Available online at www.sciencedirect.com

SO ; COMPUtErs
*s” ScienceDirect CRErEHENS
. e rEsECErch
ELSEVIER Computers & Operations Research 35 (2008) 3161-3183

www.elsevier.com/locate/cor

Observations in using parallel and sequential evolutionary
algorithms for automatic software testing

Enrique Alba*, Francisco Chicano
Grupo GISUM, Dept. de Lenguajes y Ciencias de la Computacion, University of Mdlaga, Spain

Available online 7 February 2007

Abstract

In this paper we analyze the application of parallel and sequential evolutionary algorithms (EAs) to the automatic test data
generation problem. The problem consists of automatically creating a set of input data to test a program. This is a fundamental step
in software development and a time consuming task in existing software companies. Canonical sequential EAs have been used in the
past for this task. We explore here the use of parallel EAs. Evidence of greater efficiency, larger diversity maintenance, additional
availability of memory/CPU, and multi-solution capabilities of the parallel approach, reinforce the importance of the advances in
research with these algorithms. We describe in this work how canonical genetic algorithms (GAs) and evolutionary strategies (ESs)
can help in software testing, and what the advantages are (if any) of using decentralized populations in these techniques. In addition,
we study the influence of some parameters of the proposed test data generator in the results. For the experiments we use a large
benchmark composed of twelve programs that includes fundamental algorithms in computer science.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Software testing; Evolutionary algorithms; Evolutionary testing; Parallel evolutionary algorithms

1. Introduction

From the very beginning of computer research, computer engineers have been interested in techniques allowing them
to know whether a software module fulfills a set of requirements (the specification). Modern software is very complex
and these techniques have become a need in most software companies. One of these techniques is formal verification,
in which some properties of the software can be checked much like a mathematical theorem defined on the source
code. Two very well-known logics used in this verification are predicate calculus [1,2] and Hoare logic [3]. However,
formal verification using logics is not fully automatic. Although automatic theorem provers can assist the process,
human intervention is still needed. Another well-known and fully automatic formal method is model checking [4]. In
this case all the possible program states are analyzed (in a direct or indirect way) in order to prove that the program
satisfies a given property. This property is specified using a temporal logic like LTL [5] or CTL [6]. Both in formal
verification and model checking a model of the program is required in order to prove (or refute) the properties we
want to check. In order to ensure that the model correctly captures the behavior of the program, some refinement-based
approach is needed along the development process. One of the best known model checkers is SPIN [7], which takes
a software model codified in PROMELA (a programming language usually not used in real programs) and a property

* Corresponding author.
E-mail addresses: eat@lcc.uma.es (E. Alba), chicano@Icc.uma.es (F. Chicano).

0305-0548/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2007.01.016

http://www.elsevier.com/locate/cor
mailto:eat@lcc.uma.es
mailto:chicano@lcc.uma.es

3162 E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 31613183

specified in LTL as input. The drawback of using the PROMELA language is currently solved by the use of translations
tools such as the one integrated in the Bandera tool kit [8] or the one described in [9], which translates Java code into
the intermediate language accepted by SAL model checker [10]. However, we can also find model checkers like Java
PathFinder [11], which in its last versions directly works on bytecodes of multi-threaded Java programs. The main
drawback of a model checking approach is the so-called state explosion: when the size of the program increases, the
amount of required memory also increases but in an exponential way. This phenomenon limits the size of the models to
be checked. Some techniques used to alleviate this problem are partial order reduction [12], symbolic model checking
[13], and symmetry reduction [14].

Nevertheless, the most popular technique used to check software requirements is software testing. With this technique,
the engineer selects a set of program inputs and tests the program with them. If the program behavior is as expected,
s/he assumes that it is correct. Since the size of the input data set is the engineer’s decision, s/he can control the effort
dedicated to the testing task. This is a very important, time consuming, and hard task in software development [15-17].
Automatic test data generation consists of automatically proposing a suitable set of input data for a program to be
tested (the test program). It comes as a way of releasing engineers from the task of finding the best set of inputs to
check program correctness. The automatic generation of test data for computer programs has been dealt with in the
literature for many years [18,19]. We can distinguish four large paradigms in search-based software testing that differ
in the kind of information they use to generate the test data: structural testing, functional testing, gray-box testing, and
non-functional testing [20].

In structural testing [21-25] the test data generator uses the structural information of the program to guide the
search of new input data (for this reason it is also called white-box testing). Usually, this structural information is
gathered from the control flow graph of the program. Structural testing seeks to execute every testable element under
consideration (statements, branches, conditions, etc.), but can only detect faults where one of the executed elements
produces an obviously incorrect behavior. If no error is found, the correctness of the program can not be assured. In
functional testing an [26,27] the information used by the test data generator is a kind of specification of the behavior
of the program. The objective is to check that the software behaves exactly as specified using no information about the
internal structure of the program (black-box testing). The paradigm known as gray-box testing [28] is a combination
of the two previous ones (white-box and black-box testing). It uses structural and functional information in order
to generate input data. For example, in assertion testing some asserts are introduced in the source code to check the
functional behavior, while structural testing techniques are used in order to generate input data violating these assertions.
Finally, in non-functional testing [29,30] the objective is to check any aspect of the program which is not related to
its functional behavior. Some examples of non-functional attributes that could be checked are usability, portability,
memory use, efficiency, etc.

Focusing on structural testing, which is the paradigm followed in this work, we can find several alternatives in
the literature. In the so-called random test data generation, the test data are created randomly until the objective is
satisfied or a maximum amount of input data are generated [21,31]. Symbolic test data generation [18] involves using
symbolic rather than concrete values in order to get a symbolic execution. Some algebraic constraints are obtained
from this symbolic execution and these constraints are used for finding test cases [32]. A third (widespread) approach
is dynamic test data generation. In this case, the program is instrumented to pass information to the test generator. The
test generator checks whether the test adequacy criterion is fulfilled or not. If the criterion is not fulfilled it creates new
test data to serve as input for the program. The test data generation process is translated into a function minimization
problem, where the function is some kind of “distance” to a desirable execution where the test criterion is fulfilled. This
paradigm was presented in [19] and much work has been based on it [21,30,33,34]. Some hybrid techniques combining
symbolic and concrete execution have been explored with very good results. This is the case of the tools DART [25]
and CUTE [24].

Sticking to the dynamic test data generation paradigm, several metaheuristic techniques have been applied to the
problem in the past. Mantere and Alander in [35] present a recent review on the application of evolutionary algorithms
(EAs) to software testing. Most of the papers included in their discussion use genetic algorithms (GAs) to find test data.
In fact, only a few articles listed in the review include other techniques such as cultural algorithms [36] (a special kind
of GA), hill climbing [37], and simulated annealing [38]. We have found other recent works applying metaheuristic
algorithms to software testing. In [39] the authors explain how a Tabu Search algorithm can be used to generate test data
obtaining maximum branch coverage. Sagarna and Lozano tackle the problem by using an estimation of distribution
algorithm (EDA) in [40], and they compare a scatter search (SS) with EDAs in [41].

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 31613183 3163

In this work we analyze the application of several decentralized and centralized EAs to the automatic test data
generation problem, specifically GAs and evolutionary strategies (ESs) (whose application to software testing was
introduced by the authors for the first time in [42]). We describe how they can be applied to the software testing
problem by analyzing several alternatives. In addition, we study the influence of some parameters of the proposed
test data generator on the results. The rest of the paper is organized as follows. We detail the construction of our test
data generator in the next section. Section 3 presents a general description of parallel and decentralized EAs. Then, in
Section 4 we analyze the results obtained in the experimental study. Finally, Section 5 presents the final conclusions
and future work.

2. The test data generator

In this section we describe the proposed test data generator and the whole test data generation process. We must
define a test adequacy criterion in order to formalize the objective of the generator, that is, we need a condition which
any input data set should fulfill in order to be considered an adequate testing set. In this work we use the condition
coverage test adequacy criterion. This criterion requires that all the atomic conditions of the test program be evaluated
to the two boolean values: true and false. Other well-known test adequacy criteria are branch coverage, requiring all
the branches to be taken, and statement coverage, in which all the program statements must be executed. It is important
to note that the condition coverage criterion is harder than branch and statement coverage in the case of programs in C
language. That is, if we find a set of input data that makes all the atomic conditions of a C program take the possible
boolean values, then we can ensure that all the feasible branches will be taken and, in consequence, all the reachable
statements will be executed. However, the opposite is not true, i.e., executing all the reachable statements or taking
all the feasible branches does not ensure that all the atomic conditions will take the feasible boolean values. This fact
makes condition coverage equivalent to condition-decision coverage [21] in C programs and this is the reason why it
was selected here.

Our test data generator breaks down the global objective (the condition coverage) into several partial objectives
consisting of making one atomic condition take one boolean value. For example, from the fragment of the control flow
graph seen in Fig. 1 we can extract six partial objectives: to make condition one true (c1t), to make condition one
false (c1£), etc. Then, each partial objective can be treated as an optimization problem in which the function to be
minimized is a distance between the current input and an input satisfying the partial objective. For this reason we call
this function the distance function. In order to solve such a minimization problem, global search techniques (EAs in
our case) can be used.

2.1. Distance function

Following on from the discussion in the previous section, we have to solve several minimization problems: one for
each atomic condition and boolean value. The distance function to be minimized depends on the expression of the
particular atomic condition and the values of the program variables when the condition is reached. In Table 1 we show
the distance function for each kind of condition and each boolean value.

