

A similar approach can be taken when the representis
non-orthogonal although, in this case, compatpiliets
rather than single basic formae must be joineds Thithe
underlying idea of thélock representation [2]. A block is a
macro-compatibility-set that can be defined asdiosure of
the following expressions:

x U O [K(W My x, ) DB(W by x, )] (20)
x O ,7:b1 (,71'00,7/11) u B(Lp/ ’ k: X, y), r<s<td
O [K(W/ s, x y) OB(W/ kx, )] (21)

Figure 1 (right) illustrates the evolution of thizes of the
dynastic potential of recombined solutions using thHock
representation. Notice that, comparing with the océral
position representation, this size is more than orger of
magnitude smaller. This implies that the computetiocost
of DOR is considerably reduced

In any case, consider that reducing the dynastierpial also
reduces the chances for combining valuable infdomat
taken from the parents. In a extreme situatiors, ¢buld be as
undesirable as the unaffordable computational 0c6$9OR
for low (resp. high) values of (resp.n). Next section
provides experimental results that shed some laghtthe
effects of tuning the representation granularity.

4. EXPERIMENTAL RESULTS

A set of experiments has been realized in ordersgess the
effects that a manual modification of the grantyaof the

representation has on the quality of the resultseft where
otherwise noted, an elitist generational genetigoréhm



Table 1. Mean best fitness for the Rosenbrock function @yed for 20 runs). The best results are shown latfdoe.

Dimensionality
Operator 8 12 16 24 32
SPX 14.59 20.88 21.18 103.02 442.59
UX 10.02 21.98 37.30 218.07 856.47
AX 5.91 14.38 29.80 127.29 319.26
R® 6.60 11.26 42.01 145.14 361.42
DOR,-, 3.44 6.36 15.53 - -
DOR,-, 4.97 10.35 16.63 42.62 299.52
DOR,-, 10.74 22.78 27.91 39.26 69.86
DOR, 6.67 11.16 28.75 66.41 81.42

Table 2. Mean best fitness for the Brachystochrone probkveraged for 20 runs). The best results are showpldface.

Number of Pillars

Operator 8 12 16 24 32 40 48 56 64
SPX 1.1577 1.1788 1.2154 1.2718 1.3908 1.62p2 1.77187 2.1049.5971
UX 1.1757 1.2300 1.2862 1.349¢4 1.530pb 1.6771 1.93[79 2.2172 .6658
AX 1.1560 1.1668 1.1828 1.2219 1.272p 1.3534 1.4841 1.6327 .88456
RS 1.1540 1.1627 1.1783 1.2149 1.2803 1.3683 1.5295 1.7857 061.9
DOR,, 1.1530 1.1549 1.1779 - - - - - -
DOR,-, 1.1544 1.1628 | 1.1726 1.2110 - - - - -
DOR,-; 1.1548 1.1798 1.1815 1.2458 1.2660 1.3827 - - -
DOR,-, 1.1574 1.1901 1.1944 1.2484 1.2971 1.3413 1.4759 2.1635 -
DOR,-; 1.1601 1.1919 1.2111 1.2494 1.2977 1.3468 1.3886 1.5886 002.1
DOR,-4 1.1649 1.2010 1.2053 1.259 1.3001 1.34831.3695 1.4720 1.6750
DOR, ;, 1.1729 1.1998 1.2112 1.2634 1.29811 1.3646 1.4Q73 1.4821.5894

(popsize=100,p,=.9, maxevals = 1) using ranking selection  problem is small, becoming the quality of the resslightly
(N*=2.0,n7=0.0) has been utilized. In order to compare DOR worse when the granularity is increased. Also, famge
with other classical operators, the internal pheialuations  dimensionalities of the function (i.e., above 3@jy values of
have been considered. More precisely, computing theg are either prohibitive or provide worse resultss A
optimistic evaluation of a construction unit of gudarity g is previously mentioned, this is due to the fact thahigher
accounted ag/n evaluations. number of construction units are manipulated amtcéehe

The first results (shown in Table 1) correspond the  &/gorithm is prematurely terminated.

