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This work studies a mechanism for reducing the
computational cost of heuristic recombination operators. The
mechanism is based on adjusting the size of the macro-formae
processed during recombination. Using the Dynastically
Optimal Forma recombination framework as a test model, it is
shown that the computational cost can be dramatically
reduced. Moreover, intermediate granularities seem to
provide the best tradeoff between the computational cost and
the quality of the results.
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Genetic Algorithms, Heuristic Recombination, Scalability.
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Although evolutionary algorithms were originally devised as
robust and general techniques, the necessity of incorporating
problem dependent knowledge has been shown to be a strong
requirement both in theory [6,14], and practice [4]. These
problem-adapted algorithms are usually termed K\EULG

algorithms. As it can be seen in most application-oriented
scientific papers, there exists a plethora of mechanisms for
carrying out hybridization. One of the most popular
techniques is the integration of a heuristic domain-dependent
algorithm within the evolutionary algorithm, e.g., a local
search procedure [8,9], a construction heuristic [13], an
exhaustive search algorithm [1], etc.

One of the most common problems of using these hybrid
approaches is the increased computational cost of the
resulting algorithms (for example, consider the case of many
VPDUW recombination operators that build locally optimal
offspring). This work studies a mechanism for alleviating this
problem, based on tuning the so-called granularity of the
representation. The DOR framework [3] is used as a test field
for this mechanism. This choice has been made because of the
strong heuristic behavior of DOR and its sensitiveness to the
problem dimensionality. Nevertheless, the principles

described can be generalized to other heuristic procedures.

The remainder of the article is organized as follows: first,
some basic concepts and background information on the
DOR operator are given in Sect. 2. Subsequently, the
functioning of the operator is detailed in Sect. 3, introducing
the concept of granularity of the representation and
evaluating its influence in the computational cost of the
algorithm. Next, experimental results regarding the effects of
modifying the granularity are reported in Sect. 4. Finally,
some conclusions are presented in Sect. 5, outlining future
work as well.
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This section is intended to provide some background
information on the functioning of the DOR operator. First of
all, let Ξ = {ψ�, ···, ψQ} be a set of Q independent equivalence
relations defined over the search space S such that

∀ [∈ S ∀ y∈ S ∃ L�(1≤L≤Q): ψL([, \) = 0 , (1)

i.e., no pair of solutions share membership to the same
equivalence classes for all equivalence relations in Ξ. In this
case, Ξ is said to FRYHU the search space, and each solution
[∈ S�can be univocally represented as [� �{ η�, ···�ηQ} where ηL
is� the equivalence class (for the sake of simplicity, the same
symbol used to denote an equivalence class is utilized for
labeling it) to which [ belongs under ψL. Each of these
equivalence classes is termed a EDVLF�IRUPD [10].

Now, let [�= {η�, ···�ηQ} and \�= {ζ�, ···�ζQ} �be two feasible
individuals. The G\QDVWLF�SRWHQWLDO�of [�and \�is defined as

 Γ({ [,�\}) = I
QL≤≤1

(ηL ∪  ζL) , (2)

i.e., the set of individuals that can be constructed using
nothing but the information contained in [ and \. Next, let ;:
S × S × S → [0,1] be a stochastic recombination operator
(where ;([,\,]) is the probability of generating ]�when recom-
bining [ and \). The LPPHGLDWH�G\QDVWLF�VSDQ�of [�and�\�is

Γ;�({ [,�\}) = { ]�| ;([, \, ]) > 0 }. (3)

If Γ;�({ [, \}) � ⊆  Γ({ [, \}), ;� is said to be a WUDQVPLWWLQJ
operator. An example of such an operator is the Random
Transmitting Recombination operator [12] defined as
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Thus, RTR returns a random member of Γ({ [, \}), all
individuals having the same probability of being selected,
e.g., uniform crossover in binary representations. As stated in
[3], this uniform selection is inappropriate if problem-
dependent knowledge is available. For example, consider the
case in which Ξ is orthogonal, i.e., all combinations of
formae induced by different equivalence relations are
feasible. In this case, it is clear that

Γ({ [,�\}) = { ]={ξ�,···,ξQ } | (ξL≡ηL) ∨  (ξL≡ζL) }. (5)

Hence, RTR would simply select at random and
independently whether ]∈ ηL�or ]∈ ζL. However, if the formae
are epistatic, the contribution of each forma η to the fitness of
an individual [∈ η�depends on the other formae to which [

belongs. Hence, RTR may reduce to macromutation due to
the fact that the context in which a certain forma is immersed
is very likely to be disrupted.

