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Abstract. Portfolio optimization is a problem that lends itself nat-
urally to multiobjective approaches, e.g., aimed to maximize the re-
turn of the investment, simultaneously minimizing the risk. The se-
lection of an actual portfolio requires exercising a decision-making
process on the set of efficient solutions thus obtained. In this work
we consider the case in which knowledge of this selection criterion
is available, and used within the optimizer. We use Sharpe’s index, a
measure of excess return per unit of risk, for this purpose. It is shown
that a multi-start single-objective evolutionary algorithm based on
this index can provide a better coverage of the relevant regions of
the Pareto front than state-of-the-art multiobjective evolutionary al-
gorithms. An extensive experimental analysis is conducted using real
data from a Latin American stock exchange.

1 Introduction
Portfolio optimization is a conspicuous problem in the area of finan-
cial management. Broadly speaking, it amounts to determining an ad-
equate distribution of investments, such that an acceptable economic
return is obtained, and good risk diversification is achieved. Obvi-
ously, the extent to which a particular return is considered accept-
able or a certain risk diversification is good depends on the profile
of the investor. There are a number of theoretical studies regarding
the risk/performance relation. Among these, Markowitz’s model [11]
has become an essential theoretical reference for portfolio selection.

Markowitz’s model is based on the rational behavior of the in-
vestor, who tries to maximize her profit and rejects the risk. The col-
lection of portfolios offering a combination of risk/profitability such
that no higher profit can be obtained without increasing the risk as
well is termed the efficient frontier, and once known the investor can
select her optimal portfolio according to her preferences. Of course,
the determination of this efficient frontier (or Pareto front) is by no
means an easy task in general. Fortunately, powerful optimization
techniques can be used for this purpose, such as for example multi-
objective evolutionary algorithms (MOEAs) [5, 3].

MOEAs have been deployed on portfolio optimization problems
in numerous occasions, e.g., see [17, 15, 7] among other works. How-
ever, in this work we are specifically concerned not just about the
calculation of a quasi-optimal Pareto front, but also on the subse-
quent decision-making process. In a recent work [4] we have ana-
lyzed the performance of several MOEAs in light of a very precise
selection criterion, namely Sharpe’s index. This index measures how
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email: fcolomin@unet.edu.ve

2 Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,
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much excess profit per risk unit delivers a certain portfolio, and is
parameterized by a value that indicates the observed (or desired) re-
turn of a risk-free portfolio. An important consequence of the use of
this selection criterion is the fact that specific regions of the Pareto
front turn out to be more relevant, and hence algorithmic compar-
isons based on absolute multiobjective performance (as measured by
standard quality indicators) do not necessarily coincide with the rel-
ative performance of selected solutions. This fact lead us to consider
the inclusion of this selection criterion within the optimization pro-
cess. This is specifically interesting when the parameter determining
the risk-free return is not known or given in advance. We will assess
the performance of a multistart EA based on this selection index, and
analyze the quality of the results obtained in a variety of scenarios,
with special emphasis in the comparison to state-of-the-art multiob-
jective EAs.

2 Background

As state before, we consider an investment scenario in which an in-
vestor wishes to maximize profitability and minimize risk. This will
be formalized within Markowitz’s model in next subsection.

2.1 Markowitz’s Model

Markowitz’s model [11] assumes that the future performance that a
specific investment can offer can be determined from both experi-
ence and investigation. Two main components have to be taken into
account: profitability and risk to be assumed by the investor. The
overall risk of the portfolio is defined as a weighted quadratic com-
bination of the covariances of the assets included in it, i.e.,

σ2(~R| ~W ) =

n∑
i=1

n∑
j=1

wiwjσij(~R) (1)

where ~W = {wi}, 1 6 i 6 n, is a vector comprising the fraction
of the budget allocated to each asset (wi > 0), and σij(~R) is the
covariance of the performance of the i-th asset and the j-th asset,
defined as:

σij(~R) =

T∑
t=1

[Rit − E(Ri)] [Rjt − E(Rj)]

T
(2)

where ~R = {Rit}, 1 6 i 6 n, 1 6 t 6 T , is a matrix containing the
profitability of each asset at each time interval t, E(Ri) is the mean
profitability of the i-th asset, and T is the number of intervals in the
time horizon.