Rosenbrock function. In this problem, variables éhdneen  Finally, experiments have been done usiflgMP instances
encoded using 64 bits, apg has been set to 1/64. For com- of different dimensionalities. The first resultsrespond to
parison purposes, the experiments have been regalih 1-EMP instances. As for the previous test probleatker
some classical operators such as single-point @vess recombination operators for permutations such aXPitee
(SPX), uniform crossover (UX), arithmetic crossoaix) variants of OX, RCX, UCX, BX and UBX (all describéul

and random respectful recombinatiorf)(l|RL1]. When using  [2]) have been also used. The results for theseatps are
the DOR operator, mutation is always performed feefo shown in Table 3. Notice the poor results of th#edint
recombination (thus, new material is still introddcin the  variants of order crossover. This is due to the fhat this
population but the smart recombination performed®®R is problem is defined on the basis of position formetber than
preserved). precedence formae. For that reason, UQXiform Cycle

As it can be seen, low valuesoére in general better for low  C7ossover) provides the best results. It is interesting otige
dimensionalities of the function. It is interestitigsee that, in ~ that this operator is based on a blind interchaogehe
the case=32, DOR_, has a prohibitive computational cost, compatibility sets defined in Egs. (17) and (18).

and DOR_; is less expensive but consumes very quickly theTable 4 shows the results of the DOR operator. His t
allocated number of epistatic calculations. For s¢he problem, the granularity is tuned by defining a imaxm
instances, it seems that a rati& 7/g < 9 provides the best allowed number of construction unjtsihenever the number
results. of construction units is greater thartwo of them are picked
The next results correspond to the brachystochaesign at ra“dom and jc_)ined. This process is repeate_di amnmosty
problem. As shown in Figure 2 (right)) DOR has a construction units are available. Compacting cyckes

comparatively higher computational cost in thisijheon than indicated in Egs. (20) and (21) has also been (fietks).

for the Rosenbrock function. For this reason, sewidnge of  As it can be seen, the results for very coarseudaities (i.e.,
granularities and dimensionalities has been tried.this low values off) are worse than for fine granularities. DGR
problem, variables are encoded with 16 iisjs set to 1/16 s included in the former category since, as showigure 1
andmaxevals=5-10. The results are shown in Table 2. Again, (left), its equivalenf'value is never greater than 4 on average.
low values ofg are better when the dimensionality of the As a matter of fact, the performance of DR is



Table 3. Results of classical operators on 1-EMP problemsréed for 20 runs). The best results are shoveoliface.

Operator
# of elements OX#1 OX#2 OX#3 PMX RCX UCX BX UBX
100 2534 2809 2375 795 911 647 963 945
125 4412 4667 4046 1373 1598 1066 1715 1662
150 6803 7571 6502 2114 253 1660 2637 2665
200 13607 14809 12845 431y 5244 3468 5364 5423

Table 4. Results of the DOR operator on 1-EMP problems @yeu for 20 runs). The best results are shown loffde.

Number of construction units alloweg (
# of elements | blocks 2 3 4 5 6 7 8 9 10 00
100 572 773 346 319 316 315 302 31p 297 319 317
125 1012 1318 533 482 474 454 481 494 466 463 478
150 1595 2151 773 691 669 67( 65) 675 648 679 672
200 3245 4293 1370 1193 113% 1116 1140 1142 1126 1175 1171

Table 5. Results of the DOR operator &/EMP problems (averaged for 20 runs). The bestteeate shown in boldface.

k=2 k=5 k=10

f 100 125 150 200 100 12% 15D 2d0 100 1p5 150 400

2 1114 1959 3099 6358 3198 5693 9007 187947 14847 27396 4409%67p4

3 481 750 1075 2104 129% 2081 3261 614 6397 10114 15183 33022
4 407 634 912 1614 994 1655 2452 4706 4878 8046 126p2 23733

5 410 616 939 1537 1065 1625 2278 4195 4292 7721 11771 22875

6 406 633 898 1534 1023 1591 2415 4112 4754 8140| 11717| 21986

7 427 633 915 1564 1239 1710 2387 43p5 4887 8381 12053 2ZP266
8 444 653 961 1577 1074 1729 2597 47B6 4667 8469 12339 7

9 432 644 930 1627 1081 174j7 2483 48|19 4932 8632 18565 23958
10 416 634 955 1644 1181 1866 2661 48p8 5352 9073 14210 2