The Dynastically Optimal Forma Recombination Operator
(DOR) tries to solve this problem by considering partial
knowledge about the fitness function. To be precise, let φ : S
→ IR be the fitness function, using the notation φ [R] to
represent the image of R ⊆  S under φ. Assume that a partial
order relation p is defined over φ [S], such that [ is better than
\ if, and only if, φ ([) p φ (\). Then, DOR is defined as a
transmitting recombination operator for which

DOR([, \, ]) > 0 ⇒  φ (]) ∈  VXSp(φ [Γ ({ [,\})]) (6)

holds. Hence, DOR returns the best individual (or one of the
best individuals) of the dynastic potential. Notice that,
ideally, it would be desirable that DOR defined a uniform
probability distribution over all members of the supreme set
VXSp(φ [Γ ({ [,\})]). Nevertheless, this is difficult to achieve in
many situations for practical reasons. As a matter of fact, it
may be hard even finding a single member of this set, as
shown in next section.

��� 5(35(6(17$7,21�*5$18/$5,7<
According to the definition of the DOR operator given in
Sect. 2, an exhaustive search must be performed in the
dynastic potential Γ({ [,\}) in order to determine the returned
child. For this purpose, the most efficient option is to use an
A*-like mechanism for incrementally constructing solutions.
This mechanism is described below in more detail,
introducing the concept of granularity of the representation.

���� 7KH�,QWHUQDO�)XQFWLRQLQJ�RI�'25
Let M

LΨ , 0 ≤ L�≤ Q,�2L ≤ M�≤ 2L+1−1, represent a forma of order L,
i.e., a� partially specified solution whose membership to L

equivalence classes is specified (or, alternatively, the set of all
solutions that belong to the currently specified equivalence
classes). Initially, 1

0Ψ �= S; subsequently,
M

L
2
1+Ψ = M

LΨ �∩ Σ( M
LΨ , [, \),   and (7)

12
1
+

+Ψ M
L = M

LΨ ∩ Σ( M
LΨ , \, [) (8)

are considered, where the FRQVWUXFWLRQ�XQLWV�Σ( M
LΨ , Z, X) are

defined as

Σ( M
LΨ , Z, X) = I

JN
N

≤≤1

ξ , Z�∈  ξN, (9)

i.e., the intersection of some of the basic formae Z belongs to
(the purpose of the third parameter X will be seen in the next

subsection). The parameter J is termed JUDQXODULW\� RI� WKH
UHSUHVHQWDWLRQ. Now, it is necessary to use a monotonic
function φ∗ : P(S) → IR verifying that

1. ∀ [∈ S : φ∗ ({ [} ) = φ([), (10)

2. ∀ V∈ φ[S]: V p φ∗ ({} ),   (11)

3. ∀ R ⊆  S  ∃ U∈ φ[R]: U p φ∗ (R),  and (12)

4. ∀ R ⊆  S  ∃ T⊂ R : φ∗ (T) p φ∗ (R ) . (13)

Actually, φ∗  need not be defined over all arbitrary sets of
solutions but just on sets defined by the intersection of the
basic formae induced by Ξ. This function comprises the
available knowledge about the fitness function φ,
proportionating optimistic estimations of partially specified
solutions. These estimations are used to determine the order
in which the formae M

LΨ �are generated. They are also used to
discard those formae for which φbestpφ∗ ( M

LΨ ), where φbest be
the fitness of the best-so-far generated solution. This value is
updated whenever a forma M

QL=Ψ  such that φ∗ ( M
QL=Ψ )pφbest is

generated. Initially φbest∈ LQIp{ φ[S]}).

