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Abstract—In this paper we study cellular evolutionary algo- solutions through the grid. Part of their behavior is due to
rithms, a kind of decentralized heuristics, and the importance g lower selection pressure compared to thapafmicticEAs
of their induced exploration/exploitation balance on different (here panmictic means that any individual may mate with any

problems. It is shown that, by choosing synchronous or asyn- . . . .
chronous update policies, the selection pressure, and thus themherIn the population). The influence of the selection roeth

exploration/exploitation tradeoff, can be influenced directly, with- neighborhood, and grid topology on the efficiency of cEAs in
out using additional ad hoc parameters. Synchronous algorithms comparison to other EAs have all been investigated in detail
of different neighborhood-to-topology ratio, and asynchronos in [4], [5], [6], [7], and tested on different applicationsich
update policies are applied to a set of benchmark problems. Our as combinatorial and numerical optimization.

conclusions show that the update methods of the asynchronous Cellular EA b tochasti lul ¢ t
versions, as well as the ratio of the decentralized algorithm, have ellular S Ccan be seen as stochastc cellular automata

a marked influence on its convergence and on its accuracy. (CAs) [8], [9] where the cardinality of the set of states isialq
to the number of points in the search space. CAs, as well as

. INTRODUCTION cEAs, usually assume synchronousor “parallel” update po-

This paper focusses on the class of algorithms called eellulicy, in which all the cells are formally updated simultansty.
evolutionary algorithms (cEAs). We here present the caradni However, this is not the only option available. Indeed, save
algorithm and suggest interesting variants targeted twesolworks onasynchronou€As have shown that sequential upda-
complex problems accurately with a minimum effort fote policies have a marked effect on their dynamics (see e.g.
customization. These techniques, also called diffusiofiner [10], [11]). In addition, the shape of the structure in which
grained models, have been popularized, among others, lyy eandividuals evolve has a deep impact on the performancesof th
work of Gorges-Schleuter [1] and Manderick and Spiessen [ZEA. The algorithm admits a specially easy modulation of its
The basic idea behind their behavior is to add some structsteape that can sharpen the exploration or the exploitasipa-
to the population of tentative solutions. The pursued éffec bilities of the canonical technique, as shown in [7]. Thas, i
to improve on the diversity and exploration capabilitiesltd is interestingto investigate asynchronous cEAs and noaygq
algorithm while still admitting an easy combination wittcéd shaped cEAs, in order to analyze their problem solving capa-
search and other search techniques to improve exploitatiorbilities, which is the subject of the second part of this pape

The above mentioned structured models are based on a spd-his work is organized as follows. The next section contains
tially distributed population in which genetic operatiomay some background on synchronous and asynchronous cEAs.
only take place in a small neighborhood of each individuain Section Il we discuss the ability of cEAs for changing
Usually, individuals are arranged on a regular grid of dimeheir behavior depending on the population shape. We briefly
sionsd = 1,2 or 3. Cellular EAs are a kind of decentralizedstudy in Section IV the theoretical behavior of the proposed
EA model [3]. They are not just a parallel implementation adlgorithms. In sections V and VI we deal with a set of
an EA; in fact, although parallelism could be used to speed bpnchmark problems with the goal of illustrating the actual
the search, we do not address parallel implementationdsn thbomputational power of these algorithms for optimization.
work. However, it is worth remarking that, although SIMDFinally, section VII offers our conclusions, as well as some
(single instruction stream - multiple data streams) mazhigomments on future work.
implementations were popular a decade ago, this is no longer
true, and today the best distributed implementation of a cEA
should make use of domain decomposition on clusters ofA cEA starts with the cells (individuals) in a random state
networked machines. and proceeds by successively updating them using evolutio-

Although fundamental theory is still an open research lingary operators, until a termination condition is met. Uputat
for cEAs, they have been empirically reported as being lisefu cell in a cellular EA means selecting two parents in the
in maintaining diversity and promoting slow diffusion ofindividual’s neighborhood (including the individual it§e

