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Abstract This work tackles the problem of reducing the
power consumption of the OLSR routing protocol in vehic-
ular networks. Nowadays, energy-aware and green commu-
nication protocols are important research topics, specially
when deploying wireless mobile networks. This article in-
troduces a fast automatic methodology to search for energy-
efficient OLSR configurations by using a parallel evolu-
tionary algorithm. The experimental analysis demonstrates
that significant improvements over the standard configura-
tion can be attained in terms of power consumption, with no
noteworthy loss in the QoS.

Keywords Energy · Vehicular networks · Evolutionary
algorithms · Parallelism

1 Introduction

In the last five years, the networking research community
has shown a growing interest in vehicular ad hoc networks
(VANETs), a technology that uses vehicles as nodes of a mo-
bile network [24]. VANETs share their main concepts with
generic mobile ad hoc networks (MANETs), but they also
have several distinctive features. For example, the node mo-

J. Toutouh · E. Alba
University of Málaga, Malaga, Spain

J. Toutouh
e-mail: jamal@lcc.uma.es

E. Alba
e-mail: eat@lcc.uma.es

S. Nesmachnow (�)
Universidad de la República, Montevideo, Uruguay
e-mail: sergion@fing.edu.uy

bility in VANETs is different from the models used in other
mobile networks, since vehicles tend to move following or-
ganized patterns, and they are usually subject to restric-
tions in both their motion range and in the interactions with
roadside infrastructure. In addition, VANETs integrate mul-
tiple ad hoc networking technologies (such as WiFi IEEE
802.11p, WiMAX IEEE 802.16, Bluetooth, etc.), posing a
difficult challenge for attaining effective and simple com-
munication between vehicles.

VANETs involve communication between vehicles and
other battery-fed devices—pedestrian smartphones, road
transceivers, sensors. Thus, the power consumption by wire-
less communications becomes a major concern, and the use
of energy-efficient communications is highly desirable.

Network routing is a critical issue in VANETs, as well as
in any other ad hoc network. The absence of a central en-
tity to manage the routing information, the limitations of the
shared medium, and the dynamic topology due to the high
node mobility and obstacles, make the routing problem even
harder. Proactive protocols are a useful choice for routing in
VANETs, since they generally outperform reactive ones in
terms of quality of service (QoS), network throughput, and
end-to-end delay [23]. However, proactive protocols have a
higher routing overhead, significantly reducing their energy
efficiency [8, 31].

Optimized Link State Routing (OLSR) [12] is a well-
known proactive routing protocol used in VANETs. The en-
ergy efficiency of OLSR has been studied focusing on spe-
cific protocol variants [13, 27], but VANET infrastructures
have seldom been considered. The OLSR power consump-
tion can be improved by modifying the standard parame-
ter configuration, in order to reduce the routing overhead.
However, is not easy to find the best OLSR configuration.
Exact and enumerative methods are not applicable to solve
the underlying optimization problem, since they require pro-
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hibitive execution times to perform the search, even when
considering only a small set of parameter values. In this
context, metaheuristics are a promising option to find accu-
rate energy-aware OLSR configurations in reasonable times,
even when a large set of parameter values are considered, as
in the problem tackled in this paper.

Evolutionary algorithms (EAs) have emerged as flexi-
ble and robust metaheuristics for search and optimization,
achieving a high level of problem solving efficacy in many
application areas [6]. In order to further improve the effi-
ciency of EAs, parallel implementations have been used to
significantly enhance and speed up the search, allowing high
quality results to be computed in reasonable execution times
even for hard-to-solve optimization problems [1].

This work proposes applying an automatic configuration
of the main OLSR parameters by using a parallel EA. The
main goals of the research are: (i) to improve the efficiency
of OLSR in VANETs, trying to reduce the power consump-
tion when using the standard Request for Comments (RFC)
3626 configuration [12], and (ii) to scale down the times re-
quired to perform the automatic configuration, in order to
study large realistic VANET scenarios.

The methodology applied in this work consists of explor-
ing the search space for possible combinations of eight pa-
rameter values that define the OLSR routing protocol, by us-
ing a genetic algorithm (GA). The power consumption due
to data exchange of each OLSR configuration is evaluated
using the data obtained after performing VANETs simula-
tions with the ns-2 network simulator. Since these simula-
tions require a long time to perform, a parallel implemen-
tation of the GA is used in order to reduce the search exe-
cution times. The best configurations are compared with the
standard one defined by RFC 3626, both in terms of power
consumption and QoS. Finally, the best energy-aware OLSR
configuration found is validated on a set of 36 VANET sce-
narios.

The article is organized as follows. Section 2 intro-
duces the energy-aware routing problem in VANETs, the
OLSR protocol, the power consumption model, and re-
views related work on metaheuristics for protocol optimiza-
tion in MANETs/VANETs and methods for energy-efficient
OLSR. Section 3 describes evolutionary computing and the
parallel model for EAs employed here. Section 4 presents
the implementation details of the parallel GA to find energy-
aware OLSR configurations in VANETs. The experimen-
tal analysis in Sect. 5 studies the numerical efficacy and
the computational efficiency of the parallel GA, and also
presents a validation of the best configuration found on a
large set of VANET scenarios. Finally, Sect. 6 presents the
main conclusions of the research and formulates the main
lines for future work.

2 Energy aware routing in vehicular networks

This section introduces VANET routing, the OLSR protocol,
the power consumption model used in our approach, and a
review of related work. It also describes the methodology
for finding energy-efficient OLSR configurations.

2.1 Routing in VANETs

Finding a stable routing strategy that guarantee the exchange
of up-to-date information, maximizing reliability and mini-
mizing delays is an important technical challenge when de-
signing an architecture for vehicular communication.

In VANETs, the links for vehicle-to-vehicle and vehicle-
to-infrastructure communication tend to be shortlived, due
to the intrinsic high-speed node mobility and the presence
of obstacles. Therefore, a great deal of effort is dedicated
to defining efficient routing strategies. Specific VANET pro-
tocols have appeared over the last few years, but most of
them are based on prior mobile ad hoc networks. These pro-
tocols can be grouped into: topology-based (proactive, e.g.
DSDV and OLSR, reactive, e.g., AODV and DSR, hybrid),
position-based (e.g., GPSR, GEOTORA, GPCR), cluster-
based (e.g., COIN, LORA_CBF) and broadcasting (e.g.,
BROADCOMM, V-TRADE, HV-TRADE) [29, 30].

Within those protocols originally proposed for MANETs,
topology-based protocols are among the most studied for
routing in VANETs [29]. In proactive protocols, all nodes
have consistent and up-to-date routing information for each
node permanently, unlike in reactive ones, where the routes
are created when demanded by the source node [30]. Proac-
tive protocols have the advantage of reduced end-to-end de-
lays, since the routes are already established and it is not
necessary to invoke a routing discovery process to find them,
as in reactive protocols. However, proactive protocols re-
quire a continuous exchange of control messages to main-
tain the topological information stored in the routing tables.
While negligible for small scenarios, control messages use
significant additional bandwidth for large networks, lead-
ing to excessive power consumption, possibly preventing the
use of devices fed by batteries or renewable energy sources
in VANETs [23].