���� %DVLF�*UDQXODULW\�RI�WKH�5HSUHVHQWDWLRQ
The structure of the construction units (and hence the
granularity parameter J) is determined by the characteristics
of the representation. The simplest scenario is that in which
the representation is orthogonal. In this case, and according to
Eq. (5), the dynastic potential Γ({ [,� \}) is the Cartesian
product of all pairs {ηL, ζL}, [∈ ηL, \∈ ζL, 1 ≤ L�≤ Q. For this
reason, it is possible to extend any partially specified solution
by considering a single basic forma at a time, i.e.,

Σ( M
LΨ , Z, X) = Σ( M

LΨ , {ξ�, ···, ξQ}, X) = ξL�� . (14)

This small granularity (J=1) is not always possible if the
representation is non-orthogonal. As an example, consider the
position-based representation of permutations [2,5]. In this
representation Ξ = {ψ�, ···, ψQ}, where ψL([, \) = 1 if, and
only if, [�and \� have the same element in the Lth position.
Each of these equivalence relations ψL induce Q�equivalence
classes ηLM, each one comprising all solutions in which M

occurs in the Lth position. Clearly, using the construction
units defined in Eq. (14) would be a waste of computational
resources since many of the generated formae would consider
repeated elements and hence would be empty (i.e.,
infeasible). Moreover, even when a particular forma M

LΨ
were not infeasible per se, it might happen that MLΨ  ∩ Γ({ [,
\}) = {}. This would be detected when at a further step both
Σ( ’

’
M

LΨ , [, \) and Σ( ’
’
M

LΨ , \, [) were empty for all descendants
of M

LΨ . All the computational effort needed to extend MLΨ  to
’

’
M

LΨ  would have been useless.

In the above-mentioned case, construction units must be more
complex. To be precise, let the FRPSDWLELOLW\� VHW�of a basic
forma η ([�∈  η) be defined as

.( M
LΨ ,η, [��\)  = I Nη , M

LΨ  ∩ Γ({ [,�\}) ∩ η�∩ Nη ={}, (15)

i.e., the intersection of all formae ηN� ([∈ ηN) that must be
included along with η� to preserve feasibility within the
dynastic potential. Then, the construction units can be built as

Σ( M
LΨ , Z, X) = .( M

LΨ ,ξ, Z, X) , (16)



where ξ� (Z∈ ξ) is a forma not yet considered in M
LΨ .

Considering again the example of position formae,
compatibility sets are recursively defined as follows:

ηDE��⊇  .( M
LΨ ,ηDE, [, \) (17)

ηFG�⊇ .( M
LΨ ,ηDE,[,\), \∈ ηFH,[∈ ηIH⇒ ηIH�⊇ .( M

LΨ ,ηDE,[,\). (18)

These compatibility sets are termed F\FOHV, and constitute the
basic units that can be transferred from parents to offspring in
order to have a transmitting recombination of position
formae. Notice that the user does not have explicit control on
the size of these cycles.

���� *UDQXODULW\�DQG�WKH�&RPSOH[LW\�RI�'25
The granularity of the representation has an unquestionable
impact on the time complexity of the algorithm. Consider that
the size of the dynastic potential is O(2P), where P is the
number of construction units that can be identified in the
selected individuals. Thus, in the case of orthogonal
representations, the size of the dynastic potential is |Γ({ [,�\})|
= 2Q since each construction unit comprises a single forma.
Obviously, this size is only relevant when epistasis is
involved. Otherwise, DOR must simply scan the recombined
individuals, selecting the formae that individually optimize
the fitness function. Hence it has linear-time complexity.