Il. SYNCHRONOUS ANDASYNCHRONOUS EEAS



applying genetic operators to them, and finally replacing thpolicies are stochastic, representing an additional sowoifc
individual if an offspring has a better fitness or using arothnon-determinism besides that of the genetic operators.
replacement policy. The following pseudo-code is a higkelle
description of the algorithm for a two-dimensional grid fes ' N EW CEA VARIANTS BASED ON AMODIFIED RATIO

HEI GHT xW DTH and for formally simultaneous update of all After explaining our basic algorithm and the asynchronous
the cells. In fact, true simultaneous update could be pexar Vvariants in the previous section, we now proceed to characte
in a parallel computer, but usually this is simulated by gsin rize the population grid itself. For this goal, we use the-“ra

sequential machine and a second array to hold the updatsd cedlius” definition given in [7], which is refined from the semina
one appeared in [6] to account for non square grids. The grid

is considered to have a radius equal to the dispersion*of

11 proc Steps_Up(cgn) /A lgorithm parameters in ‘cga’ points in a_cwcle_centered n(ﬁ,_y) (Eqg. 1). Thl_s deﬁmﬂo_n
2: for s «— 1 to MAX_STEPS do always assigns different numerical values to differendigri

Algorithm 1 Pseudocode of a synchronous cGA

3 for x «— 1 to WIDTH do

4 for y «— 1 to HEIGHT do

5: n_list— Get_Neighborhood(cga,position(x,y)); 72 772

6: parents—Local_Select(n_list); rad = Z (xl :E) + Z (yl y) , (@)

7 aux-indive—Recombination(cga.Pc,parents); n*

8 aux_indive—Mutation(cga.Pm,aux_indiv); n* n*

9: aux-indiv«Local_Search(cga.Pl,aux_indiv); T = Zi:l Ti o _ _ Zi:l Yi

10: Evaluate_Fitness(aux-indiv); - n* vy= n*

11: Insert_If_Better(position(x,y),aux-indiv,cga,aux_pop); Lo N - i

12: end for Although it is called a “radius”yad measures the disper-
5’15 ‘j;‘:pf;’;_aux pop: sion of n* patterns. Other possible measures for symmetrical
15:  Update_Statistics(cga); topologies would allocate the same numeric value to differe
16: end for topologies (which is undesirable). Two examples are thiusad

17: d_ Steps_Up; N . ..
B of a circle surrounding a rectangle containing the topology

or anasymmetry coefficienThe definition (1) does not only
Cells can be updatedynchronouslyor asynchronouslyIn  characterize the grid shape but it also can provide a radius
synchronous (parallel) update all the cells change thatest value for the neighborhood. As proposed in [6], the grid-
simultaneously, while in asynchronous, or sequential,atepd to-neighborhood relationship can be quantified by the ratio
cells are updated one at a time in some order. There exist m@@fween their radii (Eq. 2).
ways for sequentially updating the cells of a cEA (an excelle
discussion of asynchronous update in cellular automateshwh ratioms = radneighborhood @)
are essentially the same system as a cEA, is available i [10] radtopology
We consider four asynchronous update methdoed line When solving a given problem with a constant number
sweep(LS), fixed random sweefFRS), new random sweep of individuals ¢ = n*, for making fair comparisons) the
(NRS), anduniform choice(UC). topology radius will increase as the grid gets thinner (Elg).
« In fixed line sweefLS), the simplest method, thegrid Since the neighborhood is kept constant in size and shape
cells are updated sequentially, 2. .. n) line after line. ~throughout this paper (we always use linear5 —L5-, Fig. 1a),
« In fixed random sweegFRS), the next cell to be up-the ratio will be smaller as the grid gets thinner.
dated is chosen with uniform probability without re-

rad,

placement; this will produce a certain update sequence OOOOO 0000 e

(cf,c5,...,cmm), wherec? means that cell numbeyr is COe0O eoeeo0o rad,

updated at timey and (j, k,...,m) is a permutation of CeeeO 000006 00000000

the n cells. The same permutation is then used for al QO @00 ©0000 00000000

update cycles. 00000 eeeee oeo0000000
« The new random sweemethod (NRS) works like FRS,  ,,.s :\/? =0.8944 rady>rad, - then  ratio,<ratio,