Similarly to the risk, the profitability E(~R| ~W ) of a portfolio is
defined as the weighted average of the assets involved, i.e.,

E(~R| ~W ) =

n∑
i=1

wiE(Ri) (3)

Once the profitability and risk of a portfolio is defined, there re-
mains the issue of determining which portfolio, among all available
possibilities, should be preferred. This is tackled in next subsection.

2.2 Sharpe’s Index
Generally speaking, the investor looks for the curve of utility with
E(~R| ~W ) = ∞ and σ2(~R| ~W ) = 0, but this not a realistic option as
this curve is limited by the existing assets that never have this nature.
We note that for the assets without risk (i.e., those with null profit-
variance), the utility is equal to the expected profitability because
there is no penalization due to the risk.

To evaluate the quality of a portfolio we have to define a mea-
sure that accounts for both the profitability and the risk of the assets
involved. Such a measure can also allow the comparison between
different portfolios. To this end, we have considered Sharpe’s index
[13], that determines performance according to the ratio between ex-
cess profitability and risk. More precisely,

S(~R| ~W ) =
E(~R| ~W )−R0

σ(~R| ~W )
(4)

where R0 is the performance of a portfolio without risk. E(~R| ~W )−
R0 is therefore the excess performance (that is, the extra profit ob-
tained by taking some risks), which is divided by the risk of the port-
folio (measured as the standard deviation of returns). Basically, the
index indicates how much extra performance is expected with respect
to the risk. The higher the value returned is, the higher the success of
the fund management is.

3 Evolutionary Portfolio Selection and Sharpe’s
Index

The portfolio selection problem posed in previous section will be
tackled with evolutionary algorithms (EAs). This can be done from a
multiobjective perspective, that is, finding a quasi-optimal set of ef-
ficient solutions and selecting one of them using a specific decision-
making procedure (maximizing Sharpe’s index in our case). Alter-
natively, this selection criterion can be directly embedded within the
fitness function. Both possibilities are described next.

3.1 Optimization Setting
As stated before, Markowitz’s model is based on the assumption the
investor abhors risk, which can be represented as the variability of
returns for a certain investment. At the same time, she wants to max-
imize her profits. Hence, we can define a portfolio as efficient if it
achieves the profit sought by the investor at the minimum risk. This
consideration leads naturally to a multiobjective scenario in which
Pareto-optimal portfolios are sought, i.e., portfolios whose profitabil-
ity cannot be increased without increasing the risk as well (and vice
versa, the risk cannot be reduced without decreasing the expected re-
turn too). This set of efficient portfolios can be calculated by solving
the bi-objective problem

{
min σ2(~R| ~W ), max E(~R| ~W )

}
subject

to
∑n

i=1 wi = 1.
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Figure 1. Selection of a solution from the Pareto front using Sharpe’s
index. The reference risk-free return R0 is marked with an open circle on the
Y axis, whereas the selected solution from the Pareto front (shown in blue) is

marked with a square. In this example, both the Pareto front and the
reference point R0 correspond to real data used in the experimentation

(mixed funds, see Sect. 4).

Subsequently, once the optimal Pareto set (or a good approxima-
tion to this set) has been calculated, the decision-making criterion
can be exercised to extract a single preferred solution from this set.
In our case, we consider the use of Sharpe’s index for this purpose,
as stated before.

It is interesting to note the geometrical interpretation of this
decision-making procedure based on Sharpe’s Index. Since this index
is the ratio between excess profit and risk, all profit/risk pairs located
along a straight line running through (0, R0) correspond to hypothet-
ical portfolios with the same value for Sharpe’s index (which is the
slope of this line, actually). Furthermore, only points below the op-
timal Pareto front may represent attainable portfolios. Therefore, the
maximum value of Sharpe’s index corresponds to the line of highest
slope that runs through both the point (0, R0) and an actual portfolio.
This corresponds to a tangent to the Pareto front as illustrated in Fig.
1.