In this work, we restrict our attention to OLSR, a proac-
tive routing protocol that has been analyzed for use in
VANETs through both simulations [9, 28] and real world
tests [38]. In turn, different comparisons of this protocol
against a reactive approach (AODV) concluded that OLSR
principally outperforms AODV in terms of delivery delays
and path lengths, while keeping a similar percentage of
packets delivered correctly [23, 39]. The type of routing pro-
tocol affects the nodes power consumption in two different
ways: the routing network load influences the amount of en-
ergy used to send and receive routing control messages; and
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the generated routing paths affect the power consumption in
those nodes forwarding the packets [8, 40].

For the aforementioned reasons, we have selected OLSR
as case-of-use, as its main drawback is the power consump-
tion. Thus, we can analyze the use of our parallel GA to deal
with the energy-efficiency routing problem in VANETs.

2.2 Optimized link state routing protocol

OLSR is a proactive link-state routing protocol conceived
for mobile ad hoc networks with low bandwidth and high
mobility. OLSR relies on applying an efficient periodic
flooding of control information using special nodes that act
as multipoint relays (MPRs), reducing the number of re-
quired transmissions [32].

OLSR daemons periodically exchange control messages
to maintain the network topology information in the pres-
ence of mobility and failures. The core functionality is per-
formed mainly by using three different types of messages:

– HELLO messages, exchanged between neighbor nodes to
allow for link sensing, neighborhood detection, and MPR
selection signaling. These messages are generated period-
ically, containing information about the neighbor nodes
and about the links between their network interfaces.

– TC (topology control) messages, generated by MPRs to
indicate which other nodes have selected it as their MPR.
This information is used for routing table calculations. TC
messages are broadcasted periodically, and a sequence
number is used to distinguish between recent and old
ones.

– MID (multiple interface declaration) messages, sent by
the nodes to report information about their network in-
terfaces, needed since multiple interfaces with different
addresses can be involved in the communications.

OLSR is regulated by a set of parameters defined in the
OLSR RFC 3626 [12]:

– the timeouts before resending each message type,
HELLO_INTERVAL, REFRESH_INTERVAL, and
TC_INTERVAL, respectively;

– the “validity time” of the information received for each
message type, NEIGHB_HOLD_TIME, MID_HOLD_
TIME, and TOP_HOLD_TIME;

– the WILLINGNESS of a node to act as a MPR;
– the time during which the MPRs record information about

the forwarded packets, DUP_HOLD_TIME.

A set of default values for these parameters has been sug-
gested by the OLSR standard RFC 3626 (see Table 1).

OLSR has several features that make it suitable for highly
dynamic ad hoc networks as VANETs: (i) it is well suited for
high density networks, with concentrated communication
between a large number of nodes [12, 25]; (ii) it is useful for

Table 1 Main OLSR parameters and standard values in the RFC 3626

Parameter Standard value
(RFC 3626 [12])

Range

HELLO_INTERVAL 2.0 s R ∈ [2.0,15.0]
REFRESH_INTERVAL 2.0 s R ∈ [2.0,15.0]
TC_INTERVAL 5.0 s R ∈ [4.0,35.0]
WILLINGNESS 3 Z ∈ [0,7]
NEIGHB_HOLD_TIME 3× HELLO_INTERVAL R ∈ [5.5,45.0]
TOP_HOLD_TIME 3× TC_INTERVAL R ∈ [10.5,90.0]
MID_HOLD_TIME 3× TC_INTERVAL R ∈ [10.5,90.0]
DUP_HOLD_TIME 30.0 s R ∈ [10.5,90.0]

applications requiring short delays in the data transmission,
as most of warning information in VANETs [25]; (iii) the
protocol information can be extended with data to allow the
hosts to know in advance the quality of the routes; (iv) it per-
mits an easy integration into existing operating systems and
devices, including smartphones, embedded systems, without
changing the header of the IP messages [19]; and (v) it man-
ages multiple interface addresses for the same host, allowing
VANET nodes to use different network interfaces—WiFi,
Bluetooth, etc., while acting as gateways to other devices,
such as drivers and pedestrian smartphones, base stations,
etc. [12].

2.3 Power consumption model

Several agents are involved in VANET communications,
such as on-board devices, smartphones, or traffic signs,
which use wireless network interfaces to exchange informa-
tion with each other. The energy required for each device to
perform the communications depends on its mode:

– idle is the default state of wireless interfaces in ad hoc
networks, where nodes keep listening and the interface
can change the state and start transmitting or receiving
packets.

– transmit and receive states are for sending and receiving
data through the medium.

– sleep state is when the node radio is turned off, and thus
the node is not capable of detecting any signal.

In our work, we modify the behavior of OLSR in order to
reduce the power consumption due to data exchange (control
or information messages). We deal with energy-awareness
in VANETs by optimizing the power consumption of the
two operational states that act during the packet exchange:
transmit and receive states. Therefore, we consider the per-
packet power consumption [16] modeled by Cano et al. [8],
in which only transmit and receive modes are taken into ac-
count to compute the power consumption to be optimized.
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The energy is computed according to the power require-
ments in transmitting (Psend ) and receiving (Precv) states,
and the time needed to transmit the packets (time). These
values are obtained by using the network interface card
(NIC) characteristics of electric current (Isend , Irecv) and
power supply (Vsend , Vrecv) in each state, the size of the
packets, and the bandwidth used.

Equations (1) and (2) represent the energy required
for packet transmission (Esend ) and for packet reception
(Erecv).

Esend = Psend × time = (Isend × Vsend) × PacketSize

Bandwidth
(1)

Erecv = Precv × time = (Irecv × Vrecv) × PacketSize

Bandwidth
(2)

According to the specification of the Unex DCMA-86P2
NIC [43] modeled in our simulations, the power consump-
tion is from 440 mA in transmitting mode, and from 260 mA
in receiving mode, and it is fed with 5.0 V. This network in-
terface uses a 6 Mbps bandwidth implementation of the stan-
dard IEEE 802.11p. Thus, the power consumption in trans-
mitting (Esend ) and receiving states (Erecv), in Joules, are
given by (3) and (4), respectively, where the packet size is
given in bits.

Esend = (440 × 5) × PacketSize

6 × 106
(3)

Erecv = (260 × 5) × PacketSize

6 × 106
(4)

The total power consumption for a packet transmission is
the sum of the costs incurred by the sending node and all re-
ceivers, whether they are the destination nodes or not. Equa-
tion (5) computes the total power consumption per packet
(Etotal) when there are r receiver nodes in the communica-
tion range of the sender.

