
Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 1

Optimal Cycle Program of Traffic Lights
with Particle Swarm Optimization

José Garcı́a-Nieto, Ana Carolina Olivera, and Enrique Alba

Abstract—Optimal staging of traffic lights, and in particular
optimal light cycle programs, is a crucial task in present day cities
with potential benefits in terms of energy consumption, traffic
flow management, pedestrian safety, and environmental issues.
Nevertheless, very few publications in the current literature
tackle this problem by means of automatic intelligent systems,
and, when they do, they focus on limited areas with elementary
traffic light schedules. In this paper, we propose an optimization
approach in which a Particle Swarm Optimizer (PSO) is able
to find successful traffic light cycle programs. The solutions
obtained are simulated with SUMO, a well-known microscopic
traffic simulator. For this study, we have tested two large and
heterogeneous metropolitan areas with hundreds of traffic lights
located in the cities of Bahı́a Blanca in Argentina (American
style), and Málaga in Spain (European style). Our algorithm is
shown to obtain efficient traffic light cycle programs for both
kinds of cities. In comparison with expertly predefined cycle
programs (close to real ones), our PSO achieved quantitative
improvements for the two main objectives: the number of vehicles
that reach their destination and the overall journey time.

Index Terms—Programming Cycles of Traffic Lights, Particle
Swarm Optimization, SUMO Simulator of Urban MObility.

I. INTRODUCTION

POLLUTION, congestion, security, parking, and many
other problems derived from vehicular traffic are present

every day in most cities around the world. Since changes in
urban area infrastructure are usually not possible, researchers
often agree that a correct staging of traffic lights can help
to reduce these problems by improving the flow of vehicles
through the cities [1], [2], [3]. Nevertheless, as traffic lights
are installed in cities and their number grows, their joint
programming becomes more complex due to the huge number
of combinations that appear, and hence, the necessity of
implementing automatic systems to optimally program the
cycles of traffic lights is beyond doubt.

In this sense, current research efforts in the field of auto-
matic traffic control signals are directed to two main initiatives:
on the one hand, automatic models of adaptation of signal
control are designed [4], [5], [6] to change cycle program

José Garcı́a-Nieto and Enrique Alba are with Dept. Lenguajes y Ciencias
de la Computación, University of Málaga, Campus de Teatinos, 29071,
Málaga-Spain. E-mail: jnieto@lcc.uma.es, eat@lcc.uma.es

Ana Carolina Olivera is with Departamento de Ciencias e Ingenierı́a
de la Computación, Universidad Nacional del Sur, Av. Alem 1253, 8000,
Bahı́a Blanca-Argentina. E-mail: aco@cs.uns.edu.ar

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

duration throughout the day as vehicles in queues demand
these changes. The operation of these kinds of tools is directly
related to the sensor system and real time computation of
the traffic flow. Although these tools successfully perform in
several cities around the world [4], [7], the real management
of the traffic network has a high operational cost and the “real
world” generally tends to repeat traffic flow patterns (rush
hour, holidays, etc.).

On the other hand, modern simulators [8], [9], [10] are
very useful for helping in traffic management, since they
provide researchers with an immediate and continuous source
of information about traffic flow. In addition, economical
issues are also taken into account in this kind of research,
since the use of real traffic tests implies the necessity of
additional staff and sensoring platforms. Many studies in
traffic flow simulation have been performed representing both
macroscopic [1] and microscopic [2], [11] traffic views. In
the last few years, efforts have concentrated on combining
an accurate microscopic modeling of traffic flow [2], [9]
and the programming of suitable traffic light cycles [12].
Accordingly, the use of intelligent methods has proven to
be useful for the optimization of programming traffic light
cycles [2], [13]. However, in general, authors have addressed
specific urban areas with few intersections and a small number
of traffic lights (from 1 to 4 intersections with around 2 traffic
lights controlling each intersection) [14], and most of them
consist of ad-hoc algorithms designed for only one specific
instance [2], [13]. The use of intelligent techniques for large
and heterogeneous study cases is still an open issue [15]. It is
a complex problem since the greater the number of adjacent
intersections, the greater the interaction between the traffic
lights (which increases the complexity of the problem by
introducing a high epistasis between variables).

All this has motivated us to propose a technique based on a
Particle Swarm Optimizer [16], [17], [18] that will be shown
to find successful traffic light cycle programs coupled with
SUMO (Simulator of Urban MObility) [19], a well-known
microscopic traffic simulator 1. Several features led us to use
PSO instead of other optimization techniques: first, the PSO is
a well-known algorithm shown to perform a fast convergence
to suitable solutions [20]. This is a highly desirable property
for an optimal traffic light cycle program, where new immedi-
ate traffic light schedules could be required to address updated
events in traffic scenarios. Second, the canonical PSO is easy
to implement, and requires few tuning parameters [17], [20].

1All the material generated in the experimentation: software, scenario
instances, scripts, cycle programs, traces, figures, etc., is available online in
http//neo.lcc.uma.es/problems/traffic-lights.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 2

Third, PSO is a kind of Swarm Intelligence algorithm that
can inform us of future issues when dealing with this problem
using independent agents in the system for online adaptation
(a future line of research for us).

The task of SUMO is to evaluate cycle programs (codified as
vectors provided by our PSO) of the traffic lights that control
the scenario instance. In the present study, we have tested our
proposal with two large and heterogeneous metropolitan areas
with hundreds of traffic lights located in the cities of Bahı́a
Blanca in Argentina, and Málaga in Spain. Concretely, our
main contributions are:

• We propose a new PSO approach capable of obtaining
efficient cycle programs for realistic urban scenarios. In
this new approach, the initialization method, the solution
encoding, the fitness function, and the velocity calculation
have been adapted to deal with optimal traffic light cycle
programs.

• The behavior of our proposal is analyzed under different
conditions of road network dimension and traffic density.
An analysis of the computational effort is also carried
out.

• In comparison with predefined cycle programs close to
real ones, our PSO obtains quantitative improvements in
terms of the two main objectives: the number of vehicles
that reach their destination and the overall journey time.

• Further comparisons against other optimization methods
(Random Search, Differential Evolution, and Standard
PSO 2011) will justify the use of our PSO for the problem
in question.

The remainder of this paper is organized as follows. In Sec-
tion II, a review of related work in the literature is presented.
In Section III, basic concepts of PSO and SUMO are given. In
Section IV, our optimization technique proposal is described.
Sections V and VI present the experimental methodology used
and the results obtained, respectively. Conclusions and future
work are given in Section VII.

II. LITERATURE OVERVIEW

There are different approaches in the state of the art that
deal with traffic light staging problems. Adaptive traffic lights
consider the “real” time impact of the traffic cycle duration on
the traffic network. Much effort has been made in this sense,
mainly concerning the use of detectors to sense the traffic and
to change the duration of cycle programs, taking into account
the actual flow of vehicles [4], [5], [6].