This geometrical interpretation leads to an additional observation:
given two portfolios ~W1 and ~W2, if the former has a higher value
of Sharpe’s index, then it is not dominated (in the Pareto sense) by
the latter. This can be easily seen by noting that in order for ~W1 to
be dominated by ~W2, it must be that E(~R| ~W1) 6 E(~R| ~W2) and
σ2(~R| ~W1) > σ2(~R| ~W2), with at least one of the inequalities be-
ing strict. However, if this is the case, then ~W2 has a higher value of
Sharpe’s index, since it has a larger numerator and a smaller denomi-
nator in Eq. (4). This fact paves the way to defining a single-objective
EA that directly tries to maximize Sharpe’s index: by progressing to-
ward better values of the index, the EA will also advance toward
the Pareto front, ideally converging to the optimal tangent point. Of
course, this ideal behavior does not have to happen necessarily, since
there may be local optima in the search landscape along the way (as
dictated by the risk/profit profile of attainable portfolios). We will re-
turn to this point in Sect. 4, when analyzing the experimental results.



3.2 Algorithmic Approaches

The multiobjective portfolio optimization problem has been tack-
led with three state-of-the-art MOEAs, namely NSGA-II (Non-
dominated Sorting Genetic Algorithm II) [6], SPEA2 (Strength
Pareto Evolutionary Algorithm 2) [22] and IBEA (Indicator-Based
Evolutionary Algorithm) [21]. The first two ones are the second-
generation version of two previous algorithms (NSGA [14], and
SPEA [23] respectively). As such, they rely on the use of elitism (an
external archive of non-dominated solutions in the case of SPEA2,
and a plus-replacement strategy –keeping the best solutions from the
union of parents and offspring– in the case of NSGA-II). More pre-
cisely, the central theme in these algorithms is assigning fitness to
individuals according to some kind of non-dominated sorting, and
trying to preserve diversity among solutions in the non-dominated
front. The third algorithm considered is IBEA, which is aimed to
maximize some multiobjective performance indicator, and uses a re-
placement strategy that tries (in a greedy way) to optimize the value
of this indicator for the current population. In this work, we have
considered an IBEA based on the ε-indicator [19].

In addition to the multiobjective EAs mentioned before, we have
also considered a single-objective EA aimed to optimizing Sharpe’s
index. This EA is termed SEA –after Sharpe’s index-based EA– and
has the advantage of being a simpler approach, since no archiving of
solutions nor Pareto-based selection/replacement is necessary. More
precisely, we have considered the use of binary tournament selection,
and a plus replacement strategy.

In all algorithms considered, solutions –that is, a vector of ratio-
nal values in the [0, 1] range, indicating the fraction of the portfolio
devoted to each fund– are represented as binary strings. Each fund is
assigned 10 bits, yielding a raw weight w̄i. These weights are sub-
sequently normalized as wi = w̄i/

∑
j w̄j to obtain the actual com-

position of the portfolio. Evaluation is done by computing the risk
and return of the portfolio using the formulation depicted before. As
to reproduction, we consider standard operators such as two-point
crossover and bit-flip mutation.

4 Results

The data used in the experiments is taken from the Caracas Stock
Exchange (Bolsa de Valores de Caracas - BVC), the only securi-
ties exchange operating in Venezuela. More precisely, we have con-
sidered data spanning from five up to eight years of stock trading.
This time interval is large enough to be representative of the evolu-
tion of shares, and not too large to include irrelevant –for prediction
purposes- data (the status of funds can fluctuate in the long term,
commonly making old data useless for forecasting the future evo-
lution of shares). According to this, our sample – ∼ 35, 000 daily
prices of different mutual funds: fixed, variable, and mixed– com-
prises funds operating for at least five years and still available in the
BVC [1]. To be precise, we have used weekly market data from year
1994 to year 2002, corresponding to 26 Venezuelan mutual funds:
12 fixed funds, 7 variable funds, and 7 mixed funds. Data up to year
2001 is used for training purposes, whereas data corresponding to
the year 2002 will be used for testing the obtained portfolios with
respect to an investment portfolio indexed in the BVC. The relative
ratio of share values in successive weeks is calculated to compute
the profitability of each fund. This is done for each week in the year,
and subsequently averaged to yield the annual weekly mean and thus
obtain the annual profit percentage. The covariance matrix of these
profitability values is also computed, as a part of Markowitz’s model.