The distance function of a particular partial objective can only be computed if the program flow reaches the associated
atomic condition, because it depends on the values of the program variables at that point of the program execution.
For this reason, when the condition is not reached, the distance function takes the maximum possible value for a real
number in a machine using 64-bit IEEE 754 representation (that is, 21024 — 2971),

2.2. Program instrumentation

We instrument the source code of the program in order to get information about the value of the distance function
and the conditions traversed in a program run. The instrumentation must be done carefully to avoid a change in the
program behavior. This step is performed automatically (not manually) by our application that parses the C source
program and generates a modified C source program with the same original behavior. This application transforms each
atomic condition into an expression that is evaluated to the same value as the original condition. This expression has
a (neutral) side effect: it informs about the boolean value it takes, and the distance value related to the condition. If

3164 E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183

Six partial objectives

—_—

cl true cl false 8 gﬂ
c2 true c2 false -E 2
/ S 8
c3 false/ ©
/

Function nfiliimization problem

/*———-— Current ipput data
Partial objective (c3 true)
|

Input data

Distance

Fig. 1. We identify six partial objectives in this fragment of the control flow diagram.

Table 1

Distance functions for different kinds of conditions and boolean values

Condition type True expression False expression
a<b a—>b b—a

a<=b a—>b b—a

a== b —a)? A+0G-a)™
al=b A+ @®-ahH! (b —a)?

a A+ah)™! a?

The variables a and b are numeric variables (integer or real).

(cond) is an atomic condition in the original program, the associated expression used instead of the original condition
in the modified program is

((<cond>)?
(inform(<ncond>,1), (distance (<ncond>, <true_expr>, <false_expr>),1)):
(inform(<ncond>,0), (distance (<ncond>, <true_expr>, <false_expr>),0)))

where <ncond> is the number of the condition in the program, <true_expr> and <false_expr> are the fitness
expressions for the true and false values of the condition, inform is a function that informs the test data generator
about the condition reached and its value, and distance is a function that informs about the distance value. This
transformation does not modify the functional behavior of the program unless the original atomic condition has side
effects.!

In the evaluation of an input, when the test data generator executes the modified test program with such an input,
a report of the conditions reached and the distance values are computed and transmitted to the generator. With this
information the generator builds a coverage table where it stores, for each condition, the set of test data that makes the
condition true and false throughout the process. That is, for each condition the table stores two sets: the true set and the
false set. This table is an important internal data structure that is consulted during the test data generation. We say that
a condition is reached if at least one of the sets associated with the condition is non-empty. On the other hand, we say
that a condition is covered if the two sets are non-empty.

! This can be explained because the fitness expressions are formed by combining the operands of the atomic condition.

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183 3165

Test Data Generator Program
Select a Partial Block1
Objective l
l Input data
Optimization True False
Algorithm Distance value r cl j
True False Block3
yes r c3 —I H
no Block?2 True False
. seel €2 Jueg
End H 1 i

Fig. 2. The test data generation process.

2.3. Test data generation process

Once we have presented the distance functions and the instrumentation details we can now focus on the test data
generator itself. The main loop of the test data generator is shown in Fig. 2.

At the beginning of the generation process some random inputs (10 in this work) are generated in order to reach some
conditions. Then, the main loop of the generator begins and the generator selects a partial objective not covered. The test
data generator does not select the partial objectives in a random way. As we said before, the distance function of each
partial objective depends on the expression of the particular atomic condition and the values of the program variables
when the condition is reached. This means that the distance can only be computed if the program flow reaches the
atomic condition. Thus, the test data generator always selects a partial objective with an associated condition reached
by a previous input.

When the partial objective is selected, it uses the optimization algorithm to search for test data making that condition
take the value not yet covered. The optimization algorithm is seeded with at least one input reaching the mentioned
condition. The algorithm tries different input data and uses the distance value to guide the search. During this search
test data covering other conditions can be found. These test data are also used for updating the condition table. In fact,
we can set the stop condition of the optimization algorithm to cover a partial objective not yet covered (we study this
alternative in the experimental section since it is not our main approach here). As a result, the optimization algorithm
finds (or not) a solution. In any case, when the algorithm stops, the main loop starts again and the test generator selects
a different partial objective. This scheme is repeated until a total condition coverage is obtained or a maximum number
of consecutive failures of the optimization algorithm is reached. When this happens the test data generator exits the
main loop and stops.

When we use a decentralized optimization algorithm, such as a distributed EA, we have several subalgorithms
working independently of each other with some sparse interconnections among them. In this case we can assign a
different partial objective to each subalgorithm. If all the partial objectives are solved approximately at the same time,
the search could be accelerated. This alternative will also be analyzed in the course of this article.

2.4. Coverage metrics

In order to end the description of the test data generator we must discuss the coverage metric used to report the
generator results. The simplest coverage metric is the ratio between the covered partial objectives and the total number
of partial objectives which, expressed as a percentage, gives the coverage percentage (condition coverage percentage
in our case).

3166 E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183

. char *a;
while(T) p = (char *) malloc (4);
{ . y if (1p)
/* The previous condition
is always true */ fprintf("Error");
: exit(0);
} }

Fig. 3. Two pieces of code that prevent a program from reaching 100% of condition coverage. The left one produces a code-dependent coverage
loss, while the right one produces an environment-dependent coverage loss.

Although the coverage percentage is the simplest way of reporting generator efficacy, it is not the more appro-
priate metric. This is because it is impossible for some programs to reach total coverage, because of the presence
of unreachable partial objectives. In this case a global coverage loss is produced irrespective of the techniques used
for testing. For example, an infinite loop has a condition that is always true and never false (Fig. 3 left). Another
example is the condition (sign(x) > 2), where the function sign can only return three values: —1, 0, +1. In
these cases there are pairs (condition, boolean) that are unreachable and no test data generator can reach 100%
of condition coverage due to the test program itself. In this situation we refer to a code-dependent coverage loss.
However, there is another factor which may produce an unavoidable coverage loss: the environment in which the
program is executed. One example of this situation is related to dynamic memory allocation. Suppose that a program
allocates some dynamic memory and then checks if this allocation has failed. Most probably it succeeds for all the
tests run on the program, and the check condition gets only one value. In this case we talk about an environment-
dependent coverage loss (Fig. 3 right). When one of these situations appears in a program no test data generator can get
total coverage and it may appear to be ineffective when, in fact, it is not. For example, we can get a low coverage
percentage in one program but this low percentage might happen to be the maximum coverage that it is possible
to obtain.

We search for a coverage metric taking into account the coverage loss, a measurement that gets its known maximum
value when it is impossible to get new input data covering more partial objectives. For this reason we have introduced
another metric that we call the corrected coverage and that is computed as the ratio between the number of covered
and reachable partial objectives. In this metric the unreachable partial objectives are not taken into account, without
any loss of information or drawback for the testing task. This measure is useful for comparing the performance of the
test data generator in the different programs. In this way, we can sort the programs in order of difficulty. If we use
the simple condition coverage to compare the programs we can classify a program as difficult when it has a lot of
unreachable partial objectives but the remaining partial objectives can be covered easily. However, the computation of
the corrected coverage requires knowing the unreachable partial objectives. In small programs these partial objectives
can be easily determined but it can be a difficult task in larger programs (it could be a NP-hard problem itself). In these
cases the corrected coverage measure is not practical. In this work, we decide by human observation whether a partial
objective is reachable or not and the unreachable partial objectives are then communicated to the test data generator
via configuration files. We use the corrected coverage in the experiments in order to avoid code-dependent coverage
loss. The environment-dependent coverage loss is more difficult to avoid and the new metric does not take this loss into
account.

At this point we need to modify the way in which the partial objective selection is performed at the beginning of
the main loop of the test data generator in order to count the correct number of evaluations required for the coverage
measured. As a matter of fact, in order to avoid unnecessary work the unreachable partial objectives should not be taken
into account in the partial objective selection.

3. Evolutionary algorithms

In this section we intend to provide a quick overview of the EA family (sequential and parallel) in order to classify
and explain the algorithms we are using in the paper.

EAs [43] are metaheuristic search techniques loosely based on the principles of natural evolution, namely adaptation
and survival of the fittest. These techniques have been shown to be very effective in solving hard optimization tasks. They

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183 3167

are based on a set of tentative solutions (individuals) called population. The problem knowledge is usually enclosed in a
function, the so-called fitness function, which assigns a quality value to the individuals. It is usual for many EA families
to manipulate the population as a single pool of individuals. By manipulation we mean applying a selection of the fittest
individuals, recombination of slices of two individuals in order to yield one or two new children, and mutation of their
contents. Frequently, EAs use these variation operators in conjunction with associated probabilities that govern their
application at each step of the algorithm. In general, any individual can potentially mate with any other by applying a
centralized selection operator. The same holds for the replacement operator, where any individual can potentially leave
the pool and be replaced by a new one. This is called a panmictic population of individuals. A different (decentralized)
selection model exists in which individuals are arranged spatially, therefore giving rise to structured EAs. Most other
operators, such as recombination or mutation, can be readily applied to either of these two models [44]. Centralized
versions of selection are typically found in serial EAs, although some parallel implementations also use it. For example,
the global parallelism approach evaluates in parallel the individuals of the population (sometimes recombination and/or
mutation are also parallelized), while still using a centralized selection performed sequentially in the main processor
guiding the base algorithm [45]. This algorithm keeps the same behavior as the sequential centralized one, although it
performs time-consuming objective functions much faster.

However, a great amount of parallel EAs found in the literature normally utilize some kind of spatial disposition for
the individuals, and then parallelize the resulting chunks in a pool of processors. Decentralizing a single population can
be achieved by partitioning it into several subpopulations, where island EAs are run performing sparse exchanges of
individuals (distributed EAs), or in the form of neighborhoods (cellular EAs). In distributed EAs, additional parameters
controlling when migration occurs and how migrants are selected/incorporated from/to the source/target islands are
needed [46,47]. In cellular EAs, the existence of overlapped small neighborhoods helps in exploring the search space
[48]. These two kinds of EAs seem to provide better sampling of the search space and seem to improve the numerical
and runtime behavior of the basic algorithm in many cases [49,50].