In this regard, several research studies employ a fuzzy part
inside the intersection system control generally combined with
other computational intelligence technique or heuristic [21].
In [22], the authors adopted a type-2 fuzzy set and designed
a distributed multi-agent traffic-responsive signal control sys-
tem. This system was tested on virtual road networks with
several scenarios. Results showed superior performance of
the approach in handling unplanned and planned incidents
and obstructions. An adaptive traffic control model of signal
lights is introduced by Bretherton et. al [4] consisting on the
SCOOT (Split Cycle Offset Optimisation Technique) platform.
SCOOT is an adaptive system for managing and controlling

traffic signals in urban areas, that responds automatically
to fluctuations in traffic flow through the use of on-street
detectors embedded in the road. This tool is especially useful
for areas where traffic patterns are unpredictable.

Another adaptive method is UTOPIA (Urban Traffic Opti-
misation by Integrated Automation) / SPOT (System for Prior-
ity and Optimisation of Traffic) designed and developed by the
FIAT Research Centre, ITAL TEL and MIZAR Automazione
(Turing) [23]. This system aims to improve the flow in traffic
for both, private and public transport vehicles. UTOPIA/SPOT
is a distributed real-time traffic-control system, especially
suitable for countries with advanced public transport services
(tested in Italy, Norway, Netherlands, Sweden, Finland, and
Denmark). This system uses a hierarchical-decentralized con-
trol strategy, involving intelligent local controllers to commu-
nicate with other signal controllers as well as with a central
computer.

Different authors have analyzed the use of fuzzy logic
controllers at intersections of streets for adaptive tools. In an
early study, Lim et al. [10] proposed a fuzzy logic controller
for real-time local optimization of only one intersection. Later,
in Karakuzu et al. [9] a traffic simulator using fuzzy logic
agents was developed for traffic lights at isolated junctions.
The results showed a minimization of the queue of vehicles on
the roads, however their implementation is very compromised
from an economic point of view, and the system’s deployment
required a great inversion. Other authors applying fuzzy logic
were Rahman and Ratrout [24], with satisfactory results in a
segment of the King Abdullah road in Saudi Arabia. The sce-
nario shown in that paper was composed of four intersections
with two traffic lights at each one. An exhaustive review of
automatic adaptive systems can be found in [5] and [6].

According to the way in which the traffic flow is modeled in
stochastic traffic flow methods, we can differentiate between
macroscopic and microscopic models [11]. Concerning the op-
timization strategy, we can find publications in which different
resolution techniques have been applied: mathematic models,
fuzzy logic approaches, and biologically inspired optimizers.

Several authors employed mathematical techniques for tack-
ling this kind of problem. For example, McCrea et al. [1]
combined continuous calculus based models and knowledge-
based models in order to describe the traffic flow in road
networks. Tolba et al. [11] introduced a Petri Net based model
to represent the traffic flow, from a macroscopic viewpoint
(where only global variables are observed) and from a mi-
croscopic one (where the individual trajectories of vehicles
are considered). More recently, Lammer and Helbing [25]
designed a multi-agent traffic model inspired by the self-
organizing fluctuations of vehicles in traffic jams. They used
a simplistic simulation model considering only one direction
of movement at a time.

In Hawage et al. [8], the authors proposed a special-purpose
simulation tool for optimizing traffic signal light timing. This
tool provided complete traffic information, although it was
limited to working at only four intersections.

Recently, biologically inspired techniques such as Cellular
Automata (CA) and Neural Networks (NN) have been used for
tackling the underlying combinatorial optimization problems,

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 3

and in particular for solving traffic light staging problems.
Brockfeld et al. [14] applied a CA model in which the city
network was implemented as a simple square with a few
normal streets and four intersections. Spall and Chin [3]
presented a Neural Network for the configuration of control
parameters in traffic lights. In this approach, the vehicles
needed an additional module for the data management.

Related to the biologically inspired techniques, metaheuris-
tic algorithms [26] have become very popular for solving
traffic light staging problems. A first attempt was made by
Rouphail et al. [27], where a Genetic Algorithm (GA) was
coupled with the CORSIM [28] microsimulator for the timing
optimization of nine intersections in the city of Chicago
(USA). The results, in terms of total queue size, were limited
due to the delayed convergence behavior of the GA.

In Teklu et al. [29], the impact of signal time changes with
respect to the drivers was analyzed. More precisely, the authors
considered the problem of determining optimum signal timings
while anticipating the responses of drivers as an instance of the
network design problem (NDP). An NDP aims to improve an
existing network so that a total network performance measure
is optimized with respect to some discrete or continuous
design variables, while considering the user’s reaction to the
improvement. In order to solve the traffic equilibrium problem
they used the SATURN (Simulation-Assignment Modeling
package, [30]). The authors applied a macroscopic point of
view of the traffic flow and employed a GA to compute
the signal setting NDP (cycle time, offset, and green light
times for stages). It is important to note that, the chromosome
(grey-code) encoding was done differently for each particular
instance being studied. The algorithm was tested with the
city of Chester in the UK, mainly addressing a complete GA
parameter analysis, not really the traffic problem.

In Sánchez et al. [2], following the model proposed in
Brockfeld et al. [14], the authors designed a GA with the
objective of optimizing the cycle programming of traffic lights.
This GA was tested in a commercial area in the city of
Santa Cruz de Tenerife (Spain). In this work, they considered
that every intersection had independent cycles. For individual
encoding, they used a similar binary (grey-code) representation
to the one used in Teklu et al. [29]. The computation of valid
states was done before the algorithm began, and it strongly
depended on the scenario instance tackled.

Turky et al. [31] used a GA to improve the performance
of traffic lights and pedestrian crossing control in a single
four way two lane intersection. The algorithm solved the
limitations of traditional fixed-time control for passing vehicles
and pedestrians, and it employed a dynamic control system to
monitor two sets of parameters.

A few publications related to the application of PSO for
the schedule of traffic lights also exist. One of the most
representative was developed by Chen and Xu [32], where they
applied a PSO for training a fuzzy logic controller located at
each intersection by determining the effective time of green
for each phase of the traffic lights. A very simple network
with two basic junctions was used for testing this PSO.

Recently, Peng et al. [33] presented a PSO with isolation
niches for the scheduling of traffic lights. In this approach,

a custom microscopic view of the traffic flow was proposed
to evaluate the solutions. A purely academic instance with a
restrictive one-way road with two intersections was used to
test the PSO. Nevertheless, this study focused on the capacity
of isolation niches to maintain the diversity of the swarm, and
was not particularly concerned with the problem itself.

Finally, Kachroudi and Bhouri [34] applied a multiobjective
version of PSO for optimizing cycle programs using a predic-
tive model control based on a public transport progression
model. In this work, private and public vehicles’ models are
used to carry out simulations on a virtual urban road network
made up of 16 intersections intersections and 51 links. Each
intersection is then controlled by a traffic light with the same
cycle time of 80 seconds.