Experiments have been done with the four algorithms described
before, namely NSGA-II, SPEA2, IBEA, and SEA. For the first three
techniques –the multiobjective EAs– we have utilized the PISA li-
brary (A Platform and Programming Language Independent Inter-
face for Search Algorithms) [2]. In all cases, the crossover rate is
PX = 0.8, the mutation rate is PM = 1/`, and the population size is
2`, where ` is the total number of bits in a solution. The algorithms
have been run for a maximum number of 100 generations. The num-
ber of runs per data set is 30.

The first part of the experimentation considers the use of the value
R0 = 0.1218 observed during the time window considered. Using
this value, a single solution can be selected from the Pareto front ob-
tained by each multiobjective EA. Likewise, the SEA can use this
value to evolve portfolios with high values of Sharpe’s index. The
results are shown in Fig. 2. As it can be seen, while there is a cer-
tain amount of variability in the results provided by the MOEAs in
each run, SEA does consistently provide a focused result, notably
better (with statistical significance at the standard 0.05 level, using a
Wilcoxon ranksum test [10]) than the remaining algorithms.

A natural question arises from these previous results, namely the
extent to which SEA would be capable of beating the remaining
multiobjective approaches should the value of R0 be different. No-
tice that by varying this value, the tangent point to the Pareto front
varies, and the convergence properties of SEA may be different. The
MOEAs are not affected by this change though, since R0 is only used
in the decision-making process, after the algorithm has been run.

To investigate this issue, we have considered values of R0 ranging
from 0 to Rmax

0 (0.39, 0.20 and 0.40 for fixed, mixed and variable
funds respectively; these values have been chosen by considering the
highest profit attained in the grand overall Pareto front). To allow a
fair comparison between SEA and the MOEAs, 30 equally spaced
values from this range have been selected, and a single run of SEA
has been done on each of them. The underlying question we want
to address is whether it is better to devote the allotted computational
effort (in this case, 30 runs of 10,000 evaluations each) to 30 multi-
objective runs, or to 30 different single-objective runs.

The first aspect of the results we have analyzed is the structure of
the Pareto front attained in each case. Notice that by archiving the
solutions obtained by SEA in each run, we can actually build a non-
dominated front, even when each of the independent runs was mono-
objective. Of course, it cannot be expected in principle that the front
provided this way by SEA is competitive in a general sense with that
of the MOEAs, but an analysis of this front can anyway provide in-
teresting information on the behavior of SEA. This analysis has been
conducted using two well-known quality indicators: the hypervolume
indicator [18] and the R2 indicator [8] – see also [20]. The first one
provides an indication of the region in fitness space that is dominated
by the front (and hence the larger, the better), and the second indica-
tor estimates the extent to which a certain front approximates another
one (the true Pareto-optimal front if known, or a reference front oth-
erwise). To be precise, we have considered the unary version of this
indicator, taking the combined NSGA-II/SPEA2/IBEA/SEA Pareto
front as reference set. Being a measure of distance to the reference
set, the lower a R2 value, the better. The lower right corner of the
minimum box comprising this combined front has been used as ref-
erence point for hypervolume calculation.

Figs. 3 and 4 show the results for the experiments realized. In each
case, the upper boxplot indicates the distribution of indicator values
for the fronts obtained in each execution of the MOEAs (it does not
make sense in the case of SEA, since each execution is going to be
focused on a very specific region of the front, and hence the indi-
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Figure 2. Boxplot of Sharpe’s index values attained by NSGA-II, SPEA2, IBEA and SEA on fixed funds (right), mixed funds (middle) and variable funds
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Figure 3. (Top) Boxplot of the R2 indicator for NSGA-II, SPEA2 and IBEA. (Bottom) Indicator values for the grand fronts.

cator values are going to be poor and uninformative), and the lower
bar graph indicates the indicator value for the grand front obtained
aggregating the 30 runs of each algorithm.

Let us consider the R2 indicator in first place (Fig. 3). As it can
be seen, the grand front generated by IBEA is notably better than
the remaining fronts; the grand front provided by SEA is on the con-
trary much worse than that of the other algorithms. This can be ex-

plained by the fact that SEA only focuses on the regions of the front
that are tangent to a straight line originating at (0, R0) for the val-
ues of R0 considered. The coverage of intermediate zones between
these regions is weaker, and hence the grand SEA front exhibits a
larger distance to the grand overall front used as reference. Notice
that IBEA also exhibits an uneven behavior in individual runs, but
manages to provide a good coverage of the reference front when its
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Figure 4. (Top) Boxplot of the hypervolume indicator for NSGA-II, SPEA2 and IBEA. (Bottom) Indicator values for the grand fronts (notice the range of
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30 runs are aggregated. As to the hypervolume indicator, it indicates
that IBEA provides the best front too, but this time SEA does not
appear to be much worse (actually, the difference is very small, as it
can be seen by inspecting the range of values in the Y axis). This has
an explanation: although SEA only achieves a good coverage of spe-
cific parts of the front, it is capable of advancing much deeper there,
thus increasing the dominated hypervolume.