except that a new random cell permutation is used for (@ (b)

each Sweep throth the array. Fig. 1. (a) Radius of neighborhood L5. (bx5=25 and 3x 8 =25 grids
. . ig. 1. iu i . = X 8= ids;
+ In uniform ChO'Ce(UC)’ the next cell to be updatedapproxima\tely equal number of individuals with two differeatios

is chosen at random with uniform probability and with

replacement. This corresponds to a binomial distribution after presenting this characterization of the radius and

for the update probability. topology by means of a ratio value the main question still

A time stepis defined as updating times sequentially, remains to be posed: what is the importance of such a ratio

which corresponds to updatirgl the n cells in the grid for measure? The answer comes when we get into the actual
LS, FRS and NRS, and possibly less thadlifferent cells in meaning of the ratio, i.e., reducing the ratio means redyitia
the UC method, since some cells might be updated more thglnbal selection intensity on the population (see nextise)t
once in a single time step. It should be noted that, with thbus promotingexploration This is expected to allow for a
exception of fixed line sweep, the other asynchronous upglathigher diversity in the genotype that could improve the itssu



in difficult problems (like in multimodal or epistatic tagk©n

the other hand, the search performed inside each neightxrho
is guiding theexploitationof the algorithm. We study in this
paper how the ratio affects the search efficiency over atyarie
of domains. Changing the ratio during the search is a unique
feature of cEAs that can be used to shift from exploration to
exploitation at a minimum complexity without introducingsg

Best Proportion
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another new algorithm family in the literature. 5 @2X32

Many techniques for managing the exploration/exploitatio 0.1 P C21 {Mxﬂg
tradepff are possmle. Among them, it is worth to_makg a T e e el e e
special mention to heterogeneous EAs [12] [13], in which N. of Generations

algorithms with different features run in separate subfmpu

tions and collaborate in order to avoid premature conv&rg.enFig' 2. Growth curves of the best individual for two cEAs witffferent
. . . . . . . neighborhood and population shapes, but similar ratio galii&e vertical

A different alternative is usindemetic Algorithmg14], in s represents the proportion of population consistingest individual as a

which local searchis combined with the genetic operators iriunction of time

order to promote local exploitation.

1 T
ratio 0.003 (1x1024 pop.) i

IV. SELECTION PRESSURE GRID SHAPE AND TIME 0s}] ;:;gggggé%éggg;
Selection pressure is related to the concepttakeover il IZE?E%:SZSé?i??GZﬁE%”

time, which is the time it takes for a single best individual I

to colonize the whole population with copies of itself under

the effects of selection only [15]. Shorter takeover timesam

a stronger selection. ;
We plot in figures 2, 3 and 4 the takeover time for some syn- 7

chronous and asynchronous cEAs. For that, we only maintain .’

selection active, and we also use an elitist replacemertteof t

o
3

Best Individual Proportion
o
o

best parent. Nor mutation neither crossover are applieithglur 10" w oo 10 10
. . . . . . . Ol enerations

the evolution. Initially, we place only one optimal indivdl

in a random location of the grid, and we let it be selected amgd. 3. Takeover times with tournament selection using a LEhizrhood in

copied until it takes over all the grid positions. The axes @ppulations of 1024 individuals with different grid shapktean values over
100 runs. The vertical axis represents the proportion ofifajon consisting