All these approaches have focused on different aspects of
the traffic light programming. However, three common features
(limitations) can be found in all of them:

• They tackle limited vehicular networks with few traffic
lights and a small number of other traffic elements (roads,
intersections, directions, etc.). In contrast, our PSO can
find optimized cycle programs for large scenarios with
hundreds of traffic lights, vehicles, and other elements.

• Almost all of them have been designed for only one
specific scenario. Some of them study the influence of
traffic density. Our approach can be easily adapted to
represent different scenario topologies. In this present
study, we tackle two real scenarios with different combi-
nations of traffic lights and vehicles, fixing a number of
18 instances.

• They are not compared against other techniques. Our
PSO is compared here against four different approaches:
a Random Search algorithm, a Differential Evolution, the
Standard PSO 2011, and the cycle program generator
provided by SUMO.

III. BASIC SOLVER AND SIMULATOR

In this section, the basic concepts of PSO (the core of our
solver technique) and the SUMO simulator (involved in the
evaluation of solutions) are introduced.

A. Particle Swarm Optimization

Particle Swarm Optimization [17], [18] is a population-
based metaheuristic inspired by the social behavior of birds
within a flock, and was initially designed for continuous
optimization problems. In PSO, each potential solution to the
problem is called a particle position and the population of
particles is called the swarm. In this algorithm, each particle
position xi is updated each iteration g by means of Equation 1.

xi
g+1 = xi

g + vig+1 (1)

where term vig+1 is the velocity of the particle, given by the
following equation:

vig+1 = w ·vig+U [0, φ1] · (pig−xi
g)+U [0, φ2] · (bg−xi

g) (2)

In this formula, pig is the best solution that the particle i
has seen so far, bg is the global best particle (also known

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 4

Algorithm 1 Pseudocode of PSO
1: initializeSwarm()
2: computeLeader(b)
3: while g < maxIterations do
4: for each particle xi

g do
5: vig+1=updateVelocity(w, vig, xg, φ1, pg, φ2, bg)
6: xi

g+1=updatePosition(xi
g, v

i
g+1)

7: evaluate(xi
g+1)

8: pig+1=update(pig)
9: end for

10: bg+1=updateLeader(bg)
11: end while

as the leader) that the entire swarm has ever created, and
w is the inertia weight of the particle (it controls the trade-
off between exploration and exploitation). Finally, φ1 and φ2

are the acceleration coefficients that control the relative effect
of the personal and global best particles, while U [0, φk] is a
uniform random value in [0, φk], k ∈ 1, 2 which is sampled
anew for each component of the velocity vector and for every
particle and iteration.

Algorithm 1 describes the pseudo-code of PSO. The al-
gorithm starts by initializing the swarm (Line 1), which
includes both the positions and velocities of the particles. The
corresponding pi of each particle is randomly initialized, and
the leader b is computed as the best particle of the swarm
(Line 2). Then, for a maximum number of iterations, each
particle flies through the search space updating its velocity
and position (Lines 5 and 6), it is then evaluated (Line 7), and
its personal best position pi is also updated (Line 8). At the
end of each iteration, the leader b is also updated.

The Particle Swarm Optimization algorithm is currently
employed in a multitude of engineering problems [18], [35],
[36], [37] showing a successful performance, even when
compared with other modern optimization techniques [38],
[39]. Nevertheless, the use of PSO for the optimal cycle
program and other problems related to the traffic light staging
is still limited.

B. SUMO: Simulator of Urban MObility

SUMO (Simulator of Urban MObility) [19], is a well-known
traffic simulator that provides an open source, highly portable,
and microscopic road traffic simulation tool designed to handle
large road scenarios. SUMO requires several input files that
contain information about the traffic and the streets to be simu-
lated. A network (.net.xml file) holds the information about the
structure of the map: nodes, edges, and connections between
them. The network can be imported from popular digital maps
such as OpenStreetMap [40] and converted to a valid SUMO
network by means of a series of scripts provided in the SUMO
package. We have chosen OpenStreetMap (OSM) because it
provides both, geographic data and traffic light information.

A journey is a vehicle movement from one location to
another defined by: the starting edge (street), the destination
edge, and the departure time. A route is an extended journey,
meaning that, a route definition contains not only the first and

the last edges, but also all the edges the vehicle will pass
through. These routes are stored in a demand file (.rou.xml
file) either through a route generator given by SUMO, existing
routes imported from other software, or by hand. Additional
files (.add.xml) can be added to SUMO information about
the map or about the traffic lights. SUMO allows replacing
and editing information on the cycles of traffic lights by
manipulating a file with .add.xml extension. It is important to
note that SUMO by default, provides the valid combination of
states that the traffic light controller can go through inside the
map specification file (.net.xml file) [19], and an approximation
of interval times for these states [41]. This means that SUMO
already incorporates a solver algorithm for the cycle program
of traffic lights based on greedy and human knowledge. That
solver will be called SCPG (SUMO Cycle Program Generator)
in this article and it will be used in a comparison against our
PSO.

The output of a SUMO simulation is registered in a journey
information file (.tripinfo.xml) that contains information about
each vehicle’s departure time, the time the vehicle waited to
start at (offset), the time the vehicle arrived, the duration of its
journey, and the number of steps in which the vehicle speed
was below 0.1m/s (temporal stops in driving). This information
is used to evaluate traffic lights cycle programs.

C. SUMO Data Structure

As previously mentioned, the main objective of our ap-
proach is to find optimized cycle programs (duration of color
states of traffic lights) for all the traffic lights located in a
given urban area. At the same time, these programs have to
coordinate traffic lights in adjacent intersections aiming to
improve the global flow of vehicles circulating within the
established routes. For this reason, we have focused on a
microscopic view of the management of traffic agents but,
at the same time, we want to evaluate the behavior of all the
vehicles in the complete urban scenario during a given time
span. The evaluation of the resulting traffic light programs is
carried out by means of automatic simulations. For this task
we use SUMO.

The simulation structure of SUMO comprises a series of
elements that we have taken into account when developing
our traffic scenarios. A SUMO instance for a urban traffic
scenario is basically composed of: intersections, traffic lights,
roads, and vehicles moving along their previously specified
routes. The traffic lights are located at intersections (junctions
in SUMO), and control the flow of vehicles by following their
programs of color states and cycle durations. In this context,
all traffic lights located at the same intersection are governed
by a common program, since they have to be necessarily
synchronized for traffic safety. In addition, for all the traffic
lights in an intersection, the combination of color states during
a cycle period is always kept valid [41] and must follow the
specific traffic rules of intersections, in order to avoid vehicle
collisions and accidents. For example, two traffic lights located
at the same intersection but controlling conflicting movements
must not be green at the same time instance. In this regard,
as illustrated in Fig. 1, SUMO provides a complete set of

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 5

<additional>

...

<tl-logic id=“i-1" type="static“ programID="1" offset="0">

…

<tl-logic id=“i" type="static“ programID="1" offset="0">

<phase duration="40" state="GGr r"/>

<phase duration="5" state="yyrr"/>

<phase duration="40" state="rrGG"/>

<phase duration="10" state="rryy"/>

</tl-logic>

<tl-logic id=“i+1" type="static“ programID="1" offset="0">

<phase duration=“36" state="GGr rGG"/>

<phase duration=“6" state="yyrrGG"/>

<phase duration=“22" state="rrGGyy"/>

…

...