Etotal = Esend +
r∑

i=1

Erecv (5)

2.4 Related work

The need of providing efficient communications in MANETs
and VANETs has motivated the research community to deal
with the problem of optimizing the communication proto-
cols employed in such networks. The related studies have
mainly focused on obtaining dramatic improvements in
terms of both QoS offered—packet delivery ratio, delivery
delays, etc., and resources consumed, e.g. power require-
ments. Due to the complexity of the underlying optimiza-
tion problems, metaheuristics have been usually applied as
the most appropriate techniques to solve them.

2.4.1 Metaheuristics for protocol optimization in MANETs
and VANETs

Regarding optimization techniques in MANETs, Alba et
al. [3] applied a specialized cellular multi-objective GA for
finding an optimal configuration for the Delayed Flooding
with Cumulative Neighborhood broadcasting strategy. Dor-
ronsoro et. al [15] evaluated six different versions of GA for
the design of ad hoc injection networks. Cheng et al. [10]
also used a GA for dealing with the multicast routing prob-
lem in MANETs. More recently, Ruiz et al. [35, 36] applied
a hybrid multi-objective optimization algorithm (CellDE) to
maximize the coverage and minimize the power consump-
tion and broadcast time of the EDB protocol.

In VANETs there are just a few approaches apply-
ing metaheuristics to optimize communication protocols.
García-Nieto et al. [18] employed a set of metaheuristic al-
gorithms to optimize VDTP and AODV [17] protocols. Re-
cently, Toutouh et al. [42] applied DE in order to improve the
performance of OLSR routing protocol in such networks.

2.4.2 Methods for energy-efficient OLSR

The related literature presents a number of power-aware
mechanisms proposed at the network layer in wireless net-
works, mainly due to the impact of the routing protocols
on the overall power consumption. These protocols deter-
mine the power consumption in creating and maintaining
the routes and the data packets forwarding. In this work,
we aim to provide an energy-efficient OLSR configuration
when applying this protocol for routing in VANETs. OLSR
has been selected as a case study since it offers competitive
QoS in such networks [41], but it also requires significant
power consumption.

Several approaches have been proposed to reduce the
power consumption when using OLSR. Ghanem et al. [20]
and Razalli et al. [33] evaluated new MPRs selection crite-
ria based on the residual energy levels of the nodes. Rout-
ing path determination based on the overall power con-
sumption to forward data and on the residual level of en-
ergy of intermediate nodes was explored by De Rango and
Fotino [14] and Guo and Malakooti [22], respectively. Other
authors have analyzed combinations of the aforementioned
techniques [7, 13, 27, 31, 37]. Finally, De Rango et al. [13]
presented Overhearing Exclusion, a mechanism that allows
energy saving by turning off the device when a unicast mes-
sage exchange happens in the device neighborhood.

Our previous article [40] studied the possible energy sav-
ings when an efficient protocol configuration in terms of
QoS (DE-OLSR) is used. That is the only existing work
studying the best parameter configurations to improve the
energy efficiency of OLSR specifically in VANETs. The im-
pact of the parameters configuration in the network perfor-
mance led us to perform the in-depth study of the OLSR
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Fig. 1 Automatic methodology
for energy-aware OLSR tunning

parameter tunning that we now present, in order to find the
best configuration in terms of energy efficiency in VANETs.
As in previously presented MANET/VANET optimization
problems, the use of metaheuristic techniques is mandatory
to deal with such problems.

2.5 Methodology for energy efficient OLSR via parameter
tuning

The standard OLSR parameter values in Table 1 can be fine-
tuned automatically by using an optimization technique,
with the aim of obtaining efficient OLSR configurations
for VANETs. This procedure hopefully allows reducing the
power consumption without incurring a significant loss of
QoS in comparison with the standard OLSR definition in
RFC 3626.

The search of possible combinations of OLSR parameter
values is not an easy problem. The dimension of the search
space increases exponentially with both the number and the
range of possible parameter values. Thus, exact search meth-
ods are not useful for efficiently solving the problem. In this
context, heuristic and metaheuristic optimization algorithms
are viable options to compute accurate energy-aware config-
urations in reasonable times.

In our previous paper [42], the large amount of time re-
quired to perform the VANET simulations limited the pro-
posed search method to work with a reduced population in
order to obtain results in reasonable time. To overcome this
drawback, this work proposes to use a parallel GA for effi-
ciently searching the parameter values of the OLSR proto-
col. By using several computing resources simultaneously,
the parallel implementation allows to reduce the simulation
times.

The automatic search for energy-aware OLSR configura-
tions is carried out by using the energy cost of the commu-
nications as the main objective to be optimized. However,
since excessive reductions of power consumption of the pro-
tocol can cause it to malfunction, we use the packet delivery

ratio (PDR) quality metric to guarantee a minimum level
of QoS in the communications. Thus, the parallel GA for
finding energy-efficient parameter values searches the best
configuration that provides the most energy savings while
maintaining PDR within margins of good performance (the
degradation in the PDR value is kept below 15 % of the PDR
achieved with the standard OLSR configuration).

Figure 1 summarizes the automatic methodology for
finding energy-aware parametrizations for the OLSR pro-
tocol in VANETs. The proposed method integrates the evo-
lutionary search via a parallel GA, the routing simulation
in VANETs using the ns-2 network simulator and the UM-
OLSR implementation from University of Murcia [34], and
a set of scripts developed to evaluate the power consumption
and QoS using the ns-2 output.

3 Evolutionary computation

This section introduces the main concepts about evolution-
ary computation and the parallel model applied to the GA
used in this paper.

3.1 Evolutionary algorithms

EAs are non-deterministic methods that emulate the evolu-
tionary process of species in nature, in order to solve op-
timization, search, and other problems [6]. Over the last
twenty years, EAs have been successfully applied for solv-
ing optimization and search problems underlying many
complex real-life applications.

An EA is an iterative technique (each iteration is called
a generation) that applies stochastic operators on a pool of
individuals (the population). Each individual in the popu-
lation is the encoded version of a tentative solution of the
problem. The initial population is generated either by using
a random method or by applying a specific heuristic for the
problem. An evaluation function associates a fitness value
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with every individual, indicating its suitability to the prob-
lem. Iteratively, the population is modified by the probabilis-
tic application of variation operators like the recombination
of individuals or random changes (mutations) in their con-
tents. A selection technique that gives a higher chance of
survival to the best suited individuals, guides the EA to ten-
tative solutions of better quality through the generations.

The stopping criterion usually involves a fixed number
of generations or execution time, a quality threshold on the
best fitness value, or the detection of a stagnation situation.
Specific policies are used to select the individuals to recom-
bine and to determine which new individuals are inserted in
the population in each new generation. The EA returns the
best solution ever found in the iterative process, taking into
account the fitness function considered.