the graph|C§ represgnt the proportion of the best |'nd|\hdua' of best individual as a function of time. Horizontal axis iddgarithmic scale
the population (x axis), and the number of generations oe tim
steps (y axis).
Algorithms with similar ratio show a similar selectionpy varying the update policies it is possible to influence the
pressure, as stated in [5]. In Fig. 2 we plot such a similgkplorative or exploitative character of the search.
behavior for two algorithms with different neighborhooddan
population radii, but having two similar ratio values. Tteses 1
plotted are those using a L5 neighborhood witt82ax 32
population, and a compact2l —C21— neighborhood with a
population of64 x 64 individuals. In the C21 neighborhood
a central cell is surrounded by two cells in all directions,
including the diagonals, and the four corner cells are ctit ou
Hence, it may be interesting to see how the shape of the
grid influences the search of the algorithm. The selection
pressure for different cEAs using L5 neighborhood ahd
possible grid shapes are plotted in Fig. 3 for a population o1t
of 1024 individuals. Note that the selection pressure ieduc )
in synchronous rectangular grids falls under the curve for a
synchr.onous S.quare grid x 32 populafuon), which means Fig. 4. Takeover times with tournament selection using a L§ht@rhood
that thinner grids favor a more explorative style of search. ina32 x 32 grid. Mean values over 100 runs. The vertical axis represtiat
If we now keep the shape of the grid constant (say r@oportion of population consisting of best individual atuaction of time
square) but we allow the cell update mode to change, we
observe a similar effect on the selection pressure. In faid,
found that the global selection pressure induced by thewari
asynchronous policies fall between the low synchronoud lim In this section we present the set of problems chosen for
and the high panmictic bound (see Fig. 4 and [16]). Thuthis study. The benchmark is representative because iaiosnt

e o ©o
N ®» ©

o
o

o
~

o
w

Best Individual Proportion
o
3

— synchronous
uniform choice
- = new random sweep
line sweep
-+ _panmictic

o
N

20 30 40 50
Time Steps

V. TESTSUITE



many different interesting features found in optimizatisnch a problem generator removes the opportunity to hand-tune
as epistasis, multimodality, deceptiveness, and probleneg algorithms to a particular problem, therefore allowing iayéa
rators. These are important ingredients in any work tryimg fairness when comparing algorithms. With a problem geoerat
evaluate algorithmic approaches with the objective ofiggtt we evaluate our algorithms on a high number of random
reliable results, as stated by Whitley et al. in [17]. problem instances, since a different instance is solvedh eac

We experiment with the massively multimodal deceptiveme the algorithm runs, then the predictive power of the
problem (MMDP), and the multimodal problem generataresults for the problem class as a whole is increased.
P-PEAKS, which are included in the set of problems studied The idea of P-PEAKS is to generaterandomN -bit strings
in [7]; next we will extend this basic two-problem benchmarkhat represent the location &f peaks in the search space. The
with error correcting code design (ECC), and maximum cfitness value of a string is the number of bits the string has in
of a graph (MAXCUT). The choice of this set of problems izommon with the nearest peak in that space, divided&bias
justified by both their difficulty and their application doma shown in Eq. 4). By using a small/large number of peaks we
(telecommunications, combinatorial optimization, etdhis can get weakly/strongly epistatic problems. In this paper w
gives us a high level of confidence in the results, although thave used an instance &f = 100 peaks of lengthV = 100
evaluation of conclusions will result more laborious thathw bits each, which represents a medium/high epistasis 1&}el [
a small test suite. The maximum fitness value for this problem1is).

The selected problems are explained in subsections V-A to o1 ) .
V-D. We include the explanations in this paper to make it /P-PraKs(@) = 5 max {N — HammingD(z, Peaki)} (4)
self-contained and to avoid the typical small lacks thatl#ous  gror Correcting Code Design Problem (ECC)

reclude other researchers from reproducing the results. . . .
P P g The ECC problem was presented in [20]. We will consider a

A. Massively Multimodal Deceptive Problem (MMDP) three-tuple(n, M, d), wheren is the length of each codeword
The MMDP is a problem that has been specifically designé@Uumber of bits) M is the number of codewords, ands the

to be difficult for an EA [18]. It is made up df deceptive sub- Minimum Hamming distance between any pair of codewords.