</additional>

Instance.add.xml

… … … … … … 40 5 40 10 36 6 22 … … … … … … …

tl-logic id=“i-1”

tl-logic id=“i”

tl-logic id=“i+1”

SUMO Instance

map view

Solution Encoding:

given a SUMO Instance, all

the tl-logics with their phase

durations are mapped into

each solution

tl-logic id=“i”

phase duration=“5”

Solution: a particle position

for the PSO algorithm

green

green

red

red

Fig. 1. An intersection with four traffic lights selected from the SUMO instance map. Phase durations (cycles) are specified in the Instance.add.xml file and
encoded inside a PSO tentative solution

valid combinations of color states for each intersection, which
can not be modified during the optimization process. This
avoids invalid combinations of color states and restricts the
optimization approach to work only with feasible states.

Fig. 1 shows an illustration of the main elements
constituting the traffic light cycle programs in SUMO.
This program staging is implemented in an XML file
(instance.add.xml) that SUMO uses to load cycles and
states, prior to the simulation process. In this file, each
tl-logic element corresponds to an intersection. Following
the model designed by Krajzewicz et al. [19], a tl-logic
cyclically comprises a sequence of phases during the simula-
tion time. Each phase indicates the corresponding color states
(attribute state) of all the traffic lights at the intersection,
and the duration of this state (attribute duration).

An example of this mechanism can be observed in Fig. 1
where the tl-logic with id="i", that corresponds to an
intersection of the SUMO instance, contains four phases with
durations of 40, 5, 40, and 10 seconds (simulation steps). In
these phases, the states have four colors, each one of them
corresponding to one of the four traffic lights located at the
intersection being studied. These states are the valid ones
generated by SUMO adhering to real traffic rules. In this
instance, the first phase contains the state GGrr meaning that
two traffic lights are in green (G), and the other two are in red
(r) for 40 seconds. The following phase changes the state of
the four traffic lights to yyrr (y is amber) for 5 seconds, and so
on. The last phase is followed by the first one, and this cycle
is repeated throughout the simulation. All the tl-logics in
the complete SUMO instance perform their own programming

cycles of phases at the same time, thereby constituting the
global staging of the traffic lights. Therefore, programming
cycles are the main focus of this work, since we are interested
in optimizing the combination of phase durations of all traffic
lights (at all intersections) with the aim to improve the global
flow of vehicles circulating in a urban scenario instance.

A final indication along these lines concerns the behavior
of the vehicles involved in the SUMO instance scenario, that
depends on both road directions and speed. SUMO employs
a space-discrete extended model as introduced by Krauß et
al. [42]. In this model, the streets are divided into cells and
the vehicles circulating through the streets go from one cell to
another, if allowed. The speed of each vehicle depends on its
distance from the vehicle in front of it, with a preestablished
maximum speed typical of urban areas (50 km/h in our study).

IV. PSO FOR TRAFFIC LIGHT SCHEDULING

This section describes our optimization solver proposed for
the optimal cycle programs of traffic lights. It describes the
solution encoding, the fitness function, and finally the global
optimization procedure.

A. Solution Encoding

Following the structure of programming cycles adopted by
SUMO, the global staging of traffic lights has been easily
encoded by means of a vector of integers, where each element
represents a phase duration of one state of the traffic lights
involved in a given intersection. This way, as shown in
Fig. 1, all the phase durations in the tl-logic elements are
successively placed in the solution vector, thereby mapping the

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 6

complete staging of traffic lights in a simple array of integers.
The reason for working with this representation is twofold:
first, the SUMO simulator itself works with integer values
to represent the discrete sequence of time steps (seconds)
that make up the complete simulation procedure. Second, real
traffic lights also employ integer values to specify the duration
of phases in their internal programs.

Despite its simplicity, this solution representation allows our
PSO to take into account the interdependency of variables,
not only between phase durations in a common tl-logic
element, but also between traffic lights at adjacent intersec-
tions. In this regard, PSO is known to successfully perform in
non-separable problems [20], [43], which is the case in this
approach. This last fact is an interesting feature since solutions
with coordinated traffic lights (located in different but close
intersections) could then be promoted by our optimization
algorithm.

B. Fitness Function

Each solution vector (s), codifying the cycle program of the
traffic light programs, is evaluated considering the information
obtained from the events happening during the simulation by
means of the following equation:

F(s) =

(
V∑

v=0
jv(s)

)
+

(
V+C∑
v=0

wv(s)

)
+ (C(s) · St)

V 2(s) + Cr
(3)

The main objective is to maximize the number of vehicles
that reach their destination (V) during the simulation time
(St). Namely, minimizing the number of vehicles that do
not reach their destination and remain circulating (C) after
the simulation time is reached. A secondary but important
objective is to minimize the overall duration of the vehicle’s
journeys (jv). It is clear that the overall duration concerns
the journey time of the vehicles that reach their destination
during the simulation process. To the contrary, vehicles with
incomplete journeys (C) consume all the simulation time St
and then, an additional penalization is induced by multiplying
these two factors. It is worth mentioning that the terms in
Equation 3 are in the range of values [1e + 0 · · · 5e + 2] and
therefore, additional weighting values were not considered in
this formulation. Only the number of vehicles that arrive at
their destinations is squared (V 2) in order to prioritize it over
the other terms and factors.

An important factor concerns the state of the traffic lights
in each precise moment, since it influences the time that each
vehicle must stop and wait (wv), with the consequent delay in
its own journey time, e.g., a prolonged state of traffic lights in
red could collapse the intersection where it is, and even close
other intersections. However, a prolonged state in green could
improve the traffic flow in a given area or direction, but also
make the traffic flow of other areas and directions worse. In
this respect, a balanced number of color lights in the phase
duration of the states should promote those states with more
traffic lights in green located on streets with a high number of
vehicles circulating, and traffic lights in red located on streets

with a low number of vehicles moving. The ratio of colors
in each phase state of all the tl-logic tl (intersections) can be
formulated as follows:

Cr =
tl∑

k=0

ph∑
h=0

sk,h ·
(
Gk,h

Rk,h

)
, (4)

where Gk,h is the number of traffic lights in green (G), and
Rk,h is number of traffic lights in red in the phase state h
(with duration sk,h) and in the tl-logic k. The minimum value
of rk,h is 1 in order to avoid division by 0.

C. Optimization Strategy

Our optimization strategy is composed of basically two
main parts: an optimization algorithm and a simulation pro-
cedure. The optimization part is carried out by means of
the Particle Swarm Optimization algorithm which has been
specially adapted to find optimal (or quasi-optimal) cycle
programs for traffic lights. It works as follows:

1) The initial swarm is composed of a number of particles
(solutions) initialized with a set of random values rep-
resenting the phase durations. These values are within
the time interval [5, 60] ∈ Z+, and constitute the range
of possible time spans (in seconds) a traffic light can
be kept on a signal color (only green or red, the time
for amber is a constant value). We have specified this
interval by following several examples of real traffic
light programs provided by the City Council of Málaga
(Spain).