In the present study we mainly focus on distributed EAs. This model can be readily implemented in a cluster
of workstations, which is one main reason for its popularity. A migration policy controls the search. The migration
policy must define the island topology, when migration occurs, which individuals are being exchanged, what type of
synchronization among the subpopulations is used, and the kind of integration of exchanged individuals within the
target subpopulations. The advantages of a distributed model (either running on separate processors or not) is that
it is usually numerically faster than a panmictic EA. The reason for this is that both the run time and the number
of evaluations are potentially reduced thanks to its separate search from several regions of the problem space. High
diversity and species formation are two of the best reported features of distributed EAs.

After this general introduction to parallel and decentralized EAs in the next sections we focus on the details of the
specific EAs used in this work to tackle the software testing problem. We find four well-established main types of EA
in the literature: GA [51], ES [52], Evolutionary Programming (EP) [53], and Genetic Programming (GP) [54]. The
main differences between the four kinds of algorithms reside in the representation of the solutions and the variation
operators used. In this work we use ESs and GAs.

3.1. Evolutionary strategies

The ES algorithm was introduced for software testing in a recent work [42]. In an ES [52] each individual is composed
of a vector of real numbers representing the problem variables (x), a vector of standard deviations (o) and, optionally,
a vector of angles (w). These two last vectors are used as parameters of the main Gaussian mutation operator used by
this technique. The additional parameters evolve together with the program variables, to allow the search strategy to
adapt itself to the landscape of the search space.

For the selection operator many alternatives exist: roulette wheel, random selection, g-tournament selection, and so
on (see [55] for a good review of selection operators). All the selection operators can be used with any EA since the
only information needed to select the individuals is the fitness value (the selection operator does not depend on the
representation used).

In the recombination operator of an ES each of the three real vectors of an individual can be recombined in a
different way. Some of the several possibilities for the recombination of the real vectors are discrete, intermediate, and
generalized intermediate recombination [43]. The recombination operator is not so important as the mutation. In fact,
we do not use recombination in our algorithm.

3168 E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 31613183

The mutation operator is governed by the three following equations:

(7; =g; exp(tN(0, 1) + nN; (0, 1)), ()
a): =w; + eN;(0, 1), 2)
x =x+ N(0, C(d, ")), 3)

where C(¢’, o) is the covariance matrix associated to ¢’ and ', N (0, 1) is the standard univariate normal distribution,
and N(0, C) is the multivariate normal distribution with mean 0 and covariance matrix C. The subindex i in the
standard normal distribution indicates that a new random number is generated anew for each component of the vector.
The notation N (0, 1) is used to indicate that the same random number is used for all the components. The parameters
7, 1, and ¢ are set to 2n)~12, (4n)~1/4 and 57/180, respectively, as suggested in [56].

With respect to the replacement operator, there is a special notation to indicate whether the old population is taken
into account or not to form the new population. When only the new individuals are used, we have a (u, 4) replacement;
otherwise, we have a (1 + A) replacement, where the best p individuals from the union of the old population and the
offspring are selected to form the new population. As it was the case in the selection operator, the replacement operator
only needs the fitness value of the individuals to form the new population. Thus, we can use the two mentioned operators
in any kind of EA.

3.2. Genetic algorithms

The first work applying GAs to software testing was published in 1992 [57] and the first in depth study of their
capabilities in the software testing domain was performed in the PhD thesis of Sthamer [58]. A GA is an EA that
usually represents the solutions by means of a binary string (chromosome). However, other representations have been
used with GAs, so we cannot use this feature as a distinguishing one. In fact, the individuals we use in our GA are
vectors of numeric values and they can be integers (int type) or reals (double type). We use this representation in
order to avoid precision loss when using a low number of bits for representing each numeric input of the test program.

Unlike the ES, the recombination operator is of a great importance in GAs. Some of the most popular recombination
operators are the single point crossover (SPX), the double point crossover (DPX), and the uniform crossover (UX) [59].
The first one selects a random position in the chromosome and the two parents exchange their slices located before and
after this point to generate two offspring. In DPX, two points are stochastically defined and the two parents exchange
the slices bounded by these two limits creating again two offspring (however, we select only one in our experiments).
Finally, in UX each bit of the offspring is randomly selected from the two parents. All these recombination operators
can also be applied to our particular representation by replacing the bits by vector components.

The traditional mutation operator works on binary strings by probabilistically changing every position to its comple-
mentary value. However, for representations based on vectors of numeric values (like the one used here) the mutation
could add some random value to the components of the vector. In our case, the probability distribution of these random
values is a normal distribution with mean 0. The standard deviation of the distribution is a parameter of the mutation
operator and we reveal its value in the experimental section.

At this point we can talk about the differences between ES and GA. In general, ES is characterized by the struc-
ture of the individuals (including at least one separated vector of self-adaptive parameters for the mutation) and the
mutation operator. This is the main difference between the two algorithms. Unfortunately, we cannot give a clear rule
to characterize GAs because there is considerable variance in the literature in the field. However, the GAs usually do
not have self-adaptive parameters or the self-adaptation mechanism is different from that of the ES. For this reason we
conclude that the main difference between the algorithms focuses on the self-adaptation.

4. Experiments

In this section we present the experiments performed over a benchmark of twelve test programs in C covering some
practical and fundamental aspects of computer science. The programs range from numerical computation (such as Bessel
functions) to general optimization methods (such as simulated annealing). Most of the source codes have been extracted
from the book “C Recipes” available on-lineathttp: //www.library.cornell.edu/nr/bookcpdf.html.

http://www.library.cornell.edu/nr/bookcpdf.html

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 31613183 3169

Table 2
Programs tested in the experiments

Program Conds. LOC Args. Description Source
triangle 21 53 3 Classify triangles Ref. [21]
gcd 5 38 2 Greatest common denominator Authors
calday 11 72 3 Calculate the day of the week julday
crc 9 82 13 Cyclic redundant code icrc
insertion 5 47 20 Sort by insertion method piksrt
shell 7 58 20 Sort by shell method shell
quicksort 18 143 20 Sort by quicksort method sort
heapsort 10 72 20 Sort by heapsort method hpsort
select 28 200 21 kth element of an unordered list selip
bessel 21 245 2 Bessel J, and Y, functions bessj*,bessy*
sa 30 332 23 Simulated annealing anneal
netflow 55 112 66 Network optimization Wegener [60]

The source column presents the name of the function in C-recipes.

The programs are listed in Table 2, where we present information on the number of conditions, the lines of code (LOC),
the number of input arguments, a brief description of their goal, and how they are accessed.

The first test program, triangle, receives three integer numbers as input and decides what kind of triangle
they represent: equilateral, isosceles, scalene, or no triangle. The next program, gcd, computes the greatest common
denominator of the two integer arguments. The calday test program computes the day of the week, given a date
as three integer arguments. In crc the cyclic redundant code is computed from 13 integer numbers given in the
arguments. The next four test programs (insertion, shell, quicksort, and heapsort) sort an input list with
20 real arguments using well-known sorting algorithms. The select program gets the kth element from an unsorted
list of real numbers. The first argument is k and the rest of the arguments forms the unsorted list. The next program
computes the Bessel functions given an order n and a real argument. The sa program solves an instance of the travelling
salesman problem with 10 cities by using simulated annealing. The first three arguments are seed parameters for the
pseudorandom number generator and the rest are 20 real numbers representing the two-dimensional position of each
city. Finally, the net £1ow program optimizes a net architecture for maximum data flow. The input is the description
of the net to be optimized. Its size is limited to 6 nodes and 10 edges.

In the following section we discuss the representation and the fitness function used in the algorithms. In Section
4.2 we present the first results comparing the parallel decentralized and the sequential centralized versions of the EAs
used. The next section compares the ES-based test data generators against the GA-based ones. Then, we perform a
study of the influence in the results of several parameters of the dES-based test data generator. Finally, in Section 4.5
we compare our best algorithm against others found in the literature.

4.1. Representation and fitness function

As stated before, the input values of the test programs used in the experiments are real or integer numbers. In the
ES-based algorithms each of these numeric values is represented with a real value in the solution vector of the individual.
This value is rounded to the nearest integer in the case of integer arguments when the test program is executed. In
the case of the GA-based algorithms the input values are directly mapped to the chromosome itself without any
extra conversion. By using such unbounded numeric representation in both algorithm classes we can explore the
whole solution space. This contrasts with other techniques that limit the domain of the input variables to a bounded
region [40].

The fitness function used in the evolutionary search is not exactly the distance function. We want to avoid negative
fitness values in order to be able to apply selection operators that depend on the absolute value of the fitness function
such as the Roulette Wheel selection. For this reason we transform the distance value by using an arctan function
that maps the whole real number set into a bounded interval. The resulting fitness function is

fitness(x) = n/2 — arctan(distance(x)) + 0.1. @)

3170

Table 3

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183

Parameters of the distributed algorithms dES and dGA

Parameters dES dGA

Population size 25 25

Selection Uniform random Uniform random
Recombination - DPX (p. =1.0)
Mutation Gaussian mutation Add N(0, 1) (p, =0.6)
Offspring 1 per island 1 per island

Replacement
Stop criterion

Islands
Topology
Migration type
Migration gap
Migr. selection
Migr. rate

Migr. replacement

(m+2
Objective or 500 evaluations

5

Unidirectional ring
Asynchronous

10

2-Tournament

1

Local worst if incoming is best

(m+2
Objective or 500 evaluations

Table 4

Parameters of the panmictic algorithms panES and panGA

Parameters panES panGA

Population size 25 25

Selection Uniform random Uniform random
Recombination - DPX (p. =1.0)
Mutation Gaussian mutation Add N(0, 1) (p,, =0.6)
Offspring 5 5

Replacement w4+ A (n+A)

Stop criterion

Objective or 500 evaluations

Objective or 500 evaluations

In the previous expression we multiply the arctan result by —1 since our EA software is designed to maximize
the fitness function. Thus, we need to add the value /2 to the expression in order to always get a positive result.
Finally, the 0.1 value is added so that negative values are not obtained when there is precision loss in the difference
calculation.