In the case of epistatic representations, the exponential
growth of the dynastic potential becomes very important. As
an example, Figure 1 (left) shows the time required for
performing one hundred recombinations of randomly
generated individuals as a function of the dimensionality of
the problem. To be precise, the design of a brachystochrone
[7] and the Rosenbrock function have been used1. As it can
be seen, the computational cost grows extremely fast for

                                                                
1 These two problems are defined over real-valued variables.

Different definitions of formae are possible in this case
(e.g., see [11]. The equivalence relations ψL( [

r
, \
r

) = 1 ⇔
([L�= \L) have been used in this work.

dimensionalities above 10 in the first problem and 16 in the
second one, thus confirming the influence of the number of
construction units. Of course, there exist other factors
affecting the time complexity of the operator, namely the
amount of knowledge used in the φ* function. If this function
were defined to return a constant value for underspecified
solutions (i.e., if no problem-knowledge were used), DOR
would reduce to an exhaustive enumeration of all members of
the dynastic potential and hence 2Q individuals would have to
be evaluated. On the contrary, if φ* provides good estimations
of the fitness function this quantity can be dramatically
reduced, so as to become affordable for a certain range of
dimensionalities.

It is interesting to notice that, as the algorithm converges,
individuals tend to be more similar and hence their dynastic
potential is reduced. To be precise, suppose that the
individuals to be recombined share membership to a set of
basic formae Θ  = θL�� ∩ ··· ∩ θLP. If the representation is
VHSDUDEOH2�(i.e., it is possible to create a child ]∈ θ∩ζ∩ξ�pro-
vided that [∈ θ∩ζ, and \∈ θ∩ξ, where θ, ζ�and ξ�are any three
basic formae), it is clear that Γ({ [,\}) ⊆  Θ. The search can be
subsequently started from 10Ψ  =Θ, thus, reducing the search
space to, at most, 2Q−P solutions.

Nevertheless, it must be taken into account that, even when
the above consideration is true, it does not necessarily imply
that the number of construction units in non-orthogonal
representations decrease as well. As an example consider the
permutations 12345678 and 23156784. From the point of
view of position formae, they do not belong to any common
basic forma, existing two compatibility sets in each
permutation: {123nnnnn} and {nnn45678} from the first
one and {231nnnnn} and {nnn56784} from the second

                                                                
2 Non-separable representations (e.g., the edge-based repre-

sentation of permutations) are difficult to handle for several
reasons (see [2]). Thus, they are deferred to a further work.

)LJXUH� �� �/HIW� Time required for performing 100 recombinations of random individuals for increasing
dimensionalities of two epistatic problems (the design of a brachystochrone and the Rosenbrock function).
�5LJKW� Evolution of the size of the dynastic potential for two different representations on a 1-EMP instance of
100 elements. Notice the use of a logarithmic scale.



one. Thus, there are 22 solutions in their dynastic potential.
On the other hand, the permutations 12345678 and 13246587
belong to two common position formae. However, there exist
three compatibility sets in each of them: {n23nnnnn},
{nnnn56nn} and {nnnnnn78} in the first one and
{n32nnnnn}, { nnnn65nn} and {nnnnnn87} in the
second one. Hence their dynastic potential has 23 solutions.

This effect is illustrated in Figure 1 (right), in which the
evolution of the number of non-trivial construction units
considered during recombination is shown for a 1-EMP
instance of 100 elements (the N-EMP is a generalization of
the min-permutation problem presented in [3], in which N
indicates the degree of epistasis). As it can be seen, the size of
the dynastic potential of recombined solutions grows during
the initial stage of the search, reaching a maximum after a few
thousands of recombinations, decreasing and stabilizing from
that point.

���� 7XQLQJ�WKH�5HSUHVHQWDWLRQ�*UDQXODULW\
As discussed in the previous subsection, the size of the
dynastic potential plays an important rôle in the
computational cost of DOR. If this cost becomes prohibitive
for the dimensionality of the problem under consideration, it
may be appropriate to modify the granularity of the
representation so as to reduce the number of solutions
comprised in the dynastic potential.

First of all, consider the case of orthogonal representations.
The granularity may be increased by making construction
units contain more than one basic forma. These formae can be
selected at random or using a priori knowledge about the
epistatic relations of these formae. To be precise, in the two
orthogonal problems considered, there exist epistatic relations
between adjacent variables. For this reason, it is convenient
to choose consecutive variables, thus preserving a larger part
of their context. Hence,

Σ( M
LΨ , Z, X) = Σ( M

LΨ , {ξ�, ···,ξQ}, X) = I
),(1 LQJN

NL
−≤≤
+

PLQ

ξ  . (19)

Figure 2 (left) shows the results of the same benchmark
depicted in Figure 1 (left). As it can be seen, when the
granularity is increased, the algorithm reduces its
computational cost, being capable of tackling larger problem
instances. Moreover, and as it can be seen in Figure 2 (right),
there exists a very good linear relation between the
granularity of the representation and the highest affordable
dimensionality of the problem when a constant computational
cost is kept.