problems £;) of 6 bits each one, whose value depends on tifHl objective will be to find a code which has a value for

number of onesuitatior) a binary string has (see Fig. 5). It isd as large as p053|ble. (reflegtlng greater tolerance to noise

easy to see (graphic of Fig. 5) that these subfunctions lvave 2nd €rrors), given previously fixed values forand . The

global maxima and a deceptive attractor in the middle poinproblem we have studied is a simplified version of that in
[20]. In our case we search half of the codewordl/Q) that

will compose the code, and the other half is made up by the

Unitation Subfunction value Massively Multimodal Deceptive Problem

0 1.000000 L0 complement of the codewords computed by the algorithm.
L 9.000000 3 o The fitness function to be maximized is:
2 0.360384 § oe 1
3 0.640576 Y _
4 0.360384 2w feoe = — ®)
5 0.000000 “ ool d-2
6 1000000 ¢ ! ? mtaton 0 ¢ Zl _ ;ﬁ ij
=1 j=1,i#j

where d,; represents the Hamming distance between code-
wordsi andj in the codeC (made up ofM codewords, each

In MMDP each subproblens; contributes to the fitness of lengthn). We consider in the present paper an instance

value according to itsinitation (Fig. 5). The global optimum {TJQGGM = 24 andn = 12. The search space is of size

Fig. 5. Basic deceptive bipolar function;j for MMDP

has a value ok and it is attained when every subproblem i o1 ) which is approximatelyi087. The optimum solu-
pomposed of ziro or Six ones. The nukmber of Ioca! optln?l n for M = 24 andn = 12 has a fitness value 6f0674 [21].
is quite large 22°), while there are only®" global solutions.
Therefore, the degree of multimodality is regulated by the D. Maximum Cut of a Graph (MAXCUT)

parameter. We use here a considerably large instarce-010 The MAXCUT problem looks for a partition of the set
subproblems. The instance we try to maximize for solving th§ vertices /) of a weighted graphG = (V,E) into two
problem is shown in Eqg. 3, and its maximum value is equglsjoint subsetd;, and V; so that the sum of the weights of

to k. . the edges with one endpoint Iy and the other one if; is
Fainipp () = Zfitnessg. 3) maximized. For encoding the problem we use a binary string
p— (z1,22,...,7,) Of lengthn where each digit corresponds to

. a vertex. If a digit is 1 then the corresponding vertex is in se
B. Multimodal Problem Generator (P-PEAKS) V4, if it is O then the corresponding vertex is in Sét. The
The P-PEAKS problem [19] is a multimodal problem gefunction to be maximized [22] is:
nerator. A problem generator is an easily parameterizaisle t el m
which has a tunable degree of epistasis, thus admitting t?MAXCUT(f):Z Zw”' [z (1—;) + a5 (1—2:)] (6)
derive instances with growing difficulty at will. Also, ugin P —



Note thatw;; contributes to the sum only if nodésind; are
in different partitions. While one can generate differemicd@am

TABLE Il

MMDP PROBLEM WITH A MAXIMUM OF 1000GENERATIONS

graph instances to test the algorithm, here we have used th¢ Algorithm

[ Avg. Solution (best=20)[ Avg. Generations| Hit Rate |

case “cut20.09”, with20 vertices and a probability di.9 of Square 19.813 214.18 57%
. . Rectangular 19.824 236.10 58%
having an edge between any two randomly chosen vertices| narrow 19.842 209.67 61%
The maximum fitness value for this instancest740064. LS 19.518 343.52 23%
FRS 19.601 209.94 31%
NRS 19.536 152.93 28%
VI. EXPERIMENTAL ANALYSIS uc 19.615 295.72 36%

Although a full-length study of the problems presented TABLE IV

in the previous section is beyond the scope of this work,

P-PEAKSPROBLEM WITH A MAXIMUM OF 100 GENERATIONS

we present results comparing synchronous and asynchronous

CEAs, and also cEAs having different values of the ratio, [Algorithm | Avg. Solution (best=1)] Avg. Generations| Hit Rate |
always with a constant neighborhood shape (L5). Note that | Square 1.0 51.84 100%
oo . . Rectangular 1.0 50.43 100%
it is not our aim here to compare cEAs performance with | narrow 10 53.94 100%
state-of-the-art algorithms and heuristics for combiriato ESRS }8 gg;g }882;0
and numerical optimization. To this end, we should at least | yrs 1o 3578 | 100%
tune the parameters and include local search capabilities i | UC 1.0 40.14 100%

the algorithm, which is not the case. Thus, the results only
pertain to the relative performance of the different cEA ated
methods and ratios among themselves.