4.2. Parallel distributed vs sequential panmictic EAs

In this section we shall compare the results obtained by the test data generators using parallel decentralized EAs and
sequential centralized EAs as search engine. In particular, we compare the distributed ES (dES) against the panmictic
one (panES) and the distributed GA (dGA) against the panmictic genetic algorithm (panGA). With this comparison
we want to study the influence of the decentralized design in the search. For this reason we set the population size and
the maximum number of evaluations in all the algorithms to the same values. The parameters of the algorithms are
presented in Tables 3 and 4. In all the algorithms we use 25 individuals in the population, random selection, (¢ + A)
replacement, and the stop criterion consists of finding a solution or reaching a maximum of 500 evaluations (in the
distributed algorithms each of the five islands performs a maximum of 100 evaluations). We must remember here that
the EAs can be executed many times during one run of the test data generator (see Section 2.3). Thus, a global number
of evaluations larger than 500 might appear in the results. For the panGA we performed a previous study to determine
the best configuration (see Appendix A) and we use the same configuration in dGA. The recombination operator used
in these algorithms is DPX with probability 1.0. However, from the two offspring created by the operator only one is
selected. In panES and dES no recombination operator is used. The mutation operator in panGA and dGA consists of
adding a random value following a normal distribution with mean 0 and standard deviation 1 to each input attribute
(as mentioned in Section 3.2) with probability 0.6. In the case of panES and dES the well-known Gaussian mutation

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183 3171

Table 5
Results obtained with dES and panES for all the programs
Program dES panES

Avg. Cov. Max. Cov. Evals. Time (s) Avg. Cov. Max. Cov. Evals. Time (s)
triangle 99.92 100.00 1898.43 5.50 100.00 100.00 1207.30 7.80
gcd 100.00 100.00 39.93 0.80 100.00 100.00 15.67 0.53
calday 97.88 100.00 2188.17 7.47 97.73 100.00 2586.30 23.97
crc 100.00 100.00 39.80 1.43 100.00 100.00 12.83 0.80
insertion 100.00 100.00 10.00 0.60 100.00 100.00 10.00 0.17
shell 100.00 100.00 10.00 0.53 100.00 100.00 10.00 0.30
quicksort 94.12 94.12 10.00 13.57 94.12 94.12 10.00 39.43
heapsort 100.00 100.00 10.00 0.47 100.00 100.00 10.00 0.43
select 83.33 83.33 34.17 14.40 83.33 83.33 13.30 41.03
bessel 97.56 97.56 481.33 11.53 97.56 97.56 198.63 32.20
sa 99.55 100.00 1451.13 4330.20 99.77 100.00 1730.43 10302.73
netflow 98.17 98.17 579.83 1440.50 98.17 98.17 362.40 3242.50

(see Section 3.1) is used. The distributed algorithms use five islands connected with an asynchronous unidirectional
ring topology. For the migration, one individual is selected by 2-tournament selection and sent to the neighboring island
after every ten steps of the subalgorithm main loop. The individual migrated is inserted into the target subpopulation
if it is better than the worst individual in that subpopulation. At the beginning of the EA search, the test data generator
seeds the EAs with one individual (program input) reaching the condition associated with the current partial objective
as we said in Section 2.3. The machines used for the experiments are Pentium 4 at 2.8 GHz with 512 MB of RAM. In
the distributed algorithms (dES and dGA) each island is executed in a different machine.

We performed 30 independent runs of the test data generator for each test program. In Table 5 we present the
average and the maximum corrected condition coverage percentage, the average number of evaluations (test program
executions) required to get the coverage reached, and the average time of the whole generation process (in s) for dES
and panES algorithms. We highlight the best results (the largest values in the case of coverage and the smallest ones in
case of number of evaluations and time) in boldface.

From the results in Table 5 we conclude that there is no difference between the two algorithms with respect to the
coverage metric. In fact, in those programs where the average value differs (triangle, calday, and sa) a statistical
test (details shown in Appendix B) reveals that there is no statistical difference among them. With respect to the effort,
we observe a slightly higher number of evaluations in the case of dES for programs with the same coverage using
both algorithms. This is somewhat unexpected, since we were aiming for new larger coverage and reduced numerical
effort when using distributed ESs. For software testing, our first conclusion is that this does not hold, at least for such
island model, and then only a reduction in the running time can be gained. This result is deceptive because many
other works exist in which the distributed version is clearly superior to the centralized one [49,50,61], pointing out the
need of making software testing with distributed algorithms that cooperate in a different manner, maybe by partially
constructing solutions as the search progresses.

It is worth mentioning that for the net £1ow program our algorithms find several input data for which the program
does not end. For this reason, if the execution of the program takes more than one minute the generator stops it in order
to continue the search. This fact explains the long time observed in Table 5 (and to a lesser extent in the following
results) for the net £1ow program (when the program ends normally it takes no more than one second).

We did find the expected result with respect to the execution time. The execution of dES is faster than that of panES
because each subalgorithm is executed in parallel. The speed up is sublinear (up to 3.21 times faster with five processors),
because the algorithms are not the same and there is an important core sequential part in the distributed algorithm. The
startup process of the dES requires more time because of the execution of the islands in different machines. For this
reason we can observe one advantage of the panES algorithm for fast programs.

A final conclusion from these results is that insertion, shell, and heapsort are the easiest programs of the
benchmark. The test data generator is able to get full coverage only with the first 10 random inputs generated, that is, it

3172 E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183

Table 6
Results obtained with dGA and panGA for all the programs
Program dGA panGA

Avg. Cov. Max. Cov. Evals. Time (s) Avg. Cov. Max. Cov. Evals. Time (s)
triangle 99.84 100.00 3004.43 7.53 99.67 100.00 3209.47 20.30
gcd 100.00 100.00 445.60 1.57 100.00 100.00 257.20 2.00
calday 90.91 90.91 304.17 1043 90.91 90.91 75.03 28.53
crc 100.00 100.00 14.83 0.83 100.00 100.00 10.37 0.73
insertion 100.00 100.00 10.00 0.47 100.00 100.00 10.00 0.40
shell 100.00 100.00 10.00 0.37 100.00 100.00 10.00 043
quicksort 94.12 94.12 10.00 13.20 94.12 94.12 10.00 36.43
heapsort 100.00 100.00 10.00 0.50 100.00 100.00 10.00 0.33
select 83.33 83.33 322.07 14.48 83.33 83.33 83.20 36.07
bessel 97.56 97.56 550.67 13.57 97.56 97.56 533.03 38.63
sa 96.78 98.31 335.33 3865.30 96.72 98.31 176.63 6529.63
netflow 96.36 97.25 937.33 203.33 96.42 98.17 917.90 240.13

is not necessary to use an optimization algorithm at all. These three programs are followed by two other easy-to-cover
programs: gcd and crc. For these programs, even a random test data generator could get total coverage.

Now, we present in Table 6 the results obtained by the test data generator using the parallel distributed and sequential
panmictic GAs as search engine.

From the results we conclude, as in the comparison between the ES-based test data generators, that there is no
difference between the two algorithms in the coverage. The number of evaluations is slightly higher in the dGA, and
the execution time of dGA is lower than the panGA one. That is, the way in which the search space is explored in the
distributed versions of the EAs does not seem to improve the results with respect to the panmictic versions. This is
in fact one contribution of our work since it is counterintuitive, and most people expect advantages to come from the
decentralized search if we think of the overwhelming set of results on this matter published in the associated literature.

However, due to the parallel execution, the distributed versions can be suitable for time consuming programs, like sa.
We can also parallelize the panmictic version using, for example, a master/slave approach by evaluating the individuals
(program inputs) in different machines, since the evaluation operator can be performed in parallel (see the global
parallelism approach in Section 3). But, in this last case the algorithm needs to be synchronized with all the machines
once in each step. This synchronization can be very damaging for the execution time of the whole process, especially
when the execution time of the test program depends on the input data and, thus, lots of processors could be idle for
long periods of time. This idea will be investigated in future work (not here). In the distributed EA, synchronization
between the machines is performed when all the subalgorithms stop and thus the number of synchronization points is
very low (it is exactly the number of executions of the dEA during one run of the test data generator), reducing the
overall time of the test data generation. This is why we consider it interesting to research with distributed approaches
as done in this paper.

In order to confirm that insertion, shell, heapsort, gcd, and crc are the easiest programs in the benchmark
we have used a random test data generator trying a maximum of 20 000 random inputs and the results obtained are
presented in Table 7.