A similar approach can be taken when the representation is
non-orthogonal although, in this case, compatibility sets
rather than single basic formae must be joined. This is the
underlying idea of the EORFN�representation [2]. A block is a
macro-compatibility-set that can be defined as the closure of
the following expressions:

[�∈  ηND ⇒ �[.( M
LΨ ,ηND, [, \) ⊇  %( M

LΨ , N, [, \)] (20)

[�∈  ηVE, (ηUF∩ηWG) ⊇  %( M
LΨ , N, [��\),  U < V < W ⇒

⇒  [.( M
LΨ ,ηVE, [��\) �⊇  %( M

LΨ , N, [, \)]. (21)

Figure 1 (right) illustrates the evolution of the size of the
dynastic potential of recombined solutions using the block
representation. Notice that, comparing with the canonical
position representation, this size is more than one order of
magnitude smaller. This implies that the computational cost
of DOR is considerably reduced.
In any case, consider that reducing the dynastic potential also
reduces the chances for combining valuable information
taken from the parents. In a extreme situation, this could be as
undesirable as the unaffordable computational cost of DOR
for low (resp. high) values of J� (resp. Q). Next section
provides experimental results that shed some light on the
effects of tuning the representation granularity.

��� (;3(5,0(17$/�5(68/76
A set of experiments has been realized in order to assess the
effects that a manual modification of the granularity of the
representation has on the quality of the results. Except where
otherwise noted, an elitist generational genetic algorithm

)LJXUH����/HIW� Times required for performing 100 recombinations of random individuals in the brachystochrone
design problem. The results are shown for different granularities. �5LJKW��Lowest dimensionalities for which the
time required for performing 100 recombinations of random individuals is greater than 30 seconds.
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(SRSVL]H=100, SF=.9, PD[HYDOV = 105) using ranking selection
(η+=2.0, η−=0.0) has been utilized. In order to compare DOR
with other classical operators, the internal partial evaluations
have been considered. More precisely, computing the
optimistic evaluation of a construction unit of granularity J is
accounted as J/Q evaluations.

The first results (shown in Table 1) correspond to the
Rosenbrock function. In this problem, variables have been
encoded using 64 bits, and SP has been set to 1/64. For com-
parison purposes, the experiments have been realized with
some classical operators such as single-point crossover
(SPX), uniform crossover (UX), arithmetic crossover (AX)
and random respectful recombination (R3) [11]. When using
the DOR operator, mutation is always performed before
recombination (thus, new material is still introduced in the
population but the smart recombination performed by DOR is
preserved).

As it can be seen, low values of J�are in general better for low
dimensionalities of the function. It is interesting to see that, in
the case Q=32, DORJ � has a prohibitive computational cost,
and DORJ � is less expensive but consumes very quickly the
allocated number of epistatic calculations. For these
instances, it seems that a ratio 7 ≤ Q/J�≤ 9 provides the best
results.

The next results correspond to the brachystochrone design
problem. As shown in Figure 2 (right), DOR has a
comparatively higher computational cost in this problem than
for the Rosenbrock function. For this reason, a wider range of
granularities and dimensionalities has been tried. In this
problem, variables are encoded with 16 bits, SP is set to 1/16
and PD[HYDOV=5·105. The results are shown in Table 2. Again,
low values of J are better when the dimensionality of the

problem is small, becoming the quality of the results slightly
worse when the granularity is increased. Also, for large
dimensionalities of the function (i.e., above 32), low values of
J are either prohibitive or provide worse results. As
previously mentioned, this is due to the fact that a higher
number of construction units are manipulated and hence the
algorithm is prematurely terminated.