The classic GA [21] is an EA that defines recombina-
tion and mutation as variation operators, applying them to
the population of potential solutions in each generation. The
recombination is used as the main operator to perform the
search (exploiting the characteristics of suitable individu-
als), while the mutation is used as a (seldom-applied) sec-
ondary operator aimed at providing diversity for exploring
different zones of the search space.

GAs are widely spread due to their versatility for solving
optimization problems. Here, a parallel version of the classic
GA has been applied to the problem of finding energy-aware
OLSR configurations in VANETs.

3.2 Parallel evolutionary algorithms

Parallel implementations became popular in the last decade
as an effort to improve the efficiency of EAs. By splitting the
population or the fitness function evaluation into several pro-
cessing elements, parallel EAs allow reaching high quality
results in a reasonable execution time even for hard-to-solve
optimization problems [2]. The parallel GA proposed here
is categorized within the master-slave model according the
classification by Alba and Tomassini [4].

The master-slave model (see Fig. 2) follows a classic
functional decomposition of the EA, where different stages
of the evolutionary process are performed in several com-
puting resources. The evaluation of the fitness function is

Fig. 2 Master-slave model for parallel EAs

the main candidate to perform in parallel, since it usually
requires larger computing time than the application of the
variation operators. Thus, a master-slave parallel EA is or-
ganized in a hierarchic structure: a master process performs
the evolutionary search and controls a group of slave pro-
cesses that evaluate the fitness function.

4 A parallel GA for energy-aware OLSR tunning

This section presents the implementation details of the par-
allel GA designed to find the energy-aware configuration of
OLSR.

4.1 The MALLBA library

MALLBA [2] is a library of optimization algorithms that
deals with parallelism in a user-friendly and efficient man-
ner. MALLBA implements EAs and other metaheuristics as
generic templates in software skeletons to be instantiated
with the problem features by the user. These templates in-
corporate the knowledge related to the resolution method,
its interactions with the problem, and the parallelism. Skele-
tons are implemented by required and provided C++ classes
that abstract the entities in the resolution method:

– The provided classes implement internal aspects of the
skeleton in a problem-independent way. The most impor-
tant provided classes are Solver that implements each
optimization algorithm, SetUpParams for setting the
algorithms’ parameters, and Population to store a set
of candidate solutions.

– The required classes specify information related to the
problem. Each skeleton includes the Problem and So-
lution required classes, that encapsulate the problem-
dependent entities needed by the resolution method.

4.2 Parallel multithreading GA in MALLBA

The skeletons in MALLBA offer support for parallelism
using the distributed memory approach (i.e., implementing
distributed subpopulation models for metaheuristics). How-
ever, the library does not provide support for shared-memory
multithreading parallel programming.

Multihtreading programming allows implementing effi-
cient algorithms by using multiple threads within a single
process. Multihtreading is well suited for multi-core com-
puters, where each thread is executed on a single core.
It provides a fast method for concurrent execution; com-
munications and synchronizations are performed via the
shared-memory resource, which is handled using mutually-
exclusive operations in order to prevent simultaneous ac-
cesses.
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There is a runtime overhead for creating and destroying
threads, and a common approach to avoid it is using a thread
pool. Instead of creating a new thread, the application uses
an available thread from the pool, performs its task, and re-
turns the thread to the pool instead of destroying it. This
reusing methodology improves the performance of the par-
allel program, by reducing the cost of performing the cre-
ation and termination of threads.

The multithreading master-slave parallel EA proposed
in this work was implemented using the GA skeleton in
MALLBA. Additional code was incorporated into the GA
skeleton to implement several new features:

– to create and manage the pool of threads used for the fit-
ness evaluation;

– to implement the master-slave hierarchy and the commu-
nications between master and slaves;

– to define the synchronization mechanisms between threads,
used to read and write the shared memory.

Our implementation starts by creating and initializing
a pool of threads to distribute the fitness evaluation. Each
thread receives several input parameters from the master
process, including the solution to be evaluated, the thread
identification, and the index in the array of fitness values.
Then, each slave process, implemented in each thread, com-
putes the fitness evaluation by simulating the mobile com-
munications with the proposed OLSR parameters configura-
tion in a given VANET scenario, using the ns-2 network sim-
ulator. The master process, implemented in the main thread
of execution, is in charge of performing the domain decom-
position for the problem, by assigning each thread the so-
lutions to be evaluated. After that, the master process waits
until all slave threads finish their execution and report the
fitness value.

4.3 Problem encoding

The OLSR protocol is governed by eight different config-
uration parameters, already presented in Table 1. For this
reason, in the parallel GA the solutions are represented by
individuals encoded as a vector with eight genes, one for
each parameter, as presented in Fig. 3.

Fig. 3 Solution encoding for the energy-aware OLSR tunning prob-
lem

The first three genes are real valued, and they rep-
resent the timeout timers before resending control mes-
sages (HELLO_INTERVAL, REFRESH_INTER-VAL, and
TC_INTERVAL, respectively). The forth one encodes the
WILLINGNESS parameter, and therefore, it takes an inte-
ger value from zero to seven. Finally, the last four genes
are real valued, and they denote the timeout hold timers
of OLSR (NEIGHB_HOLD_TIME, MID_HOLD_TIME,
TOP_HOLD_TIME, and DUP_HOLD_TIME, respectively).
The valid ranges for each one of the gene values have al-
ready been presented in Table 1.

4.4 Fitness function

The fitness function is crucial for the GA optimization
mechanism, since it guides the population to solutions
of better quality. The optimization proposed in this work
mainly concerns to energy-aware communications, so the
main component of the fitness function is the power con-
sumed by the VANET nodes when using a certain OLSR
configuration. However, if a given configuration excessively
reduces the power consumption, the protocol may not sat-
isfy the QoS requirements for the communication in VANET
networks. So, there is a tradeoff between the energy effi-
ciency and the QoS provided by the protocol.

In order to take into account the previous consideration,
the fitness function used in the parallel GA proposed in this
work integrates the PDR metric in order to bias the search
to solutions with acceptable QoS.

The fitness function is given by the expression in (6),
where E(s) and PDR(s) represent the power consumption
and the PDR for a given OLSR configuration s, respectively.
ERFC and PDRRFC are the reference values for the power
consumption and the PDR when using the standard config-
uration in RFC 3626, respectively. Finally, ω1 = 0.9 and
ω2 = −0.1 are the weights for the energy and PDR contri-
butions, respectively, and Δ = 0.1 is a normalizing offset to
keep the fitness value in the interval [0,1].

F(s) = Δ +
(

ω1 × E(s)

ERFC

+ ω2 × PDR(s)

PDRMAX

)
(6)

Equation (6) is valid for solutions with a PDR degrada-
tion lower than 15 % of the reference PDR value. In order to
keep in the GA population those solutions with still a lower
PDR, but containing potentially useful genetic information,
the penalization model in (7) was applied.