TABLE V

ECCPROBLEM WITH A MAXIMUM OF 500 GENERATIONS

Here we present the results of solving several problemsAigorithm

[ Avg. Solution (best=0.0674) Avg. Generations] Hit Rate

using JCell v1.0, our custom simulation program written in[ Square 0.0670 93.92 85%

: : : . Rectangular 0.0671 93.35 88%

Java, with three different static ratios, and the four asynt arow 0.0673 104.16 94%

chronous update modes previously described. The configuraLs 0.0672 79.66 89%

tion of the algorithm is detailed in Table I, while the static | e 0.0672 S2.88 1 0%

ratios used are shown in Table IlI. uc 0.0671 87.27 86%
TABLE | TABLE VI

PARAMETERIZATION USED IN THE ALGORITHM

MAXCUT PROBLEM WITH A MAXIMUM OF 100 GENERATIONS

Population Size 400 individuals [ Algorithm | Avg. Solution (best=56.74)] Avg. Generations] Hit Rate |
Selection of Parents binary tournament + binary tournament Square 56.74 11.26 100%
Recombination DPX, pc = 1.0 Rectangular 56.74 11.03 100%
Bit Mutation Bit-flip, pr = 1/L Narrow 56.74 11.88 100%
Individual Length L LS 56.74 9.46 100%
Replacement Repif _Better FRS 56.74 9.69 100%
NRS 56.74 9.55 100%
uc 56.74 9.58 100%

TABLE Il
STUDIED RATIOS

tend to need a smaller number of generations than the syn-
chronous ones to locate an optimum, in general. Moreover,

Name (shape of population) Value of ratio A - |

Square (20 x 20 individuals) | 0.11 referring to tables in Appendix wheretests are reported
Rectangular (10 x 40 individuals) | 0.075 (character ‘+' stands for significant values, while ‘- mean
Narrow (4 x 100 individuals) | 0.031 no significance), the reader will confirm that the difference

among asynchronous and synchronous algorithms are istatist
We show in the following tables the results for the problemsally significant, thus indicating that the asynchronousiess
before mentioned: MMDP (Table Ill), P-PEAKS (Table 1V),perform more efficiently with respect to cEAs with different
ECC (Table V), and MAXCUT (Table VI). We have performedstatic ratios. This result conforms to our study of Sectign |

100 independent runs for any algorithm and for every problesince asynchronous algorithms have a lesser takeover time.
in the test-suite. In these tables we report the averageeof There are however punctual exceptions, like in MMDP.
final best fitness on every run, the average number of timeConversely, if we pay attention to the success (hit) rate, it
steps to obtain the optimum value (if obtained) and the It racan be concluded that the synchronous policies with changin
(percentage of successful runs). Therefore, we are anglyziatios outperform the asynchronous algorithms (except for
the final distance to the optimum (especially interestinggavh ECC): slightly in terms of the average final fitness, and ¢year
the optimum is not found), the effort of the algorithm, argl itin terms of probability of finding a solution (i.e., frequenaf
expected efficacy, respectively. optimum location).

From the inspection of these tables some conclusions carAnother interesting result is the fact that we can define two
be clearly drawn. First, the studied asynchronous algosth classes of problems: those solved by any method to optinalit



(100% hit rate) and those in which no 100% rate is achieved ain summary, we have found asynchronous algorithms to
all. The latter seem to be suitable for cEAs directly, while t be numerically more efficient (faster) than synchronoussone
former need some help, e.g., by including local search.  (with statistically significance) for P-PEAKS, ECC, and MAX
In order to summarize the large set of results and get so@&T, but not for MMDP. On the other hand, synchronous
useful conclusions we present a ranking with the best algalgorithms outperform asynchronous ones in terms of the hit
rithms by following three different metrics: average besafi rate for our benchmark, which could be a very important
solution, average number of generations on success, andigstie for many applications. As a future work, it would be
rate. Table VII shows the three mentioned rankings. Thesgeresting to give a unified study of the different selettio
rankings have been computed by adding the position (framtensities and their influence in the resolution of eactblenm
better to worse: 1, 2, 3 ...) that algorithms are allocatedife considered for the analysis.
previous results presented from Table Il to Table VI, aecor
ding to the three criteria.