2) The velocity calculation has been softly modified in
order to deal with integer combinatorial values by
truncating (with floor ⌊.⌋ and ceiling ⌈.⌉ functions) all
elements (j) of the new velocity vector as Equation 5
shows:

vig+1(j) =

{
⌊vi

g+ 1
2

(j)⌋ if U(0, 1)i(j) ≤ λ

⌈vi
g+ 1

2

(j)⌉ otherwise
(5)

In this formula, vi
g+ 1

2

is the intermediate velocity value
obtained from Equation 11. The parameter λ determines
the probability of performing ceil or floor functions in
the velocity calculation (λ = 0.5 for this study).

3) The inertia weight changes linearly through the opti-
mization process by using the following equation:

ω = ωmax −
(ωmax − ωmin) · g

gtotal
(6)

This way, at the beginning of the process a high in-
ertia (ωmax) value is introduced, which decreases until
reaching its lowest value (ωmin). A high inertia value
provides the algorithm with exploration capability and a
low inertia promotes exploitation.

The simulation procedure is the way of assigning a quan-
titative quality value (fitness) to the solutions, thus leading to
optimized cycle programs tailored to a given urban scenario
instance. This procedure is carried out by means of the SUMO
traffic simulator, which accepts new cycle programs of traffic
lights and computes the required values in Equation 3.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 7

PSO
Optimization algorithm

providing solutions SUMO
Traffic simulator for

solution evaluation

SUMO Instance
Instance.add.xml

i

i-1

i+1
fitness(i)

Simulation output

trace processing

Fig. 2. Optimization strategy for the cycle program configuration of traffic
lights. The algorithm invokes SUMO for each solution evaluation

As Fig. 2 illustrates, when PSO generates a new solution it is
immediately used to update the cycle program. Then, SUMO
is started, to simulate the scenario instance with streets, di-
rections, obstacles, traffic lights, vehicles, speeds, routes, etc.,
under the new defined staging of the cycle programs. After the
simulation, SUMO returns the global information necessary
to compute the fitness function. Each solution evaluation
requires only one simulation procedure since vehicle routes in
SUMO are generated deterministically. In fact, as suggested
in [44], stochastic traffic simulators obtain similar results to
deterministic ones, the latter allowing huge computing savings.

In addition, we must note that each new cycle program is
statically loaded for each simulation procedure. Our aim here
is not to dynamically generate cycle programs during an iso-
lated simulation as is done in agent-based algorithms [45], but
rather to obtain optimized cycle programs for a given scenario
and timetable. In fact, what real traffic light schedulers actually
demand are constant cycle programs for specific areas and
for preestablished time periods (rush hours, nocturne periods,
etc.), which led us to take this approach.

V. METHODOLOGY OF OUR STUDY

This section presents the experimental framework followed
to assess the performance of our optimization solver. First,
we describe the traffic light scenario instances generated
specifically for this work. Later, the implementation details
and parameter settings are presented.

A. Instances

As we are interested in developing an optimization solver
capable of dealing with close-to-reality and generic urban
areas, we have generated two scenarios by extracting actual
information from real digital maps. These two scenarios cover
similar areas of approximately 0.42km2, and are physically
located in the cities of Bahı́a Blanca in Argentina, and Málaga
in Spain. The information used concerns: traffic rules, traffic
element locations, buildings, road directions, streets, inter-
sections, etc. Moreover, we have set the number of vehicles
circulating, as well as their speeds by following current speci-
fications available in the Mobility Delegation of the City Hall
of Málaga (http://movilidad.malaga.eu/). This information was
collected from sensorized points in certain streets obtaining a
measure of traffic density in several time intervals. In the case
of Bahı́a Blanca we could not obtain this information, and so
we considered the same number of vehicles as used for the
Málaga scenario.

TABLE I
RIVADAVIA SQUARE AND ALAMEDA AVENUE INSTANCES

City Number of Number of Number of
Instance Traffic Logics Traffic Lights vehicles

Rivadavia Square

100

(Bahı́a Blanca)

20 88 300
500
100

30 136 300
500
100

40 176 300
500

Alameda Avenue

100

(Málaga)

20 78 300
500
100

30 130 300
500
100

40 184 300
500

In Fig. 3, the selected areas of the two cities are shown
with their corresponding capture views of OpenStreetMap and
SUMO (as explained in Section III-B). Other driving styles
such as the Commonwealth/British one could be also tackled
with our approach, since we can easily capture areas of UK
cities with OpenStreetMap and export them to SUMO, to then
work with them by following their directions and traffic rules.
The specific features of the selected areas in the present paper
are as follows:

1) Rivadavia Square. Located in the city center of Bahı́a
Blanca (Fig. 3, top), it has 53 intersections between
streets that form a practically regular grid of blocks, as
is usual in American cities. Except for the main avenue,
almost all streets are one way in opposite directions
to each other. Therefore, the great majority of traffic
logics (junctions) in this scenario have four traffic lights:
straight on, left, and the two on the perpendicular street.

2) Alameda Avenue. The city center of Málaga (Fig. 3, bot-
tom), represents the common irregular structure of Euro-
pean cities, having different street widths and lengths. It
has 73 junctions between streets and roundabouts. Each
intersection includes from 4 to 16 traffic lights.

We have considered these two scenarios since they con-
stitute quite different urban areas with heterogeneous struc-
tures and traffic organization. Moreover, in order to obtain
generalized concluding results, the number of instances used
in the experimentation has been increased by incorporating
different numbers of vehicles moving through these streets,
and different numbers of traffic lights operating within the
selected areas. Table I contains the combination of traffic
logics (intersections) and vehicles used in each instance for
each scenario, constituting a total number of 18 instances: 9
for Rivadavia Square and 9 for Alameda Avenue. We have to
note that despite both scenarios having similar scales of traffic
logics (20, 30, and 40), the number of traffic lights is not the
same, as they contain different intersection shapes.

Concerning the number of vehicles, we have considered
three different scales of 100, 300, and 500 cars for each

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 8

Rivadavia Square

Bahía Blanca

Argentina

Alameda Avenue

Málaga

Spain

Google Map view OpenStreetMap view SUMO capture view

Fig. 3. Process of creation of real-world instances for study. Rivadavia Square (38◦43’03”S 62◦15’56”O) and Alameda Avenue (36◦43’60”N 4◦25’87”O)
instance views. After selecting our area of interest (Google map view), it is interpreted by means of the OpenStreetMap tool, and then exported to SUMO in
XML format

instance (as shown in Table I) circulating throughout the
simulation time. Each one of the vehicles takes its own
route from origin to destination, circulating with a maximum
speed of 50 km/h (typical in urban areas). The routes were
previously generated by following random paths and covering
as far as possible all network entries. Starting times of vehicles
were also randomly (uniform) specified throughout the entire
simulation. This means that, only a subset of the entire set of
vehicles is circulating through the network, at the same time.
The simulation time was fixed at 500 seconds (iterations of
microsimulation) for each instance. This time was determined
as a maximum time needed for a car to complete its route,
even if it must stop at all the traffic lights it comes to. When a
vehicle leaves the scenario network, it does not appear again.