FP (s) = F(s) +
(

(0.85 × PDRRFC − PDR(s)) × E(s)

ERFC

)

(7)

The penalized fitness FP (s) takes into account the gap
between the PDR of the evaluated solution and the worst
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PDR value admitted (0.85 × PDRRFC ), and the ratio be-
tween the energy of the evaluated solution and the reference
energy value ERFC .

4.5 Parallel GA operators

A classic GA has been applied for protocol tuning in a pre-
vious paper [18]. However, although it offered competitive
results, that algorithm suffered from low population diver-
sity and early stagnation. For this reason, in this work we
decided to introduce some variations to the canonical ini-
tialization and mutation operators.

4.5.1 Initialization

The population initialization should distribute the individu-
als uniformly in the search space as much as possible. How-
ever, this uniform pattern is not easy to obtain when using
random operators and small populations. Therefore, here we
propose using a uniform initialization, to ensure that the
initial population contains individuals from different areas
of the parameters’ search space. The initialization operator
splits the search space into pop_size diagonal subspaces
(where pop_size is the global population size of the par-
allel GA), and it forcibly ensures that there is an individual
located in each diagonal subspace [11]. Equation (8) sum-
marizes the procedure applied in the initialization operator.

x
(0)
p,i = zRFC

i + αp i ∈ [0,7], p ∈ [0,pop_size − 1] (8)

In (8), x
(0)
p,i is the initial value for each gene i in the solu-

tion vector that encodes the p-th individual, set according to
a population seed zRFC

i , and a randomly distributed value
αp . zRFC

i is the value proposed by the RFC 3626 for the
i-th OLSR parameter. αp is computed by using the diagonal
subspace limits and a random value β ∈ [0,1], as expressed
in (9), where z(i,MAX) and z(i,MIN) are the upper and lower
values for the i-th parameter, according to the ranges defined
in Table 1.

αp =
(

p + β

pop_size

)
× (z(i,MAX) − z(i,MIN)) (9)

4.5.2 Recombination

The parallel GA uses the classic arithmetic recombination
operator for real-valued problem encodings. It defines a lin-
ear combination of two chromosomes, x(g)

p and x
(g)
q , accord-

ing to (10), where the best parent governs the reproduction
according to the weight σ ∈ [0,1].

x
(g+1)
p,i = σ × x

(g)
p,i + (1 − σ) × x

(g)
q,i

x
(g+1)
q,i = (1 − σ) × x

(g)
p,i + σ × x

(g)
q,i

(10)

4.5.3 Mutation

The mutation operator introduces new genetic information,
and therefore, diversity to the population of the parallel
GA. After analyzing the algorithm of the OLSR proto-
col, we decided to introduce some problem-related infor-
mation in the mutation operator. Thereby, the new genetic
information is randomly generated, but it does not repre-
sent pointless OLSR configurations. The genes that encode
OLSR related parameters, e.g., HELLO_INTERVAL and
NEIGHB_HOLD_TIME [12], are modified simultaneously,
but using different policies and following the OLSR power-
aware problem specifications. According to this idea, the
mutation operator offers 22 different movements in the so-
lution space. For example, (11) presents the case in which
HELLO_INTERVAL (x(g)

p,0) and NEIGHB_HOLD_TIME

(x(g)

p,4) genes are mutated in generation g. A similar proce-
dure is employed for other parameters.

x
(g+1)

p,0 = β0 × (z(0,MAX) − z(0,MIN)) β0 ∈ [0,1]
x

(g+1)

p,4 = β4 × (z(4,MAX) − z(4,MIN)) β4 ∈ [0,1]
(11)

5 Experimental analysis

This section introduces the set of VANET scenarios and the
computational platform used to evaluate the proposed par-
allel GA. After that, the experiments to determine the best
values for the GA parameters are presented. First, the ex-
perimental results when solving realistic VANET scenarios
are analyzed, by presenting the numerical results and a com-
parative analysis of solution quality and computational effi-
ciency when using a different number of threads. Last, the
best solutions found are validated by studying their perfor-
mance on a set of 36 VANET scenarios.

5.1 VANET scenarios

The experimental evaluation of the proposed parallel GA
was performed using urban VANET scenarios covering real
areas of the city of Málaga, Spain.

A total number of 36 scenarios were used, considering
the three areas shown on the map in Fig. 4.

In the first stage, the simulations in the parallel GA pa-
rameter setting experiments were done in a small-sized sce-
nario (U1) with 20 vehicles moving along the roads. The
optimization of OLSR parameters using parallel GAs was
performed using a medium-sized scenario (U2), also with
20 vehicles. Lastly, in the validation experiments, 36 scenar-
ios with different area sizes, traffic densities (number of ve-
hicles per square meter), and communication patterns were
used. In each case, realistic simulation mobility models were
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Fig. 4 Málaga urban areas taken into account in each VANET scenario

generated using the open source traffic simulation package
SUMO [26], where vehicles move following real traffic rules
(traffic lights and signs) during 180 s.

The VANETs were evaluated by using the ns-2 network
simulator, having nodes configured following the “Standard
Wireless Access in Vehicular Environments” (WAVE). In or-
der to evaluate the performance of the routing protocol, dif-
ferent constant bit rate (CBR) traffic sources were randomly
chosen to generate the packets that travel through the net-
work.

Table 2 presents the main features of the VANET sce-
narios and the network specification used in the experimen-
tal analysis. All the scenarios, mobility models and network
workloads used are publicly available to download in http://
neo.lcc.uma.es/vanet/download-simulations.

5.2 Development and execution platform

The parallel GA was implemented in C++, using MALLBA
and the standard pthread library. The experimental anal-
ysis was performed in a cluster with Opteron 6172 Six-
Core processors at 2.1 GHz, with 24 GB RAM, CentOS
Linux, and Gigabit Ethernet (Cluster FING, Facultad de
Ingeniería, Universidad de la República, Uruguay; cluster
website: http://www.fing.edu.uy/cluster).

5.3 GA parameter setting experiments

A parameter setting analysis was performed to study the best
values for the crossover probability (pC ) and the mutation
probability (pM ) in the parallel GA. The analysis was done
over a small VANET defined in scenario U1 (120000 m2

and 20 vehicles, with reference values ERFC = 5680 and
PDRRFC = 88.23 %). The population size of the parallel
GA was fixed to 24 individuals, and the stopping criterion
was set at 100 generations. The candidate values for the

Table 2 Details of the VANET scenarios and network specification

Scenario Area size Vehicles CBR sources

U1 (parameter setting) 120000 m2 20 10

U2 240000 m2 20 10

30 15

40 20

U3 360000 m2 30 15

45 23

60 30

Parameter Value/Protocol

Propagation model Nakagami fading

Max. radio range 500 m

Carrier frequency 5.89 GHz

Channel bandwidth 6 Mbps

PHY/MAC layer IEEE 802.11p

Routing layer OLSR

Transport layer UDP

CBR packet size 512 bytes

CBR data rate 33/66/100

333/666/1000 kbps

CBR time 60 s

parameters were: pC : 0.5, 0.7, 0.9; and pM : 0.25, 0.0125,
0.006125.