00 431 681 1482 7282 1179 2416 13783 58132 7958 340D85 139033 53819

intermediate between/=2 and f=3. Notice that the central factor for determining the computationastcof the
performance is stabilized arougfeb, with a slight tendency operator and the quality of the results it provides
to decrease for higher values. In any case, thétyjed the

results is always better than UCX (with the exaep®f the 4o jarity for each representation. This basiaglaity is

extreme situatioy=2). minimal in the case of orthogonal representatidémsyhich
To confirm these results, further experiments wita DOR basic formae can be freely combined. However, thsich
operator have been realized with higher degreempistasis  granularity is variable when dealing with non-ogbaal
(k=2, 5, and 10). The results are shown in Tablenhése  separable representations. In this situation, jtedes upon
experiments, the behavior of the algorithm is @eaFirst, the size of the basic transference units (i.e. ctheatibility
notice that the quality of the results is improwsden 1 is sets), and it is not under direct control of the user.
increased up fron=2 (this is also depicted in Figure 3, left).

The best results are achieved in the intermediatees/=5 ; . X
. e . the granularity (and hence the size of the dyngsitential of
and/=6, existing a soft degradation of performancetiigher the solutions to be recombined) and the computaticost of

\r/naél:szncgg_ I-(l; he ;Tazgr;f:gé tzgtﬁ:tﬁgg&?&ﬁgﬁ?&?ﬁenthe DOR operator. Thus, it has been proposed tease the
. loned. fow vaiu u : A ng granularity factor (i.e., use larger constructianits) to reduce
information from parents to offspring, while highlues off .

) J . this cost.
quickly consume the allocated number of epistatic _ ) _ o )
calculations. This bowl-like shape is illustrated Figure 3 ~ An extensive experimental investigation has beenedm

It has been shown that there exists a basic (gréewed)

There exists an empirically corroborated relatigmdietween

(right). order to assess the influence that this modificatd the
basic granularity has on the quality of the respitsvided by
5. CONCLUSIONS the algorithm. The results have been satisfacginge it has

This work has studied the functioning of a heuwristi been shown that the performance is significantlgraeed

recombination operator (DOR) on the basis of theonly for extremely larger construction units. Moven

construction units used for creating new solutiohs. be intermediate granularities provide better resuitvery fine

precise, the size of these construction units, @be so-called  granularities since the former consume less contipotd

granularity of the representation) has been considered as #&esources (and hence the algorithm can be exedated
larger number of iterations).
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Figure 3 (Left) Comparison of the evolution of fitness in a 5-EM#&tance of 200 elements for different
numbers of construction unit¢Right) Results of DOR for 2-EMP, 5-EMP and 10-EMP instanoé 200
elements as a function of the number of allowedstraction units. The rounded point correspondshdase
/= o. Notice the use of a logarithmic scale in bothpgsa

This work admits several extensions. First of alid as [5] Goldberg D.E., Genetic Algorithms in Search,

mentioned in Sect. 1, DOR has been chosen as w@dtIm Optimization and Machine Learning, Addison-Wesley,
because it is a strongly heuristic operator ansl sensitive to Reading MA, 1989

the dimensionality of the problem considered. Haosvevhe [6] Hart W.E., Belew R.K., “Optimizing an arbitrary
idea of granularity adjustment can be applied tbeot function is hard for the genetic algorithnProceedings
heuristic techniques, e.g., embedded hill-climbérs.this of the Fourth International Conference on Genetic
sense, validating the conclusions of this workha tontext Algorithms (pp. 190-195), Belew R.K., Booker L.B.
of other hybrid models constitutes a very interegtine of (eds.), Morgan Kaufmann, San Mateo CA, 1991

research in which work is already in progress. [7] Herdy M., Patone G., “Evolution Strategy in Amti 10

On the other hand, extending these results to eparable ES-Demonstrations”, Technical Report TR-94-05,

representations is a line of future work too. Amouther Technische Universitit Berlin, 1994
problems, it is difficult to determine the compdiip sets for [8] Moscato P., “On Evolution, Search, Optimization,

this kind OT representations. _Furthermore, com_mpnn&e Genetic Algorithms and Martial Arts: Towards Menaeti
cannot be imposed to the child. For these readbiis,not

completely clear how to increase the granularitthia case. C3P Report 826, 1989
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