B. Experimental Setup

We have used the implementation of the PSO algorithm
provided by MALLBA [46], a C++ based framework of meta-
heuristic algorithms for solving optimization problems. The
simulation phase is carried out by executing (in the evaluation
of particles) the traffic simulator SUMO release 0.12.0 for
Linux. The experiments were performed on computers at the
laboratories of the Department of Computer Science at the
University of Málaga (Spain). Most of them are equipped with
modern dual core processors, 1GB RAM, and Linux Debian
O.S. They operate under a Condor [47] middleware platform
that acts as a distributed task scheduler (each task dealing with
one independent run of PSO).

For each scenario instance we have carried out 30 inde-
pendent runs of our PSO. The swarm (population) size was

TABLE II
SIMULATION AND PSO PARAMETERS

Solver Phase Parameter Value
Simulation Time (steps) 500 sec.
Simulation Area 0.45 km2

Simulation Details Number of Vehicles 100/300/500
Vehicle Speed 0-50 km/h
N. of Traffic Logics 20/30/40
Max. N. of Evaluations 30,000
Swarm Size 100

Particle Size (N. Traffic Lights) 88/136/176
78/130/184

PSO Parameters Local Coefficient (φ1) 2.05
Social Coefficient (φ2) 2.05
Maximum Inertia (wmax) 0.5
Minimum Inertia (wmin) 0.1
Velocity Truncation Factor (λ) 0.5

set to 100 particles performing 300 iteration steps, resulting
in 30,000 solution evaluations (SUMO simulations) per run
and instance. The choice of these two parameters (swarm
size and maximum iteration steps) corresponds to previous
tuning experiments as described in Section VI-A. The particle
size directly depends on the number of traffic lights of each
instance (shown in Table I). The remaining parameters are
summarized in Table II. These parameters were set after
preliminary executions of PSO with the smallest instances of
Rivadavia Square and Alameda Avenue (with 20 traffic logics
and 100 vehicles). Specific parameters of PSO were selected
as recommended in the studies about the convergence behavior
of this algorithm in [20] and [48]. In accordance with these,
acceleration coefficients φ1 and φ2 were set to 2.05 and inertia

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 9

Algorithm 2 Pseudocode of RANDOM
1: initializeSolution(x)
2: i← 0
3: while i < Max Number of Evaluations do
4: generate(xi) //new solution
5: if f(x) ≥ f(xi) then
6: x← xi

7: end if
8: i← i+ 1
9: end while

weight (ω) decreases linearly along with the increment of the
iteration steps from 0.5 to 0.1.

Additionally, we have implemented three algorithms also
in the scope of the MALLBA [46] library, in order to es-
tablish comparisons against our PSO. These three algorithms
are a Random Search (RANDOM), a Differential Evolution
(DE) [49], and the Standard PSO 2011 (SPSO2011) [16].
Thus, performing the same experimentation procedure, we
expect to obtain some insights into the power of our proposal
(how much intelligent it is) regarding a technique without any
heuristic information in its operation (RANDOM), and with re-
gards to two other difference-vector based metaheuristics: DE,
and SPSO2011. In the case of SPSO2011, it is the last PSO
proposal in [16] and uses a different quantisation/discretization
method to our PSO. The maximum number of evaluations was
set to 30, 000, as for PSO.

1) Random Search: The pseudocode of the Random Search
algorithm is shown in Algorithm 2. It basically performs by
keeping just the best solution found so far in the optimization
procedure.

2) Differential Evolution: In DE, the task of generating new
individuals is performed by differential operators such as the
differential mutation and crossover. A mutant individual wi

g+1

is generated by the following equation (7):

wi
g+1 = vr1g + F · (vr2g − vr3g) (7)

where r1, r2, r3 ∈ {1, 2, . . . , i− 1, i+ 1, . . . , N} are random
mutually different integers, which are also different from the
index i. The mutation constant F > 0 stands for the
amplification of the difference between the individuals vr2g and
vr3g , and it avoids the stagnation of the search process.

In order to further increase the diversity in the population,
each mutated individual undergoes a crossover operation with
the target individual vig , by means of which a trial individual
ui
g+1 is generated. A randomly chosen position is taken from

the mutant individual to prevent the trial individual replicating
the target individual.

ui
g+1(j) =

{
wi

g+1(j) if r(j) ≤ Cr or j = jr,

vig(j) otherwise.
(8)

As shown in Equation 8, the crossover operator randomly
chooses a uniformly distributed integer value jr and a random
real number r ∈ (0, 1), also uniformly distributed for each
component j of the trial individual ui

g+1. Then, the crossover
probability Cr, and r are compared just like j and jr. If r is
lower or equal than Cr (or j is equal to jr) then we select

Algorithm 3 Pseudocode of DE
1: initializePopulation()
2: while g < maxIterations do
3: for each individual vig do
4: choose mutually different(r1, r2, r3)
5: wi

g+1 = mutation(vr1g , vr2g , vr3g , F) //Eq. 7
6: ui

g+1 = crossover(vig, w
i
g+1, cp) //Eq. 8

7: evaluate(ui
g+1)

8: vig+1 = selection(vig, u
i
g+1) //Eq. 9

9: end for
10: end while

the jth element of the mutant individual to be allocated in the
jth element of the trial individual ui

g+1. Otherwise, the jth

element of the target individual vig becomes the jth element
of the trial individual. For this work, F and Cr have been set
to 0.5 and 0.9, respectively, as initially recommended in [49].

Finally, a selection operator decides on the acceptance of
the trial individual for the next generation if and only if it
yields a reduction (assuming minimization) in the value of the
fitness function f(), as shown by the following Equation (9):

vig+1 =

{
ui
g+1 if f(ui

g+1) ≤ f(vig),

vig otherwise.
(9)

Algorithm 3 shows the pseudocode of DE. After initializing
the population, the individuals evolve during a number of
iterations (maxIterations). Each individual is then mutated
(Line 5) and recombined (Line 6). The new individual is
selected (or not) following the operation of Equation 9 (Lines 7
and 8).

In order to make a fair comparison, we also adapted the
DE for dealing with integer values in the solution codification,
that is, using the same mechanism of ceiling/flooring (⌈.⌉/⌊.⌋)
functions as done in the velocity vector calculation of PSO
(Equation 5).

wi
g+1(j) =

{
⌊wi

g+ 1
2

(j)⌋ if U(0, 1)i(j) ≤ λ

⌈wi
g+ 1

2

(j)⌉ otherwise
(10)

In the case of DE, the truncation method is applied to the
mutant vector wi

g+1, as specified in Equation 10, also with
λ = 0.5.