As we expected, crc, insertion, shell, and heapsort are covered with a few random inputs. However,
contrary to our expectations, gcd is not covered by the random testing, only 80% of the partial objectives are covered
after the 20000 random inputs (and they are covered with the first three or four random inputs). The reason is that
there are two equalities inside this program, which are very difficult to cover with random inputs. In addition, from the
random testing results we find that the coverage obtained for the quicksort program is the same as that obtained
with the EA-based test data generators, that is, the EA-based test data generators do not improve the results of a random
search. This reveals that it is very easy to reach 94.12% coverage but very difficult to get total coverage. The reason
is that there is one condition checking a memory allocation failure and another one checking a stack overflow. That
is, there is an environment-dependent coverage loss that sets 94.12% as the absolute optimum for this program in the
running environment. In conclusion, we do not need a metaheuristic algorithm to cover crc, insertion, shell,

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183 3173
Table 7
Results obtained with random testing for all the programs
Program Random test data generator
Avg. Cov. Max. Cov. Evals. Time (s)
triangle 51.22 51.22 141.67 92.30
gcd 80.00 80.00 3.33 94.71
calday 95.45 95.45 74.97 95.10
crc 100.00 100.00 597 0.33
insertion 100.00 100.00 1.07 0.10
shell 100.00 100.00 1.00 0.07
quicksort 94.12 94.12 2.07 123.23
heapsort 100.00 100.00 1.00 0.10
select 11.11 11.11 1.00 99.87
bessel 70.73 70.73 158.10 97.70
sa 96.67 98.31 639.03 5861.73
netflow 95.38 96.33 9225.77 133.40
Table 8
Comparison between dES and dGA
Program dES dGA
Avg. Cov. Max. Cov. Evals. Time (s) Avg. Cov. Max. Cov. Evals. Time (s)
triangle 99.92 100.00 1898.43 5.50 99.84 100.00 3004.43 7.53
gcd 100.00 100.00 39.93 0.80 100.00 100.00 445.60 1.57
calday 97.88 100.00 2188.17 7.47 90.91 90.91 304.17 10.43
select 83.33 83.33 34.17 14.40 83.33 83.33 322.07 14.48
bessel 97.56 97.56 481.33 11.53 97.56 97.56 550.67 13.57
sa 99.55 100.00 1451.13 4330.20 96.78 98.31 335.33 3865.30
netflow 98.17 98.17 579.83 1440.50 96.36 97.25 937.33 203.33

quicksort and heapsort, they can be covered by random testing. For this reason they are not used in the following
sections.

4.3. Evolutionary strategy vs genetic algorithm

In this section we compare the test data generators with respect to the kind of EA they use. That is, we compare the
dES against the dGA and the panES against the panGA. Let us begin comparing the distributed versions in Table 8.

It can be observed that, in general terms, dES obtains a higher coverage than dGA with a lower number of evaluations
(see the statistical tests in Table B3). The two exceptions are those of the calday and sa programs, in which the
number of evaluations is higher for the dES. However, this greater effort is used to increase the accuracy in the results.
At this point we must indicate that the comparison of the number of evaluations is fair only when the two algorithms get
the same coverage. Otherwise, we can conclude that the algorithm requiring fewer evaluations is better if the coverage
obtained is higher. This is the case of triangle and net f1ow in Table 8. So we can state that the dES technique
is more accurate than the dGA in software testing. The execution time does not show a clear trend in this case. In
general, the mutation operator of the ES requires much more time than the operators of the GA. For this reason we
would expect higher computation times in ES-based test data generators. However, ES explores the search space in a
better way, requiring fewer evaluations than the GA and reducing the computation time. These two facts are in conflict
with each other, and we cannot observe a clear trend in the computation time.

In Table 9 we present the comparison between the panmictic EAs. Again, it can be seen that the panES technique
is more accurate than the panGA. The first always obtains a coverage percentage higher than or equal to that obtained
by the panGA. The number of evaluations required by the algorithms is smaller in panES than in panGA with the

3174 E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183

Table 9
Comparison between panES and panGA
Program panES panGA

Avg. Cov. Max. Cov. Evals. Time (s) Avg. Cov. Max. Cov. Evals. Time (s)
triangle 100.00 100.00 1207.30 7.80 99.67 100.00 3209.47 20.30
gcd 100.00 100.00 15.67 0.53 100.00 100.00 257.20 2.00
calday 97.73 100.00 2586.30 23.97 90.91 90.91 75.03 28.53
select 83.33 83.33 13.30 41.03 83.33 83.33 83.20 36.07
bessel 97.56 97.56 198.63 32.20 97.56 97.56 533.03 38.63
sa 99.77 100.00 1730.43 10302.73 96.72 98.31 176.63 6529.63
netflow 98.17 98.17 362.40 3242.50 96.42 98.17 917.90 240.13
Table 10
Comparison of two versions of dES differing in the search mode for the calday program
Search mode Coverage Evaluations Time (s)
same 97.88 2188.17 7.47
diff 92.12 693.83 10.07

exceptions of calday, and sa; but the extra effort is justified (as in the previous results) by the higher coverage.
The overall conclusion of this section is that the ES technique is more suitable for software testing than the GA
either with a distributed population or with a panmictic one, and this claim is assessed by statistical confidence tests
(see Appendix B).

4.4. Analyzing the distributed approach

In this section we are going to study the influence of some parameters in the distributed algorithms not only to
characterize them better but also to ensure that their previous results are not the result of naive wrong parameterizations.
For the experiments we use only the dES since it obtained better results than the dGA in the previous sections. At the
same time, from the benchmark programs we select calday, because net £1ow and sa programs require too much
time and the rest of the programs obtained the same coverage in all the runs (so there would be no appreciable difference
in the results).

4.4.1. Studying the search mode

Initially, we study the behavior of the algorithm when each island is searching for a different objective (diff search
mode), as proposed in Section 2.3. In the previous experiments all the subalgorithms searched for the same partial
objective (same search mode). But before showing the results we must discuss one small detail. The algorithms of
the previous sections stop when one of the islands finds the objective, since all of them search for the same objective.
Now, with the diff search mode we are going to change the stopping condition of the algorithm. Since all the islands
are searching for their own different objectives at the same time, it seems reasonable to stop after a predefined number
of evaluations has been reached in the islands, in order to solve more partial objectives in one run of the algorithm.
This maximum number of evaluations is set to 500 (100 in each island, as in the previous experiments). In Table 10 we
show the coverage percentage, the number of evaluations, and the time of the two different search modes. The figures
presented are the average of 30 independent runs.

As can be observed, the best results in coverage and time are obtained when all the islands search for the same partial
objective (same search mode). In addition, the differences in all the values are statistically significant (see Table B5 in
Appendix B). That is, the collaboration among the islands is fruitful when they are all searching for the same objective,
and not when they search for different objectives.

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183 3175

Table 11
Comparison of two versions of dES differing in the stop condition for the calday program

Stop condition Coverage Evaluations Time (s)
obj 97.88 2188.17 747
new 97.73 2640.47 9.17
Table 12

Comparison of three versions of the test data generator with a different number of seeds in the initial population of the dES for the calday program

Seeds Coverage Evaluations Time
1 97.88 2188.17 7.47
2 94.85 1300.90 9.17
3 9591 1745.30 8.53

4.4.2. Studying the stop criterion

Now, we are going to study the stop criterion used in dES. The algorithm used in Sections 4.2 and 4.3 stops when
a program input covering the partial objective is found or a maximum number of evaluations is reached. As we said
in Section 2.3, all the input data covering a partial objective not yet covered is kept and added to the coverage table,
even if the objective covered is not the one being searched for. However, the algorithm stops only when the searched
partial objective is found or the maximum number of evaluations is reached. We study here the alternative of stopping
also when a program input is found that covers a new partial objective (not necessarily the one being searched for). In
Table 11 we compare this alternative (new stop condition) with the previously used one (0bj stop condition).

We can observe in the results that the obj stop condition has a slight advantage over the new one. However, the
differences are not statistically significant, so we cannot definitely state that the stop condition used in the previous
sections (obj stop condition) is better than that introduced in this section (new stop condition).

4.4.3. Studying the number of seeds

The next study we perform concerns the number of individuals used to seed the optimization algorithm. The test data
generator used in the previous experiments seeds each island of dES with one individual (program input) that reaches
the condition associated to the partial objective. Each island is seeded with a different individual if possible, that is, if
there are enough program inputs in the coverage table reaching the condition then all the islands will be seeded with
a different one. Otherwise, several islands would have the same program input. We examine in this experiment three
different values for the number of seeds used in the islands. The aim of this study is to check whether the number of
“good” solutions in the initial population of dES improves the accuracy of the test data generator. In Table 12 we show
the results obtained when comparing three test data generators seeding dES with 1, 2, and 3 individuals, respectively.

The best coverage percentage is obtained with a lower number of seeds (which seems counterintuitive) and the
difference is statistically significant with respect to the generator using only two seeds. We find a statistical difference
for neither the number of evaluations nor the time. One possible reason for this unexpected behavior could be that the
ES has to share its steps between the two good solutions of the population (the two seeds) and thus the offspring of
both seeds reach the objective later. However, this is not observed when three seeds are used. In this case some seeds
are definitely repeated in the population (because only ten solutions are stored in the coverage table for each partial
objective) and this can benefit the evolution of the redundant individuals. However, more experiments are needed to
confirm (or refute) this hypothesis.

4.4.4. Studying the migration gap

Finally, we are going to study the influence of the migration gap of the islands in the results. The migration gap is
the number of steps between two consecutive migrations and is a measure of the coupling between the islands in a
distributed EA. In the previous experiments the migration gap was set to 10. In this section we try four more values:
30, 50, 70, and 90. Since the number of maximum steps of a subalgorithm is 100, a migration gap of 90 means almost

3176 E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183

Table 13

Comparison of five versions of the test data generator with a different migration gap in dES for the calday program

Migration gap Coverage Evaluations Time
10 97.88 2188.17 7.47
30 98.18 1861.13 7.27
50 98.33 2085.97 7.20
70 98.94 2073.27 7.13
90 99.09 2005.50 6.23
Table 14

Previous results of coverage and number of evaluations for triangle

triangle Ref. [21] Ref. [34] Ref. [40] Ref. [41] panES (here)
Coverage (%) 94.29% 100.00* 100.00* 100.00* 100.00°¢
Evaluations ~ 8000 18000 608 3439 1207.30

4Branch coverage.
bDeepCover coverage.
¢Corrected condition coverage.

no communication between the islands. We want to test with this experiment whether the collaboration of the islands
profits the search or not. In Table 13 we show the results.

We can observe that the results improve when the migration gap increases. This is not surprising because as we saw
in Section 4.2, the distributed approach is not better than the panmictic one. However, the values of Table 13 are not
statistically significant.