To see how the qualitatively different behavior of SEA with re-
spect to the MOEAs affects its performance on different investment
scenarios, the next step of the analysis focuses on the relative perfor-
mance of selected solutions under different values of R0. To be pre-
cise, for each algorithm we have considered its grand front, and se-
lected the best solution (according to Sharpe’s index) for 100 differ-
ent values of R0 (between 0 and the corresponding value of Rmax

0 ).
Notice that this sample of values of R0 is larger than that used in
SEA runs, and includes many intermediate values not considered in
the execution of this latter algorithm. Fig. 5 shows the results. Values
of Sharpe’s index have been normalized, dividing by the correspond-
ing values returned by SEA. Therefore, values above (resp. below)
1.0 indicate better (resp. worse) values of Sharpe’s index that those
provided by SEA.

In general, there is an intermediate range of R0 values for which
all algorithms perform similarly. This range is larger in the case of
mixed funds than for fixed or variable funds. In any case, NSGA-
II and SPEA2 perform below SEA, and start to diverge quickly for
large values of R0. IBEA is capable of performing similarly to SEA
on a broader range of R0 values, but again falls below for larger val-
ues. In all cases this indicates that SEA has a better coverage of the
upper-right region of the front (high profit, high risk), containing the
solutions selected for increasing values of R0. It is also interesting to
note the behavior of SEA for low values of R0 on fixed funds. There
is a small interval of R0 values where the MOEAs perform better
than SEA, which converges toward a suboptimal region of the front
(cf. Sect. 3.1). Subsequent multiple runs of SEA on this particular
interval of values indicate that this suboptimal region has a strong

basin of attraction when Sharpe’s index is used as fitness function.
Only around 5% of SEA runs are capable of converging toward the
best region identified by the MOEAs for this particular case. How-
ever, this behavior does not take place outside this small interval of
R0 values, nor in the remaining data sets.

5 Conclusions
Portfolio optimization is a natural arena for multiobjective optimiz-
ers, which are both powerful and flexible enough to deal with this
kind of problems. This is specifically true if the optimization process
is done in absence of knowledge on the particular decision-making
process that will take place afterwards, in order to select a solution
from the Pareto front. However, if this knowledge is available, the
case for a full-fledged multiobjective approach is not so strong, at
least to the extent that this multiobjective approach treat all points
in the Pareto front on the same basis. In this sense, we have shown
that a multi-start single-objective EA based on Sharpe’s index can
outperform state-of-the-art MOEAs on several portfolio optimization
instances, and on a different range of investment scenarios, providing
a selective coverage of interesting regions of the Pareto front.

This does not imply by any means that MOEAs cannot be useful
for this optimization task. For example, we have obtained evidence
that the SEA can in certain circumstances face difficulties to locate
the optimal region (according to the decision-making procedure cho-
sen) of the Pareto front for a given profit objective. Although multi-
ple additional runs may solve this problem, further analysis is clearly
required here. We plan to carry on a deeper study of the fitness land-
scape in this scenario to characterize this situation. Future work will
be also directed to analyze other variants of the problem where ad-
ditional constraints are introduced, e.g., cardinality constraints, lot
sizes, etc. This line of research is underway. Another line of future
research concerns the measure of risk. We have focused on variance
here, but there are other options. We may for example consider value
at risk, i.e., the maximum loss that can take place at a certain confi-
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Figure 5. Normalized values of Sharpe’s index provided by NSGA-II, SPEA2, and IBEA for different values of R0.

dence level. A related measure is the conditional value at risk, namely
the expected shortfall in the worst q% of cases, where q is a parame-
ter. Other possible measures are Jensen index [9], Treynor index [16],
or models emanating from capital asset pricing theory (CAPM) [12],
among others.
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