Finally, experiments have been done using N-EMP instances
of different dimensionalities. The first results correspond to
1-EMP instances. As for the previous test problems, other
recombination operators for permutations such as PMX, three
variants of OX, RCX, UCX, BX and UBX (all described in
[2]) have been also used. The results for these operators are
shown in Table 3. Notice the poor results of the different
variants of order crossover. This is due to the fact that this
problem is defined on the basis of position formae rather than
precedence formae. For that reason, UCX (8QLIRUP� &\FOH

&URVVRYHU) provides the best results. It is interesting to notice
that this operator is based on a blind interchange of the
compatibility sets defined in Eqs. (17) and (18).

Table 4 shows the results of the DOR operator. In this
problem, the granularity is tuned by defining a maximum
allowed number of construction units I. Whenever the number
of construction units is greater than I, two of them are picked
at random and joined. This process is repeated until at most I
construction units are available. Compacting cycles as
indicated in Eqs. (20) and (21) has also been tried (EORFNV).

As it can be seen, the results for very coarse granularities (i.e.,
low values of I) are worse than for fine granularities. DORblock

is included in the former category since, as shown in Figure 1
(left), its equivalent I value is never greater than 4 on average.
As a matter of fact, the performance of DORblock is

7DEOH����Mean best fitness for the Rosenbrock function (averaged for 20 runs). The best results are shown in boldface.

Dimensionality
Operator 8 12 16 24 32
SPX 14.59 20.88 21.18 103.02 442.59
UX 10.02 21.98 37.30 218.07 856.47
AX 5.91 14.38 29.80 127.29 319.26
R3 6.60 11.26 42.01 145.14 361.42
DORJ � ���� ���� ����� - -
DORJ � 4.97 10.35 16.63 42.62 299.52
DORJ � 10.74 22.78 27.91 ����� �����

DORJ � 6.67 11.16 28.75 66.41 81.42

7DEOH����Mean best fitness for the Brachystochrone problem (averaged for 20 runs). The best results are shown in boldface.

Number of Pillars
Operator 8 12 16 24 32 40 48 56 64

SPX 1.1577 1.1788 1.2156 1.2713 1.3908 1.6262 1.7787 2.10492.5971
UX 1.1757 1.2300 1.2862 1.3499 1.5305 1.6771 1.9379 2.2172 2.6658
AX 1.1560 1.1668 1.1828 1.2219 1.2722 1.3534 1.4841 1.6327 1.8845
R3 1.1540 1.1627 1.1783 1.2149 1.2803 1.3683 1.5295 1.7357 1.9061
DORJ � ������ ������ 1.1779 - - - - - -
DORJ � 1.1544 1.1628 ������ ������ - - - - -
DORJ � 1.1548 1.1798 1.1815 1.2458 ������ 1.3827 � � �

DORJ � 1.1574 1.1901 1.1944 1.2485 1.2971 ������ 1.4759 2.1635 -
DORJ � 1.1601 1.1919 1.2111 1.2494 1.2977 1.3468 1.3886 1.5386 2.1009
DORJ � 1.1649 1.2010 1.2053 1.2598 1.3001 1.3483������ ������ 1.6750
DORJ � 1.1729 1.1998 1.2112 1.2635 1.2981 1.3646 1.4073 1.4821������



intermediate between I=2 and I=3. Notice that the
performance is stabilized around I=6, with a slight tendency
to decrease for higher values. In any case, the quality of the
results is always better than UCX (with the exception of the
extreme situation I=2).

To confirm these results, further experiments with the DOR
operator have been realized with higher degrees of epistasis
(N=2, 5, and 10). The results are shown in Table 5. In these
experiments, the behavior of the algorithm is clearer. First,
notice that the quality of the results is improved when I is
increased up from I=2 (this is also depicted in Figure 3, left).
The best results are achieved in the intermediate values I=5
and I=6, existing a soft degradation of performance for higher
values of I. The reason for this behavior has already been
mentioned: low values of I�reduce the chances for transferring
information from parents to offspring, while high values of I
quickly consume the allocated number of epistatic
calculations. This bowl-like shape is illustrated in Figure 3
(right).