3) Standard PSO 2011: We have selected the Standard
PSO 2011 (to compare with our proposal) from all the
existing versions of PSO in the literature, since it includes
a series of new advances proposed by prominent researchers
in this area [16]. Some of these interesting advances consist
of: rotation invariance method, new particles generation in
hypersphere, Gaussian random number generator, and Mid
Tread quantisation/discretization method.

The main feature of the Standard PSO 2011 consists in
the velocity vector (vig+1) calculation which is given by
Equation 11.

vig+1 = w · vig +Grig − xi
g +HS(Gr, ∥ Gr − x⃗g ∥) (11)

with

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 10

Algorithm 4 Pseudocode of Standard PSO 2011
1: initializeSwarm()
2: while g < maxIterations do
3: for each particle xi

g do
4: bng =bestNeighbourSelection(xi

g, n)
5: vig+1=updateVelocity(w, vig, xg, φ1, pg, φ2, b

n
g)

6: xi
g+1=Q(updatePosition(xi

g, v
i
g+1))

7: evaluate(xi
g+1)

8: pig+1=update(pig)
9: end for

10: end while

Grig =
xi
g + p′ig + l′ig

3
(12)

p′ig = xi
g + c · (pig − xi

g) (13)

l′ig = xi
g + c · (lig − xi

g) (14)

In these formulas, pig is the best solution that the particle
i has seen so far, lig is the best particle of a neighborhood
of k other particles (also known as the social best) randomly
(uniform) selected from the swarm, and w is the inertia weight
of the particle (it controls the trade-off between exploration
and exploitation). The acceleration coefficient c > 1 is a
normal (Gaussian) random value with µ = 1/2 and ρ = 1/12.
This coefficient is sampled anew for each component of the
velocity vector. Finally, HS [16] is a distinctive element of the
Standard PSO 2011 with regards to the previous ones. HS is
basically a random number generator within a Hypersphere
space, with Gr as center of gravity. That is, Gr is calculated
as the equidistant point to p′g, l′g , and xg .

Since the optimal cycle programming requires solutions en-
coded with a vector of integers (representing phase durations),
we have used the quantisation method provided in the standard
specification of PSO 2011 [16]. This quantisation is applied
to each new generated particle (in Equation 1), and transforms
the continuous values of particles to discrete ones. It consists
of a Mid-Thread uniform quantiser method as specified in
Equation 15. The quantum step is set here to ∆ = 1.

Q(x) = ∆ · ⌊x/∆+ 0.5⌋ (15)

Algorithm 4 describes the pseudo-code of the Standard PSO
2011. The algorithm starts by initializing the swarm (Line 1).
The corresponding elements of each particle (solutions) are
initialized with random values representing the phase dura-
tions. These values are within the time interval [5, 60] ∈ Z+,
and constitute the range of possible time spans (in seconds).
Then, for a maximum number of iterations, each particle
moves through the search space updating its velocity and
position (Lines 4, 5, and 6), it is then evaluated (Line 7), and
its personal best position pi is also updated (Line 8). Finally,
the best particle found so far is returned.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 50 100 150 200 250 300 350 400 450 500

Max Iter=300Max Iter=100

B
e

s
t
F

it
n

e
s
s

Number of Iterations

Alameda with 30 Traffic Logics - 30 Vehicles

Swarm Size= 50 Max Iter=100
Swarm Size=100 Max Iter=100
Swarm Size=200 Max Iter=100
Swarm Size= 50 Max Iter=300
Swarm Size=100 Max Iter=300
Swarm Size=200 Max Iter=300
Swarm Size= 50 Max Iter=500
Swarm Size=100 Max Iter=500
Swarm Size=200 Max Iter=500

Fig. 4. Traces of progress of the best fitness values (Median out of
30 independent runs) of PSO tackling with the Alameda Avenue instance
with 30 traffic logics and 300 vehicles. The traces correspond to different
configurations of swarm sizes (with 50, 100, and 200 particles) and maximum
number of iterations (100, 300, and 500) as stop condition

4) Deterministic Cycle Programs Generator: Finally, as
previously commented on in Section III-B, SUMO provides a
deterministic algorithm for generating cycle programs (SCPG,
SUMO Cycle Programs Generator). Then we also compare the
cycle programs obtained by our PSO against these, obtained
by SUMO. This last algorithm basically consists of assigning
the phase durations of the traffic logics with fresh values in
the range of [6,31], according to three factors:

1) the proportion of green states in the phases,
2) the number of incoming lanes entering the intersection,
3) the braking time of the vehicles approaching the traffic

lights.
Further information on this algorithm can be found in [19].

VI. ANALYSIS AND DISCUSSION OF RESULTS

The results and the analyses of them are presented in
this section from several viewpoints. First, we study the
performance of our optimization solver in comparison with
other techniques, and its ability to report successful cycle
programs for the different instances. After this, we present
a brief report on the computational effort required for the
experiments. Later, we focus on the problem domain, and
we examine representative reported solutions with the aim of
justifying the use of our PSO with a potentially truly positive
impact on traffic flow.

A. Performance Analysis of Algorithms

Before any comparison takes place, we first wish to show a
representative view of the internal behavior of our PSO under
different conditions of swarm size and maximum number of
iterations. We used this investigation as a basis for setting
the most convenient values in the following experimentation.
So, Fig. 4 plots the traces of progress of the best fitness
values (Median run out of 30 independent executions) of PSO
tackling with the Alameda Avenue instance with 30 traffic
logics and 300 vehicles. These traces correspond to different
configurations of swarm size (SS) with: 50, 100, and 200

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 11

0 50 100 150 200 250 300

1.
0

1.
5

2.
0

2.
5

40 Traffic Logics − 500 Vehicles

Number of Iterations

B
es

t F
itn

es
s

Fig. 5. Trace progress of the best fitness values in 30 independent runs of
PSO tackling with the Rivadavia Square instance with 40 traffic logics and
500 vehicles

Fitness

1
2

3

4

5

6

7

N
um

be
r
of

 It
er

at
io

ns

50

100

150

200

250

300

A
b
s
o
lu

te
F

re
q
u
e
n
c
y 0

20

40

60

80

100

Fitness Histogram Evolution

Fig. 6. Swarm fitness histogram through 300 iterations in the optimization
of the Rivadavia Square scenario with 40 traffic logics and 500 vehicles

particles, and maximum number of iterations (MaxIt) with:
100, 300, and 500 steps to the stop condition. It is worth
nothing that the number of iteration steps directly influences
on the inertia weigh (in the velocity calculation of PSO),
and hence, this parameter should be studied separately in
combination with all the different values of the swarm size.

As shown in Fig. 4, for almost all the combinations (of SS
and MaxIt) our PSO got to converge on the interval of 100 and
300 iterations, showing the combination of 100 particles in the
swarm and 300 iteration steps the best performance results. In
fact, for this configuration the fitness clearly improved after
100 iterations to finally converge just before 200 iteration
steps (20,000 function evaluations). We have to mention that
other configurations of PSO with SS=200 MaxIt=500 also
obtained such successful results although it required a higher
computational cost with more than 50,000 function evaluations
(SS=100 and MaxIt=500), in contrast with 30,000 ones in the
case of SS=100 and MaxIt=300. Therefore, we opted to set
100 particles in the swarm and a maximum of 300 iteration
steps in our experimentation.