4.5. Previous results

The task of comparing our results against previous work is a difficult one. First, we need to find papers tackling the
same test programs. There is one test program which is very popular in the domain of software testing: the triangle
classifier. However, there are several different implementations in the literature and the source code is usually not
provided. In [21] the source code of the triangle classifier is published. In this work, we use that implementation
for comparing performance. We have two other test programs in common with [21]: the computation of the greatest
common denominator and the insertion sort. However, we use different implementations for these algorithms. In order
to facilitate future comparisons we have indicated in Table 2 how to get the source code of the test programs (available
at URL http://www.tracer.lcc.uma.es/problems/testing/ with the exception of net £1ow).

A second obstacle when comparing different techniques is that of the metrics. We use the corrected condition coverage
to measure the quality of the solutions. In [34,40,41] the authors report only on the branch coverage. On the other hand,
the coverage metric used in [21] is obtained by using a proprietary software: DeepCover. We cannot directly compare
all these results in a quantitative manner because all the papers use different metrics. Another obstacle which may affect
the results is the number of independent runs. A low number of independent runs in stochastic algorithms is not enough
to obtain a clear idea about the behavior of the technique used. This is not our case, but some papers perform too few
independent runs.

In spite of all the previous considerations, we include in Table 14 the best average coverage results reported for the
triangle classifier algorithm in [21,34,40,41] and the necessary number of evaluations (program tests). We show in the
same table the results of our panmictic ES, the best with regard to the coverage percentage.

If we focus on the coverage of Table 14, our panES has the best coverage as well as the algorithms in [34,40,41].
Comparing the number of evaluations, our work ranks in second position with respect to the best (lowest) value
computed in the work of Sagarna and Lozano [40]. However, we must remember that the condition coverage (used
here in our work) is a more difficult test adequacy criterion than the branch coverage used by the authors in [40]
(see Section 2), and this slight increment in the number of evaluations of our algorithm is justified since it achieves a
result of higher quality.

http://www.tracer.lcc.uma.es/problems/testing/

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 31613183 3177

Table 15

Previous results of coverage and number of evaluations for net f1ow

netflow Ref. [60] panES (here)
Coverage (%) 992 98.17°
Evaluations 40703 362.40

4Branch coverage.
YCorrected condition coverage.

We also have a program in common with the work of Wegener et al. [60]: net £ 1ow. The comparison is shown
in Table 15. Analyzing the code we found that our 98.17% of corrected coverage corresponds to the 99% of branch
coverage they report (which according to their work is the very maximum coverage). The conclusion is that we obtain
the same coverage with a hundredth of the number of evaluations, despite the fact that they use a more sophisticated
fitness function.

5. Conclusions

In this article we have analyzed the application of sequential and parallel decentralized EAs to the automatic test
data generation problem. In particular, we have compared a distributed ES and a distributed GA to their panmic-
tic versions using a benchmark of twelve test programs implementing some fundamental algorithms in computer
science.

The results show that the decentralized versions have no statistically significant advantage over the panmictic versions,
neither in terms of the coverage nor in effort. This is an unexpected observation since much research exists reporting
a higher degree of accuracy for the decentralized approach. The conclusion is that the decentralized algorithms should
maybe focus on cooperating by constructing the solutions and that other information should perhaps be migrated
(such as subalgorithm parameters or average entropy) that influences in the way the search is performed on each
island.

On the other hand, comparing the two EA techniques, either with a distributed or panmictic population, we can state
that our proposed ES outperforms the results of the GA. This opens a promising line of future research concerning the
application of ES to evolutionary testing. Furthermore, the number of parameters to be tuned in the ES are fewer and
for this reason we believe is more suitable for automatic tools that must be used by people with no knowledge about
EAs.

In a second stage we have studied the influence of several parameters of the dES-based test data generator such as
the search mode, the stop condition, the number of seeds used in the dES islands and the migration gap. The results
state that, by searching for the same partial objective in all the islands, we can outperform the results with respect
to the version that searches for different partial objectives in the islands. On the other hand, the stop condition that
involves stopping when any new partial objective is covered does not have a clear advantage over the one in which
only the coverage of the searched partial objective is used to stop the algorithm. Analyzing the number of seeds
used in the initial population of dES, we discovered that the best results are obtained with one single seed. Finally,
a high migration gap seems to benefit the search and this confirms that the distributed approach is not good for this
problem.

As future work, we plan to study the combination of the ES with other techniques and propose some new methods
based on static analysis that can be applied as a local search operator inside the EA scheme in order to hopefully
increase the coverage (more accuracy) and decrease the computational effort (more efficiency) required in the test case
generation. We also want to extend the input data generation to other non-numeric data types such as strings, structures,
arrays, and so on. On the other hand, an interesting idea is to study the ways in which automatic software testing can
be applied to reactive software.

Acknowledgments

We thank to Joachim Wegener for easing the access to the source code of the net £ 1 ow program. The authors acknowl-
edge partial funding by the Ministry of Education and Science and FEDER under Contract TIN2005-08818-C04-01

3178 E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183

(the OPLINK Project). Francisco Chicano is supported by a Grant (BOJA 68/2003) from the Junta de Andalucia
(Spain).

Appendix A. The parameters of the GA

In order to make a fair comparison between the two kinds of EAs we need to adjust the parameters of the algorithms
and compare the results obtained with the best configuration of them. For this reason we try different parameters in this
appendix for the mutation and the crossover of the GA. We do not tune the ES because the parameters of the mutation
operator are well-established in the literature [43,56].

We are going to modify the standard deviation of the normal mutation, the mutation probability, the recombination
operator, and the recombination probability. We do not use the sa program for the experiments because it is very time
consuming. In all the cases we use 25 individuals in the population, random selection, (u + 4) replacement, and the
stop criterion consists of finding a solution or reaching a maximum of 500 evaluations. For the first experiment we use
uniform crossover with probability 1.0 and normal mutation with probability 0.2. The mean of the mutation is 0 and
we try three different values for the standard deviation: 1, 10, and 100. The results are in Table A1. We do not show the
results of insertion, shell, quicksort, and heapsort because they always get the same results and are not
meaningful for the study.

From the table we can see that the standard deviation has a different influence in each program. This is not surprising:
this means that each problem has its own best parameterization. Here, a low standard deviation seems to be good for the
coverage of triangle but not so good for the coverage of calday and net £1ow. However, most of the differences
are not statistically significant. Only in the case of triangle and calday we can find significant differences and
they are contradictory. On the other hand, the number of evaluations is higher with statistical significance in gcd,
calday, and bessel for standard deviation 100. In this case we decide to keep a low standard deviation, that is, the
perturbation in the solution is not very large. For this reason we set the standard deviation of the mutation to 1 for the
following experiments. In the next experiment we analyze five different values for the mutation probability: 0.2, 0.4,
0.6, 0.8, and 1.0. The results are in Table A2.

Table Al
Results obtained when changing the standard deviation of the mutation

Program og=1 =10 g =100
Cov. Evals. Cov. Evals. Cov. Evals.

triangle 99.43 3961.27 98.86 3175.30 97.15 4718.13
gcd 100.00 190.93 100.00 253.73 100.00 1213.80
calday 90.91 224.30 90.91 114.30 91.97 1548.00
crc 100.00 10.30 100.00 10.80 100.00 10.60
select 83.33 196.37 83.33 171.70 83.33 517.93
bessel 97.56 264.13 97.56 293.27 97.56 1038.87
netflow 96.33 525.47 96.12 454.07 96.36 706.10
Table A2
Results obtained when changing the mutation probability
Program pm =02 pm =04 pm =0.6 pm =0.8 pm =1.0

Cov. Evals. Cov. Evals. Cov. Evals. Cov. Evals. Cov. Evals.
triangle 99.43 3961.27 99.76 3057.07 99.19 3175.23 99.51 4033.43 99.51 2327.27
gcd 100.00 190.93 100.00 193.33 100.00 153.43 100.00 165.60 100.00 119.40
calday 90.91 224.30 90.91 109.73 90.91 82.80 90.91 84.73 90.91 67.30
crc 100.00 10.30 100.00 10.83 100.00 10.37 100.00 10.57 100.00 10.50
select 83.33 196.37 83.33 173.83 83.33 112.70 83.33 124.33 83.33 117.00
bessel 97.56 264.13 97.56 182.97 97.56 198.73 97.56 188.80 97.56 135.50

netflow 96.33 525.47 96.33 710.80 96.39 789.53 96.33 473.40 96.36 692.53

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183 3179

Table A3
Results obtained when changing the crossover operator
Program Uniform Single point Double point

Cov. Evals. Cov. Evals. Cov. Evals.
triangle 99.19 3175.23 99.51 4088.60 99.67 3209.47
gcd 100.00 153.43 100.00 317.77 100.00 257.20
calday 90.91 82.80 90.91 255.07 90.91 75.03
crc 100.00 10.37 100.00 10.80 100.00 10.37
select 83.33 112.70 83.33 110.43 83.33 83.20
bessel 97.56 198.73 97.56 185.77 97.56 533.03
netflow 96.39 789.53 96.33 626.27 96.42 917.90
Table A4

Results obtained when changing the crossover probability

Program pe=02 pe=04 pe =0.6 pe=0.8 pe=1.0
Cov. Evals. Cov. Evals. Cov. Evals. Cov. Evals. Cov. Evals.

triangle 98.13 4814.97 97.97 3208.60 99.02 3817.57 99.51 3310.90 99.67 3209.47
gcd 100.00 117.53 100.00 131.03 100.00 145.20 100.00 210.17 100.00 257.20
calday 90.91 75.37 90.91 92.97 90.91 58.83 90.91 75.00 90.91 75.03
crc 100.00 11.03 100.00 11.30 100.00 11.13 100.00 10.00 100.00 10.37
select 83.33 92.07 83.33 99.50 83.33 93.50 83.33 107.77 83.33 83.20
bessel 97.56 127.10 97.56 170.10 97.56 193.17 97.56 264.90 97.56 533.03
netflow 96.36 1277.07 96.36 1236.60 96.36 1060.63 96.33 902.67 96.42 917.90

We cannot observe a clear influence of the mutation probability in the coverage. In fact, the statistical tests show that
the differences are not significant. However, with respect to the number of evaluations we observe a decrease in several
programs when the probability is higher. Again, the differences are not significant (except in the case of bessel
for probabilities 0.2 and 1.0) so we cannot conclude that one probability value is better than another one. We set the
probability of the mutation to an intermediate value: 0.6. Next, we are going to try three different crossover operators:
uniform crossover, single point crossover, and double point crossover. The results are in Table A3 .