TABLE VI APPENDIX

RANKING OF THE ALGORITHMS . i Lo .
In this appendix we show a statistical comparison of the

Avg. Solution Avg. Generations Hit Rate studied algorithms by performingtests on the results of all
1 Narrow 4 1NRS 8 1 Narrow 4 H H
2Rectangular 9 2LS 10 2Rectangular 9 the _algorlthms. Tgbles_ VIII to Xlll contain 'Fhe values of our
2 FRS 9 3FRS 11  2FRS 9 statistical comparison in terms of the solutions found dred t
4 NRS 10 4UC 16 4NRS 11 P 7
R 11 5Rectangular 19  5Square 2 pumbgr of genera_tlons. .No tables are provided for thosescase
5LS 11 6Square 21 5UC 12 in which the optimum is found every run (MAXCUT and
7 Square 12 7Narrow 27 SLS 12 P-PEAKS). On the following tables, statistical significanc

) (5% level) is shown by using symbol ‘+’, while absence of
As we would expect after the previous comments, accordiRgytistical significance is marked with *-'.

to the average final best fithess and hit rate criteria, syn-
chronous algorithms with narrow and rectangular ratios are TABLE VIl

in general more accurate than all the asynchronous ones for P-VALUES OF THE AVG. FITNESS FORMMDP
our test problems, with a special leading position for narro
population grids. On the other hand, asynchronous versions

[Algorithm  JSquare[Rectangular[Narrow [LS[FRS[NRSJUC]|

clearly outperform any of the synchronous algorithms imter 22‘;?;§gu.ar s . _ i i i i
of the average number of generations, with a trend towards [‘grrow - - J: J: oA
NRS as the best ranked flavor of cEA for our test suite. FRS + 4 ol = e =] =
NRS + + + =] —| e -

VII. CONCLUSIONS uc + + =] =] ] e

In the first part of this paper we have described several asyn-
chronous update policies for the population of a cEA, fokddw
by some ratio policies, all of them inducing a different kiwid
search in the cellular EA. One can tune the selection intgnsi

TABLE IX
P-VALUES OF THE GENERATIONS FORMMDP

of a cEA by choosing the update policy and/or grid ratio [Algorithm _|Square| Rectangular| Narrow | LS [FRS[NRS|UC|
without having to deal with additional numerical parameter Square . = T+ - - -
settings. This is a clear advantage of the algorithms peghos Recenuan ol Y T I
in this study. LS + - = o = +| -

In the second part of the paper we have applied our extended ~ |{~e _ _ I O I A
CcEAs to a set of test problems. Although our goal has not uc - - == =] H[ e

been that of obtaining solvers able to compete with state-of
the art specialized heuristics, the results point in thasse
cEAs are very efficient optimization techniques, that could TABLE X

be further improved by being hybridized with local search P-VALUES OF THE GENERATIONS FORP-PEAKS
techniques [23]. The results on the test problems largely
confirm, with some small exceptions, that the solving abdit

[Algorithm  [Square]Rectangular[Narrow [LS[FRS[NRS[UC]|

Square o + ++] ] ]+
using the various update/ratio modes are directly linked to Rectangular|  + . S [ ) S
their induced selection pressures, showing that expioitat Narrow M 3 T e i B I
plays an important role. It is clear that the role of explonat FRS + + ++| o —| +
might be more important on even harder problem instances, RS M M i e e A

but this aspect can be addressed in our algorithms by using
more explorative settings, as well as by using different cEA
strategies at different times during the search dynanyi¢2d].



TABLE XI

8] M. Tomassini, “The parallel genetic cellular automata:phgation to
P-VALUES OF THE AVG. FITNESS FORECC (8] p g phea

global function optimization,” irProceedings of the Int. Conference on
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