Table 3 summarizes the parallel GA results for the nine
combinations of pC and pM analyzed, reporting the aver-
age, relative standard deviation, and best values of fitness;
the average energy and PDR, and the average gaps in en-
ergy and PDR with the standard RFC configuration (12) and
(13). Figure 5(a) presents the energy improvements with re-
spect to the standard RFC configuration, and Fig. 5(b) com-
pares the trade-offs between power consumption and PDR
for each of the nine configurations studied.

GAPenergy = ERFC − E(s)

ERFC

(12)

GAPPDR = PDRRFC − PDR(s)

100
(13)

The graphic in Fig. 5(b) shows that four of the studied
combinations of pC and pM obtained the best trade-off val-
ues between power consumption and PDR: (0.7, 0.25), (0.9,
0.25), (0.9, 0.06125), and (0.9, 0.125). Since this work is
mainly concerned with reducing the power consumption,
the most promising OLSR configurations are those in the
far right section of the graphic in Fig. 5(b). When com-
pared with the power consumption and PDR results ob-
tained with the standard RFC configuration, the best results

http://neo.lcc.uma.es/vanet/download-simulations
http://neo.lcc.uma.es/vanet/download-simulations
http://www.fing.edu.uy/cluster
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Table 3 Experimental results:
parameter setting for the parallel
GA

(pC,pM) Fitness Metrics GAP RFC

avg stdev best energy PDR energy PDR

(0.5, 0.06125) 0.576836 0.31 % 0.572319 3454.40 75.03 % 39.19 % −14.95 %

(0.7, 0.06125) 0.577790 0.55 % 0.571034 3446.11 75.01 % 39.34 % −14.99 %

(0.9, 0.06125) 0.577498 0.39 % 0.572754 3459.03 75.20 % 39.11 % −14.77 %

(0.5, 0.125) 0.573733 0.21 % 0.571268 3447.76 75.03 % 39.31 % −14.95 %

(0.7, 0.125) 0.573778 0.24 % 0.570946 3445.84 75.05 % 39.34 % −14.93 %

(0.9, 0.125) 0.576217 0.14 % 0.574546 3470.34 75.33 % 38.91 % −14.61 %

(0.5, 0.25) 0.574279 0.13 % 0.572724 3457.23 75.01 % 39.14 % −14.99 %

(0.7, 0.25) 0.572346 0.15 % 0.570118 3440.33 75.01 % 39.44 % −14.99 %

(0.9, 0.25) 0.572408 0.17 % 0.570351 3442.20 75.07 % 39.41 % −14.91 %

Fig. 5 Graphical summary: parameters setting for the parallel GA

were obtained with the parameter configurations pC = 0.7,
pM = 0.25.

5.4 Results and discussion

The experimental evaluation studied the quality of results
and the computational efficiency of the parallel GA using
the most promising parameter values identified in the pre-
vious subsection, to find an energy-aware configuration for
OLSR in VANETs. In all the experiments reported in this
subsection, the stopping criterion for the parallel GA was
set at 500 generations.

The experimental analysis was performed over a medium-
sized VANET defined in the scenario U2 (area 240 000 m2,
and involving 20 vehicles). The reference values for en-
ergy and PDR for this scenario are ERFC = 9104.19 and
PDRRFC = 87.12 %.

5.4.1 Experimental results

Table 4 summarizes the results of the experimental analy-
sis over the medium-sized U2 scenario. Three parallel GA

variants were studied: implementations using 8, 16, and 24
individuals, and the same number of execution threads. In
order to provide a baseline for the comparison, the analysis
includes the results obtained with two sequential optimiza-
tion methods: a classic GA, using a population of 8 indi-
viduals and a single thread for execution, and the previous
QoS optimized version of OLSR by means of Differential
Evolution (DE-OLSR) [40].

Table 4 reports the average, relative standard deviation,
and best fitness results obtained in 30 independent exe-
cutions performed for each algorithm: parallel GA with 8
threads (pGA-8), parallel GA with 16 threads (pGA-16),
and parallel GA with 24 threads (pGA-24). In addition, the
power consumption and PDR values obtained with the best
OLSR configuration found, and the gaps with respect to the
standard RFC parametrization are also presented.

In order to determine the significance of the comparison,
a statistical analysis was performed over the results distribu-
tions for each parallel GA. First, the Kolmogorov-Smirnov
test was applied to check whether the obtained fitness values
follow a normal distribution or not. The D metric values pre-
sented in the first row of Table 5 indicates that the results for
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Table 4 Experimental results:
parallel GA evaluation Algorithm Fitness Metrics GAP RFC

avg stdev best energy PDR energy PDR

sequential GA 0.7521 2.66 % 0.7025 6909.12 80.48 % 24.11 % −6.64 %

QoS DE-OLSR [40] n/a n/a 0.7734 7798.48 97.55 % 14.34 % 10.43 %

pGA-8 0.7058 1.88 % 0.6730 6551.89 74.74 % 28.03 % −12.38 %

pGA-16 0.6883 1.69 % 0.6621 6446.80 75.20 % 29.19 % −11.92 %

pGA-24 0.6774 1.37 % 0.6482 6305.58 75.14 % 30.74 % −11.98 %

Table 5 Statistical analysis of parallel GA results

Statistical test Algorithm

pGA-8 pGA-16 pGA-24

Kolmogorov-Smirnov < 10−7 < 10−7 < 10−7

Kruskal-Wallis pGA-8 – 6.4 × 10−4 1.9 × 10−7

pGA-16 6.4 × 10−4 – 0.015

pGA-24 1.9 × 10−7 0.015 –

pGA-8, pGA-16, and pGA-24 are not normally distributed.
As a consequence, the non-parametric Kruskal-Wallis statis-
tical test was performed with a confidence level of 95 %, to
compare the distributions for pGA-8, pGA-16, and pGA-24.
The small p-values reported (< 0.05 in all cases) indicate
that the fitness improvements can be considered statistically
significant, thus the parallel GA using 24 threads is the best
algorithm from among the studied methods.

Overall, the results in Tables 4 and 5 demonstrate that
significant improvements in the fitness values are computed
using the parallel master-slave GA with 24 threads, when
compared with the reference results from the sequential GA
and DE-OLSR. The improvements in the fitness values bring
forth a significant decrease in the power consumption of the
OLSR protocol: more than 30 % of reduction with respect to
the standard OLSR configuration was achieved for the best
configuration found using pGA-24, while the PDR degrada-
tion remained below 12 %.

The best energy-aware OLSR configuration—found by
the parallel GA using 24 threads—is HELLO_
INTERVAL = 14.890, REFRESH_INTERVAL = 7.416,
TC_INTERVAL=28.158, WILLINGNESS=5, NEIGHB_
HOLD_TIME = 20.825, MID_HOLD_TIME = 10.814,
TOP_HOLD_TIME = 70.959, and DUP_HOLD_TIME =
90.000.