��� &21&/86,216
This work has studied the functioning of a heuristic
recombination operator (DOR) on the basis of the
construction units used for creating new solutions. To be
precise, the size of these construction units (i.e., the so-called
JUDQXODULW\ of the representation) has been considered as a

central factor for determining the computational cost of the
operator and the quality of the results it provides.

It has been shown that there exists a basic (ground-level)
granularity for each representation. This basic granularity is
minimal in the case of orthogonal representations, in which
basic formae can be freely combined. However, the basic
granularity is variable when dealing with non-orthogonal
separable representations. In this situation, it depends upon
the size of the basic transference units (i.e., the FRPSDWLELOLW\
VHWV), and it is not under direct control of the user.

There exists an empirically corroborated relationship between
the granularity (and hence the size of the dynastic potential of
the solutions to be recombined) and the computational cost of
the DOR operator. Thus, it has been proposed to increase the
granularity factor (i.e., use larger construction units) to reduce
this cost.

An extensive experimental investigation has been done in
order to assess the influence that this modification of the
basic granularity has on the quality of the results provided by
the algorithm. The results have been satisfactory, since it has
been shown that the performance is significantly degraded
only for extremely larger construction units. Moreover,
intermediate granularities provide better results than very fine
granularities since the former consume less computational
resources (and hence the algorithm can be executed for a
larger number of iterations).

7DEOH����Results of classical operators on 1-EMP problems (averaged for 20 runs). The best results are shown in boldface.

Operator
# of elements OX#1 OX#2 OX#3 PMX RCX UCX BX UBX

100 2534 2809 2375 795 911 ��� 963 945
125 4412 4667 4046 1373 1598 ���� 1715 1662
150 6803 7571 6502 2114 2537 ���� 2637 2665
200 13607 14809 12845 4317 5244 ���� 5364 5423

7DEOH����Results of the DOR operator on 1-EMP problems (averaged for 20 runs). The best results are shown in boldface.

Number of construction units allowed (I)
# of elements EORFNV 2 3 4 5 6 7 8 9 10 ∞

100 572 773 346 319 316 315 302 312 ��� 319 317
125 1012 1318 533 482 478 ��� 481 494 466 463 478
150 1595 2151 773 691 668 670 657 675 ��� 679 672
200 3245 4293 1370 1193 1135 ���� 1140 1142 1126 1175 1171

7DEOH����Results of the DOR operator on N-EMP problems (averaged for 20 runs). The best results are shown in boldface.

N�= 2 N = 5 N = 10
I 100 125 150 200 100 125 150 200 100 125 150 200

2 1114 1959 3099 6358 3193 5693 9007 18747 14847 27396 44099 94567
3 481 750 1075 2106 1295 2081 3261 6184 6397 10114 16183 33022
4 407 634 912 1614 ��� 1655 2452 4706 4878 8046 12622 23733
5 410 ��� 939 1537 1065 1625 ���� 4195 ���� ���� 11771 22875
6 ��� 633 ��� ���� 1023 ���� 2415 ���� 4754 8140 ����� �����

7 427 633 915 1566 1239 1710 2387 4395 4887 8381 12053 22266
8 444 653 961 1577 1074 1729 2557 4736 4667 8469 12339 23024
9 432 644 930 1622 1081 1747 2483 4819 4932 8632 13565 23958

10 416 634 955 1644 1181 1866 2661 4858 5252 9073 14210 25823
∞ 431 681 1482 7282 1179 2416 13783 58132 7958 34085 139033 381955



This work admits several extensions. First of all, and as
mentioned in Sect. 1, DOR has been chosen as test model
because it is a strongly heuristic operator and it is sensitive to
the dimensionality of the problem considered. However, the
idea of granularity adjustment can be applied to other
heuristic techniques, e.g., embedded hill-climbers. In this
sense, validating the conclusions of this work in the context
of other hybrid models constitutes a very interesting line of
research in which work is already in progress.

On the other hand, extending these results to non-separable
representations is a line of future work too. Among other
problems, it is difficult to determine the compatibility sets for
this kind of representations. Furthermore, common formae
cannot be imposed to the child. For these reasons, it is not
completely clear how to increase the granularity in this case.
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