We observe a slight advantage (not significant) of the double point crossover with respect to the coverage. For this
reason we select this operator. In general, however, the number of evaluations is also higher with this operator. The last
experiment in this appendix is used to select the crossover probability. We try five values for the probability: 0.2, 0.4,
0.6, 0.8, and 1.0. We show the results in Table A4 .

In general, we observe a better coverage and worse efficiency with higher probabilities. The few differences that are
statistically significant support this observation. For this reason we select the higher probability 1.0 for the double point
crossover operator. The final configuration for the GA is a double point crossover with probability 1.0 and a normal
mutation with mean 0, standard deviation 1, and probability 0.6. This is the configuration of the GA-based generators
in the experiments of Section 4.

Appendix B. Statistical validation of the results

In this appendix we include the statistical tests performed for the comparisons of this article (except those of
Appendix A). This is a very important practice that researchers in metaheuristics and in non-deterministic algo-
rithms in general should include in their work. Nowadays, authors not doing statistical tests often report “clear”
advantages for their proposals based on rather small negligible numerical improvements. Although it is an intensive
and time consuming task, work including this information is supposed to improve the overall research quality in
literature.

3180

Table B1

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183

Statistical test results for the comparison between dES and panES

Program Coverage Evaluations Time

Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper
triangle —2.96 —1.00 0.96 37.19 691.13 1345.07 —20.50 —11.73 -2.97
gcd 0.00 0.00 0.00 19.23 28.00 36.77 0.78 8.00 15.22
calday —5.79 1.33 8.46 —10.90 —2.07 6.77 —20.30 —16.50 —12.70
crc 0.00 0.00 0.00 —1.89 3.60 9.09 —0.12 7.70 15.52
select 0.00 0.00 0.00 17.57 26.33 35.10 —38.53 —30.00 —2147
bessel 0.00 0.00 0.00 2.04 10.87 19.69 —38.76 —30.00 —21.24
sa —10.12 —4.00 2.12 —1136.57 —279.30 577.97 —9284.62 —5972.53 —2660.45
netflow 0.00 0.00 0.00 95.06 217.43 339.80 —2020.00 —1800.00 —1580.00
Table B2
Statistical test results for the comparison between dGA and panGA
Program Coverage Evaluations Time

Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper
triangle —3.17 1.07 5.30 —1487.02 —205.03 1076.96 —17.37 —12.77 —8.16
gcd 0.00 0.00 0.00 94.54 188.40 282.26 —11.87 —3.57 4.74
calday 0.00 0.00 0.00 186.28 229.13 271.98 —38.52 —30.00 —21.48
crc 0.00 0.00 0.00 —2.27 1.07 4.40 —7.01 0.63 8.27
select 0.00 0.00 0.00 170.96 238.87 306.78 —38.12 —29.50 —20.88
bessel 0.00 0.00 0.00 —165.54 17.63 200.80 —38.74 —30.00 —21.26
sa —3.23 1.00 5.23 -3.17 1.07 5.30 —3076.36 —2664.33 —2252.30
netflow —4.37 —1.03 2.30 —416.70 19.43 455.57 —23.83 —15.00 —6.17
Table B3
Statistical test results for the comparison between dES and dGA
Program Coverage Evaluations Time

Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper
triangle —2.34 1.00 434 —2308.16 —1106.00 96.16 —14.31 —5.57 3.18
gcd 0.00 0.00 0.00 —463.64 —405.67 —347.69 —26.35 —18.80 —11.25
calday 16.42 24.00 31.58 9.33 18.17 27.00 —24.39 —15.90 —7.41
crc 0.00 0.00 0.00 —0.95 4.27 9.49 —0.19 7.27 14.73
select 0.00 0.00 0.00 —350.46 —287.90 —225.35 —10.20 —2.24 5.73
bessel 0.00 0.00 0.00 —24.20 —15.37 —6.54 —32.42 —23.73 —15.05
sa 21.03 29.20 37.37 16.72 25.13 33.55 —594.47 464.90 1524.27
netflow 2228 30.00 37.72 —613.60 —357.50 —101.40 19.16 28.00 36.84
Table B4
Statistical test results for the comparison between panES and panGA
Program Coverage Evaluations Time

Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper
triangle —0.34 3.00 6.34 —2793.34 —2002.17 —1210.99 —16.84 —12.50 —8.16
gcd 0.00 0.00 0.00 —38.49 —29.70 —-20.91 —27.85 —19.53 —11.22
calday 17.27 25.00 32.73 1709.70 2511.27 3312.84 —12.02 —3.40 5.22
crc 0.00 0.00 0.00 -1.79 2.03 5.86 —7.70 0.20 8.10
select 0.00 0.00 0.00 —3145 —22.67 —13.88 21.39 30.00 38.61
bessel 0.00 0.00 0.00 —27.70 —18.87 —10.03 —35.79 —27.00 —18.21
sa 21.75 29.73 37.72 18.82 27.20 35.58 608.07 3773.10 6938.13
netflow 21.29 29.00 36.71 —929.13 —555.50 —181.87 2794.27 3002.37 321047

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183 3181
Table B5
Statistical test results for the different search modes in dES applied to the calday program
Search mode Coverage Evaluations Time
Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper
same vs. diff 11.99 19.73 27.47 6.76 15.60 24.44 —22.59 —14.00 —541
Table B6
Statistical test results for the different stop conditions in dES applied to the calday program
Stop condition Coverage Evaluations Time
Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper
obj vs. new —5.38 1.87 9.12 —11.70 —2.87 5.97 —3.84 —1.70 0.44
Table B7
Statistical test results for the different number of seed individuals in dES applied to the calday program
Seeds Coverage Evaluations Time
Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper
1vs.2 1.96 15.83 29.70 —1.71 14.43 30.58 —30.04 —14.43 1.18
1vs.3 -3.70 10.17 24.04 —6.93 9.22 25.36 —23.23 —7.62 7.99
2vs.3 —19.54 —5.67 8.20 —21.36 —-5.22 10.93 —8.79 6.82 22.43
Table B8
Statistical test results for the migration gap in dES applied to the calday program
Migration gap Coverage Evaluations Time
Lower Estim. Upper Lower Estim. Upper Lower Estim. Upper
10 vs. 30 —22.62 0.43 23.49 —26.96 3.63 34.23 —31.68 —0.38 30.92
10 vs. 50 —24.91 —1.85 21.21 —35.66 —5.07 25.53 —31.62 —0.32 30.98
10 vs. 70 —29.04 —5.98 17.07 —35.85 —5.25 25.35 —30.07 1.23 32.53
10 vs. 90 —32.99 —9.93 13.12 —39.91 —9.32 21.28 —21.00 10.30 41.60
30 vs. 50 —25.34 —2.28 20.77 —39.30 —8.70 21.90 —31.23 0.07 31.37
30 vs. 70 —29.47 —6.42 16.64 —39.48 —8.88 21.71 —29.68 1.62 32.92
30 vs. 90 —33.42 —10.37 12.69 —43.55 —12.95 17.65 —20.62 10.68 41.98
50 vs. 70 —27.19 —4.13 18.92 —30.78 —0.18 30.41 —29.75 1.55 32.85
50 vs. 90 —31.14 —8.08 14.97 —34.85 —4.25 26.35 —20.68 10.62 41.92
70 vs. 90 —27.01 —3.95 19.11 —34.67 —4.07 26.53 —22.23 9.01 40.37

In each case the procedure for generating the statistical information presented in the tables is the following. First
a Kolmogorov—Smirnov test is performed in order to check whether the variables are normal or not. If they are,
an ANOVA 1 test is performed, otherwise we perform a Kruskal-Wallis test. After that, we do a multiple compar-
ison test whose results we present in the following tables. We highlight with boldface the values associated with
a significant difference. This occurs when zero is not included between the lower and upper bounds of the confi-
dence interval (see columns Lower and Upper). We do not show the results of the statistical tests for insertion,
shell, quicksort, and heapsort because they get the same results in coverage and number of evaluations

(Tables B1-BS).