The main advantages of this configuration are: (i) it gen-
erates lower traffic control than the standard RFC configura-
tion, since it increases the timeouts that control the protocol
messages forwarding; (ii) the power consumption of each
vehicular node significantly decreases with respect to the
one required when using the standard RFC configuration,
because each node spends less time in the most consuming

states (transmitting and receiving); and (iii) all nodes show a
higher will to act as MPR. On the other hand, a disadvantage
of the proposed configuration is that it uses higher validity
times, and therefore, it needs longer to detect link loss fail-
ures.

5.4.2 Computational efficiency

The most common metrics used by the research community
to evaluate the performance of parallel algorithms are the
speedup and the efficiency.

The speedup evaluates how much faster a parallel algo-
rithm is than its corresponding sequential version. It is com-
puted as the ratio of the execution times of the sequential al-
gorithm (T1) and the parallel version executed on m comput-
ing elements (Tm) (14). When applied to non-deterministic
algorithms, such as the parallel GA applied in this work, the
speedup should compare the mean values of the sequential
and parallel execution times (15) [4]. The ideal case for a
parallel algorithm is to achieve linear speedup (Sm = m), but
the most common situation is to achieve sublinear speedup
(Sm < m), mainly due to the times required to communicate
and synchronize the parallel processes.

The efficiency is the normalized value of the speedup, re-
garding the number of computing elements used to execute
a parallel algorithm (16). This metric allows the comparison
of algorithms eventually executed in non-identical comput-
ing platforms. The linear speedup corresponds to em = 1,
and in the most usual situations em < 1.

Sm = T1

Tm

(14)

Sm = E[T1]
E[Tm] (15)

em = Sm

m
(16)

Table 6 compares the performance of the studied parallel
GAs, showing the average and best execution times, and the
values of the speedup and efficiency metrics when using 8,
16, and 24 threads. The results in Table 6 demonstrate that
significants reductions in the required execution times are
obtained when using the parallel GA implementations with



446 Cluster Comput (2013) 16:435–450

Table 6 Performance
comparison of the proposed
parallel GAs

Algorithm Execution time (s) Speedup Efficiency

avg best avg best avg best

parallel GA, 8 threads 11113.73 9235.71 5.80 6.86 0.72 0.86

parallel GA, 16 threads 13192.70 12440.05 11.81 12.63 0.74 0.79

parallel GA, 24 threads 20239.02 13670.90 19.10 20.12 0.80 0.84

Fig. 6 Speedup and efficiency comparison for the parallel GAs

respect to a sequential GA. Figure 6 graphically summarizes
the speedup and efficiency comparison for the three parallel
GAs.

According to Amdahl’s law [5], the performance of any
parallel application is theoretically limited by the sequential
part of the code, which mainly depends on the choice of the
parallelization strategy. In the proposed parallel GAs, the fit-
ness function evaluation is the most consuming part within
the algorithm, since the VANET simulations using ns-2 de-
mand large execution times. The results in Table 6 and Fig. 6
demonstrate that the proposed master-slave model is a useful
choice to significantly reduce the execution times of the par-
allel GAs. Despite following a synchronous paradigm (that
tends to generate idle times due to the synchronization of the
execution threads), the parallel GAs show an almost-linear
speedup behavior. The average efficiency values obtained
were greater than 70 % for the three implementations stud-
ied, and a maximum average of 80 % was achieved when
using the parallel GA with 24 threads.

5.5 Validation in other VANET scenarios

In order to confirm the efficacy of the results obtained in
the experimental analysis, a set of validation experiments
were conducted to compare the performance of the best
OLSR configurations found using each parallel GA with
the standard RFC configuration. The validation experiments
involved simulations performed over 36 different unseen
VANET scenarios, defined in the medium-size (U2) and

large-size (U3) urban areas of Málaga, already presented in
Sect. 5.1.

The validation analysis evaluated several metrics related
to the energy-aware and QoS of the communication. From
the point of view of the power consumption, the energy in
transmitting (Esend ) and receiving (Erecv) mode, as well
as the total energy (Etotal) and total energy per vehicle
(Etot×v) were studied. From the point of view of QoS,
the studied metrics include the PDR, the time spent until
reaching the destination node (End-to-End Delay, E2ED, in
miliseconds), the overload generated by the routing proto-
col (Normalized Routing Load, NRL), and the quality of the
generated routing paths, evaluated by the number of hops
required to reach the destination.

Table 7 presents for each best OLSR configuration found
using the three parallel GAs studied, the average values for
each studied metric, computed in the simulations performed
over the 36 VANET scenarios. The results are compared
with the reference values obtained in simulations performed
with the standard OLSR configuration suggested by RFC
3626. The best average values obtained for each metric are
marked in bold.

Power consumption The values of the power consumption
metrics in Table 7 indicate that significant reductions are ob-
tained when using the OLSR parameterizations computed
by using the three parallel GA. The configuration found
by the parallel GA using 24 threads is the most efficient
parametrization for OLSR in VANETs, allowing a reduction
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Table 7 Results of the
validation experiments Config. Energy metrics QoS metrics

Esent Erecv Etotal Etot×v PDR E2ED NRL hops

Medium size (U2)

pGA-8 12099.05 5265.45 17364.49 604.12 61.54 % 62.39 3.36 % 1.58

pGA-16 11902.02 5206.53 17108.55 589.17 63.64 % 58.35 3.53 % 1.43

pGA-24 11776.50 5094.87 16871.36 575.86 61.80 % 55.04 3.34 % 1.47

RFC 17918.45 8102.75 26021.20 876.91 70.22 % 1356.18 25.46 % 1.25

Large size (U3)

pGA-8 14682.85 7030.52 21713.36 491.22 55.75 % 505.30 3.98 % 1.50

pGA-16 14864.78 7120.72 21985.51 505.51 57.63 % 490.34 3.73 % 1.48

pGA-24 14249.18 6762.22 21011.39 479.16 56.65 % 483.62 3.57 % 1.45

RFC 21574.81 16247.10 37821.93 877.75 64.00 % 868.57 28.34 % 1.15

Overall

pGA- 8 13390.95 6147.99 19538.93 547.67 58.64 % 283.85 3.67 % 1.54

pGA-16 13383.40 6163.63 19547.03 547.34 60.64 % 274.34 3.63 % 1.46

pGA-24 13012.84 5928.54 18941.37 527.51 59.22 % 269.33 3.45 % 1.46

RFC 19572.25 12102.03 31674.29 877.33 67.89 % 506.26 25.22 % 1.20

Fig. 7 Energy reductions with respect to the RFC, regarding the sce-
nario dimension

of up to 40.2 % in the power consumption. This behavior
was consistently verified in both transmitting and receiving
communication modes, and in the overall energy utilization
per vehicle.

Figure 7 presents the energy reductions with respect to
the standard RFC configuration, regarding the dimension of
the simulated scenarios.

The results in Fig. 7 demonstrate that significant im-
provements in the power consumption are obtained when
using the configuration found with pGA-24. In addition,
the energy reductions with respect to the standard RFC
configuration increase for the largest scenarios simulated.
The configuration found by pGA-24 achieved up to 44.4 %
of improvement in average for the larges scenarios, and
a maximum value of 77.5 % in a scenario with 40 vehi-
cles. These notable improvements confirm previous claims

about the inefficiency of the standard OLSR configura-
tion in large VANET scenarios with high traffic den-
sity, already suggested by previous experimental evalua-
tions [13].

The (non-parametric) Friedman statistical test was ap-
plied to analyze the comparison ranks between the energy
results of pGA-8, pGA-16, pGA-24, and RFC. In addition,
the Wilcoxon signed-rank statistical test was applied to an-
alyze the mean ranks of the energy results, by evaluating
the paired differences between the gaps values for all con-
figurations. Table 8 summarizes the results of the statistical
analysis. In the Wilcoxon test, the group of three values re-
ported corresponds to the positive ranks, average positive
ranks, and the sum of positive ranks for every pairwise com-
parison, respectively.

All the previous results demonstrate the efficacy of
the proposed automatic methodology to compute accurate
energy-aware OLSR configurations.

Quality of service Regarding the QoS metrics, the results
in Table 7 indicate that, when using the OLSR configura-
tion computed by the parallel GA using 24 threads, the im-
provements in the power consumption are obtained without
suffering large reductions in the PDR values—8 % in av-
erage. This is an acceptable value for the loss in the QoS,
when taking into account the important energy reductions
achieved.

An extremely large decrease is obtained in the transmis-
sion times required to reach the destination nodes (E2ED)
when using the energy-aware OLSR configuration. This re-
sult is mainly motivated by the absence of congestion, due
to the low overload generated. The NRL values indicate that
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Table 8 Statistical analysis of
the energy results Statistical test Configuration

pGA-8 pGA-16 pGA-24 RFC

Friedman (avg. rank) 2.19 1.94 1.92 3.94

Wilcoxon pGA-8 – (14, 19.8, 277) (16, 16.6, 266) (35, 19.0, 665)

pGA-16 (22, 17.7, 389) – (16, 17.1, 274) (36, 18.5, 666)

pGA-24 (20, 20.0, 400) (20, 19.6, 392) – (35, 18.9, 661)

RFC (19.0, 1.0, 1) (18.5, 0.0, 0) (1, 5.0, 5) –

all configurations found using the parallel GA exchange sig-
nificantly less control messages than the standard OLSR. In
average, the network overload is 1/7 of the standard one,
showing that OLSR employing the automatic configuration
is less likely to be affected by network congestion problems
than the standard OLSR. This feature allows the new con-
figuration to be more useful than the standard one in situ-
ations where a large number of messages are transmitted,
such as in city center areas, traffic jam scenarios, etc. How-
ever, the values of the hops metric indicates that the stan-
dard OLSR finds shorter paths than the energy-aware OLSR.
Anyway, the routing paths computed by the energy-aware
OLSR do not use longer than 1.5 hops in average to reach
the destination node, while the RFC configuration requires
1.20.

The previously commented QoS results indicate that
the automatic energy-aware OLSR configuration found by
pGA-24, while keeping the PDR degradations under a
controlled threshold, generates less network routing over-
load, and it also allows a faster delivery of the packets.
The standard OLSR computes shorter routing paths, but
the size difference with the routing paths computed with
the new energy-aware OLSR is negligible, so both con-
figurations can be considered as equivalent regarding this
metric. Indeed, the standard configuration is much more
congestion-prone due to the large network overload and col-
lisions.

Experimental analysis: summary The experimental anal-
ysis proved that the energy-aware OLSR configuration is
able to obtain large reductions in the power consump-
tion and significantly improve the time required to deliver
the data packets, while only suffering a bounded degra-
dation in the PDR metric. The relevance of all the con-
siderations commented on the previous subsections in-
crease when facing large-sized VANET scenarios where
real-time transmissions are important, such as in traf-
fic accidents, traffic jams, urban areas with high den-
sity of VANET users, etc. In these situations, the results
obtained demonstrate the efficacy of the proposed auto-
matic method for finding energy-aware OLSR configura-
tions.

6 Conclusions

This article has studied the problem of finding energy-
efficient configurations for the OLSR routing protocol in
vehicular networks. The design of energy-efficient commu-
nication protocols is an important issue in this research area,
and few previous researches have tackled the OLSR config-
uration problem from an energy-oriented point of view. In
this line of research, the main contribution of this article is to
propose an automatic methodology for computing energy-
efficient configurations for the OLSR protocol in VANETs,
by using a parallel GA.

The automatic search for energy-aware OLSR configu-
rations is carried out by considering the power consump-
tion of the VANET nodes as the main objective to opti-
mize, but also taking into account the level of QoS in the
communications. A well-know energy model in wireless
networks and the ns-2 network simulator were used. The
proposed GA for solving the problem applies a master-
slave parallel model. It enables the configurations search
to be performed efficiently, by simultaneously using several
computing resources to perform the VANET simulations.
By reducing the execution times, the parallel GA allows in-
creasing the population of candidate solutions in order to
overcome the stagnation problem identified in previous pro-
posals. The computational efficiency of the proposed paral-
lel GA was almost-linear, obtaining efficiency values greater
than 80 %.

Regarding the wireless communications, the experimen-
tal analysis demonstrates that significant reductions in the
power consumption of the VANET nodes are obtained
when using the automatic energy-aware OLSR configura-
tion found by the parallel GA, when compared with the
standard OLSR configuration suggested by RFC 3626. Av-
erage reductions up to 40.2 % in the power consumption
were obtained, and significantly better improvements (up
to 77.54 %) were computed for large and dense VANET
scenarios. In addition, the energy-aware OLSR configura-
tion found significantly reduces the network overload, and
thus it allows reducing the average time required to deliver
the data packets. All these important features are obtained
while only suffering a bounded degradation (less than 8 %)
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in the QoS of the communication, evaluated by the PDR
metric.

The main lines for future work are related to two is-
sues: improving the method used in the automatic search,
and tackling the OLRS configuration as a multiobjective
problem. Regarding the first issue, the use of new fitness
functions should be considered, taking into account new
power-aware and QoS metrics, such as the residual level
of battery of the nodes and the packet delays, respectively.
In addition, the approach proposed in this paper could be
extended by using several VANET scenarios to evaluate
each OLSR configuration, possibly by using other effi-
cient models for parallel EAs. Thus, different situations
will be taken into account to obtain more accurate fitness
results. Regarding the second issue, the study of explicit
multiobjective approaches for the problem is also sug-
gested as future work, in view that the OLSR energy sav-
ings vary in inverse proportion with the QoS of the proto-
col.
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