3182 E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183

References

[1] Dijkstra EW. A discipline of programming. Englewood Cliffs, NJ: Prentice-Hall; 1976.
[2] Dijkstra EW, Scholten CS. Predicate calculus and program semantics. New York: Springer; 1990.
[3] Hoare CAR. An axiomatic basis for computer programming. Communications of the ACM 1969;12(10):576—80.
[4] Clarke EM, Grumberg O, Peled DA. Model checking. Cambridge: The MIT Press; 2000.
[5] Clarke EM, Emerson EA. Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Logic of programs,
workshop. London, UK: Springer; 1982. p. 52-71.
[6] Clarke EM, Emerson EA, Sistla AP. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems 1986;8(2):244—63.
[7] Holzmann GJ. The model checker SPIN. IEEE Transactions on Software Engineering 1997;23(5):1-17.
[8] Corbett JC, Dwyer MB, Hatcliff J, Laubach S, Pasdreanu CS, Robby et al.. Bandera: extracting finite-state models from java source code. In:
ICSE ’00: Proceedings of the 22nd international conference on software engineering. New York, NY, USA: ACM Press; 2000. p. 439-48.
[9] Park DYW, Stern U, Skakkebaek JU, Dill DL. Java model checking. In: Proceedings of automated software engineering conference; 2000.
[10] Bensalem S, Ganesh V, Lakhnech Y, noz CM, Owre S, Ruef3 H. et al. An overview of SAL. In: Holloway CM, editor. LFM 2000: fifth NASA
Langley formal methods workshop. Hampton, VA: NASA Langley Research Center; 2000. p. 187-96.
[11] Groce A, Visser W. Heuristics for model checking java programs. Software Tools for Technology Transfer 2004;6(4):260-76.
[12] Lluch-Lafuente A, Leue S, Edelkamp S. Partial order reduction in directed model checking. In: Ninth international SPIN workshop on model
checking software. Grenoble: Springer; 2002.
[13] Burch JR, Clarke EM, Long DE, McMillan KL, Dill DL. Symbolic model checking for sequential circuit verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 1994;13(4):401-24.
[14] Lluch-Lafuente A. Symmetry reduction and heuristic search for error detection in model checking. In: Workshop on model checking and
artificial intelligence; 2003.
[15] Alberts D. The economics of software quality assurance. In: Proceedings of the 1976 national computer conference, vol. 45. Reston, VA: AFIPS
Press; 1976. p. 433-42.
[16] Myers G. The art of software testing. New York: Wiley; 1979.
[17] Millo RD, McCracken W, Martin R, Passafiume J. Software testing and evaluation. Menlo Park, CA: Benjamin/Cummings; 1987.
[18] Clarke LA. A system to generate test data and symbolically execute programs. IEEE Transactions on Software Engineering 1976;2(3):215-22.
[19] Miller W, Spooner DL. Automatic generation of floating-point test data. IEEE Transactions on Software Engineering 1976;2(3):223-6.
[20] McMinn P. Search-based software test data generation: a survey. Software Testing, Verification and Reliability 2004;14(2):105-56.
[21] Michael CC, McGraw G, Schatz MA. Generating software test data by evolution. IEEE Transactions on Software Engineering 2001;27(12):
1085-110.
[22] McMinn P, Holcombe M. The state problem for evolutionary testing. In: Goos G, et al., editors, Proceedings of the genetic and evolutionary
computation conference, LNCS vol. 2724. Chicano, IL, USA: Springer; 2003. p. 2488-98.
[23] Mansour N, Salame M. Data generation for path testing. Software Quality Journal 2004;12(2):121-36.
[24] Sen K, Marinov D, Agha G. CUTE: a concolic unit testing engine for C. In: ESEC/FSE-13: proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international symposium on foundations of software engineering. New York,
NY, USA: ACM Press; 2005. p. 263-72.
[25] Godefroid P, Klarlund N, Sen K. DART: directed automated random testing. In: PLDI’05: proceedings of the 2005 ACM SIGPLAN conference
on programming language design and implementation. New York, NY, USA: ACM Press; 2005. p. 213-23.
[26] Buehler O, Wegener J. Evolutionary functional testing of an automated parking system. In: Proceedings of the international conference on
computer, communication and control technologies. Orlando, FL, 2003.
[27] Buehler O, Wegener J. Evolutionary functional testing of a vehicle brake assistant system. In: Proceedings of the sixth metaheuristic international
conference. Vienna, Austria, 2005. p. 157-62.
[28] Korel B, Al-Yami AM. Assertion-oriented automated test data generation. In: Proceedings of the 18th international conference on software
engineering. Berlin, Germany: IEEE Computer Society Press; 1996. p. 71-80.
[29] Sthamer H, Wegener J, Baresel A. Using evolutionary testing to improve efficiency and quality in software testing. In: Proceedings of the second
Asia-Pacific conference on software testing analysis & review. Melbourne, Australia, 2002.
[30] Wegener J, Sthamer H, Jones BF, Eyres DE. Testing real-time systems using genetic algorithms. Software Quality Journal 1997;6:127-35.
[31] Bird D, Munoz C. Automatic generation of random self-checking test cases. IBM Systems Journal 1983;22(3):229-45.
[32] Offutt J. An integrated automatic test data generation system. Journal of Systems Integration 1991;1(3):391-409.
[33] Korel B. Automated software test data generation. IEEE Transactions on Software Engineering 1990;16(8):870-9.
[34] Jones B, Sthamer H, Eyres D. Automatic structural testing using genetic algorithms. Software Engineering Journal 1996;11(5):299-306.
[35] Mantere T, Alander JT. Evolutionary software engineering, a review. Applied Soft Computing 2005;5(3):315-31.
[36] Ostrowski D, Reynolds R. Knowledge-based software testing agent using evolutionary learning with cultural algorithms. In: Proceedings of
the congress on evolutionary computation, vol. 3; 1999. p. 1657-63.
[37] Tracey N. A search-based automated test-data generation framework for safety-critical software. PhD thesis, University of York, 2000.
[38] Tracey N, Clark J, Mander K, McDermid J. An automated framework for structural test-data generation. In: Proceedings of the 13th IEEE
conference on automated software engineering. Hawaii, USA, 1998. p. 285-8.
[39] Diaz E, Tuya J, Blanco R. Automated software testing using a metaheuristic technique based on tabu search. In: Proceedings of the 18th IEEE
international conference on automated software engineering (ASE’03). Montreal, Que., Canada, 2003. p. 310-3.
[40] Sagarna R, Lozano J. Variable search space for software testing. In: Proceedings of the international conference on neural networks and signal
processing, vol. 1. New York: IEEE Press; 2003. p. 575-8.

E. Alba, F. Chicano / Computers & Operations Research 35 (2008) 3161—3183 3183

[41] Sagarna R, Lozano JA. Scatter search in software testing, comparison and collaboration with estimation of distribution algorithms. European
Journal of Operational Research 2006;169(2):392—412 [available online].
[42] Alba E, Chicano JF. Software testing with evolutionary strategies. In: Proceedings of the second international workshop on rapid integration of
software engineering techniques, Lecture notes in computer science, vol. 3943. Crete, Greece: Heraklion; 2005. p. 50-65.
[43] Bick T. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. New York: Oxford
University Press; 1996.
[44] Alba E, Tomassini M. Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation 2002;6(5):443—-62.
[45] Levine D. Users guide to the PGAPack parallel genetic algorithm library, Technical report ANL-95/18, Argonne National Laboratory,
Mathematics and Computer Science Division, January 31, 1995.
[46] Belding TC. The distributed genetic algorithm revisited. In: Eshelman LJ, editor. Proceedings of the sixth international conference on genetic
algorithms. Los Altos, CA: Morgan Kaufmann; 1995. p. 114-21.
[47] Tanese R. Distributed genetic algorithms. In: Schaffer JD, editor. Proceedings of the third international conference on genetic algorithms. Los
Altos, CA: Morgan Kaufmann; 1989. p. 434-9.
[48] Baluja S. Structure and performance of fine-grain parallelism in genetic search. In: Forrest S, editor. Proceedings of the fifth international
conference on genetic algorithms. Los Altos, CA: Morgan Kaufmann; 1993. p. 155-62.
[49] AlbaE, Troya JM. Gaining new fields of application for OOP: the parallel evolutionary algorithm case, Journal of Object Oriented Programming,
December 2001.
[50] Gordon VS, Whitley D. Serial and parallel genetic algorithms as function optimizers. In: Forrest S, editor. Proceedings of the fifth international
conference on genetic algorithms. Los Altos, CA: Morgan Kaufmann; 1993. p. 177-83.
[51] Holland JH. Adaptation in natural and artificial systems. Ann Arbor, MI: The University of Michigan Press; 1975.
[52] Rechenberg I. Evolutionsstrategie: optimierung technischer systeme nach prinzipien der biologischen evolution. Stuttgart: Fromman-Holzboog
Verlag; 1973.
53] Fogel LJ, Owens AJ, Walsh MJ. Artificial intelligence through simulated evolution. New York: Wiley; 1966.
54] Koza JR. Genetic programming. Cambridge, MA: The MIT Press; 1992.
55] Bick T, Fogel DB, Michalewicz Z, editors. Evolutionary computation 1. Basic algorithms and operators, vol. 1. IOP Publishing Lt; 2000.
56] Rudolph G. Evolutionary computation 1. Basic algorithms and operators, vol. 1. IOP Publishing Lt; 2000. p. 81-8 [Chapter 9, Evolution
strategies].
[57] Xanthakis S, Ellis C, Skourlas C, Le Gall A, Katsikas S, Karapoulios K. Application of genetic algorithms to software testing. In: Proceedings
of the fifth international conference on software engineering and its applications. Toulouse, France, 1992. p. 625-36.
[58] Sthamer H-H. The automatic generation of software test data using genetic algorithms, PhD thesis, University of Glamorgan, November 1995.
[59] Alba E, Troya JM. A survey of parallel distributed genetic algorithms. Complexity 1999;4:31-52.
[60] Wegener J, Baresel A, Sthamer H. Evolutionary test environment for automatic structural testing. Information and Software Technology
2001;43(14):841-54.
[61] Alba E, editor. Parallel metaheuristics. A new class of algorithms. New York: Wiley; 2005.

[
[
[
[

	Observations in using parallel and sequential evolutionary algorithms for automatic software testing
	Introduction
	The test data generator
	Distance function
	Program instrumentation
	Test data generation process
	Coverage metrics

	Evolutionary algorithms
	Evolutionary strategies
	Genetic algorithms

	Experiments
	Representation and fitness function
	Parallel distributed vs sequential panmictic EAs
	Evolutionary strategy vs genetic algorithm
	Analyzing the distributed approach
	Studying the search mode
	Studying the stop criterion
	Studying the number of seeds
	Studying the migration gap

	Previous results

	Conclusions
	Acknowledgments
	Appendix A. The parameters of the GA
	Appendix B. Statistical validation of the results
	References