From another viewpoint, Fig. 5 plots the trace progress of
the best fitness values obtained in 30 independent runs of PSO
when solving the Rivadavia Square instance with 40 traffic
logics and 500 vehicles. In this figure, we can observe that
for all executions our algorithm practically converged after the
first 150 iterations, using the remaining time to only slightly
refine solutions. In addition, all the computed solutions are
close to each other in quality, but different between each
other. These are desirable features in terms of convergence
and robustness, since we can offer an expert, a varied set of
accurate cycle programs in a reduced time.

To better explain this, Fig. 6 plots the absolute frequency
of the fitness distribution of the entire swarm through the
optimization process of one typical execution. Specifically,
it illustrates one of the thirty independent runs of our PSO
tackling the Rivadavia Square scenario with 40 traffic logics
and 500 vehicles. We can see that the initial particles are
diverse and with high cost values (≃ 7), although they were
able to converge in a low fitness region (≤ 1) during the second
half of the execution process. In this specific run, 475 vehicles
out of 500 reached their particular destinations (95%) in a
simulation time lower than 500 seconds (the complete number
of microsimulation steps). This accurate behavior is also found
in all executions and for all instances, and it represents another
interesting feature of our approach.

Table III contains the median fitness values obtained by the
proposed PSO for all the scenario instances. Additionally, the
median fitness values obtained by the RANDOM algorithm,
and the results of the SCPG are also provided in order
to permit comparisons. We can easily check in this table
that PSO obtained the best median fitness (marked in bold)
independently of both, the number of vehicles and the number
of traffic logics in each scenario instance.

In order to provide statistically meaningful comparisons, we
have applied a Signed Ranked (Wilcoxon) 2 test [50] to the
numerical distributions of the results. We have used this non-
parametric test as the resultant distributions usually violate
the condition of normality required to apply parametric tests
(Z Kolmogorov-Smirnov = 0.04) 3 . Another implication of the
violation of the normality condition is the use of median values
(as shown in Table III) instead of other measures such as the
mean and the standard deviation [51]. The confidence level
was set to 95% (α=0.05), which allows us to ensure that these
results are statistically different if they result in p-value<0.05.

In effect, for all the instances, the differences between the
distributions out of 30 independent runs resulted with p-values
<< 0.05. In general, the differences in the distributions of the
medians (Table III) resulted in a global p-value of 5.73E-7
when comparing PSO with RANDOM, and a global p-value
of 6.33E-5 when comparing PSO with SUMO. Therefore, we

2The null hypothesis in Wilcoxon test is that the median difference between
pairs of observations is zero, with a confidence level of 95% (α=0.05) in
our case. This means that, if resultant p-value is lower than 0.05, then the
compared distributions are different.

3Kolmogorov-Smirnov compares the accumulated distribution of observed
data with the accumulated distribution expected for a Gaussian distribution,
obtaining the p-value based on both discrepancies. Therefore, it measures
the quality of a normal fitting to the data and then can be used to test the
hypothesis of normality in the population distribution.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 12

TABLE III
MEDIAN FITNESS VALUES OBTAINED BY PSO FOR ALL THE SCENARIO INSTANCES. MEDIAN FITNESS OBTAINED BY RANDOM AND BY SCPG

ALGORITHMS ARE ALSO PROVIDED. NTL IS THE NUMBER OF TRAFFIC LOGICS

Instance NTL
Number of Vehicles

100 300 500
PSO RANDOM SCPG PSO RANDOM SCPG PSO RANDOM SCPG

20 1.64E+00 2.91E+00 2.38E+00 8.40E-01 1.45E+00 9.24E-01 7.93E-01 1.51E+00 9.56E-01
Rivadavia Square 30 1.80E+00 3.11E+00 2.45E+00 9.09E-01 1.65E+00 9.57E-01 8.79E-01 1.72E+00 9.89E-01

40 1.79E+00 3.08E+00 2.49E+00 9.11E-01 1.75E+00 9.76E-01 8.96E-01 1.74E+00 9.93E-01
20 9.47E-01 1.68E+00 1.49E+00 8.44E-01 1.62E+00 1.29E+00 4.10E+00 7.87E+00 2.35E+01

Alameda Avenue 30 1.56E+00 3.55E+00 5.12E+00 1.74E+00 4.52E+00 6.00E+00 7.67E+00 1.33E+01 3.31E+01
40 1.88E+00 3.98E+00 5.38E+00 2.87E+00 7.33E+00 1.83E+01 9.39E+00 1.64E+01 1.47E+01

100 300 500

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

20 Traffic Logics

Number of Vehicles

F
itn

es
s

100 300 500

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

100 300 500

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

20 Traffic Logics

Number of Vehicles

F
itn

es
s

PSO

PSO
PSO

Ran
do

m

Ran
do

m
Ran

do
m

100 300 500

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

30 Traffic Logics

Number of Vehicles

F
itn

es
s

100 300 500

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

100 300 500

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

30 Traffic Logics

Number of Vehicles

F
itn

es
s

PSO

PSO

PSO

Ran
do

m

Ran
do

m

Ran
do

m

100 300 500

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

40 Traffic Logics

Number of Vehicles

F
itn

es
s

100 300 500

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

100 300 500

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

40 Traffic Logics

Number of Vehicles

F
itn

es
s

PSO

PSO PSO

Ran
do

m

Ran
do

m

Ran
do

m

100 300 500

5
10

15
20

20 Traffic Logics

Number of Vehicles

F
itn

es
s

100 300 500

5
10

15
20

100 300 500

5
10

15
20

20 Traffic Logics

Number of Vehicles

F
itn

es
s

PSO
PSO

PSO

Ran
do

m

Ran
do

m

Ran
do

m

100 300 500

0
5

10
15

20
25

30
35

30 Traffic Logics

Number of Vehicles

F
itn

es
s

100 300 500

0
5

10
15

20
25

30
35

100 300 500

0
5

10
15

20
25

30
35

30 Traffic Logics

Number of Vehicles

F
itn

es
s

PSO PSO

PSO

Ran
do

m
Ran

do
m

Ran
do

m

100 300 500

5
10

15
20

40 Traffic Logics

Number of Vehicles

F
itn

es
s

100 300 500

5
10

15
20

100 300 500

5
10

15
20

40 Traffic Logics

Number of Vehicles

F
itn

es
s

PSO PSO

PSO

Ran
do

m

Ran
do

m

Ran
do

m

Fig. 7. Boxplot representation of distribution results of Rivadavia Square (three at the top) and Alameda Avenue (three at the bottom) instances with 20,
30, and 40 traffic logics, and 100, 300, and 500 vehicles. The results of SCPG are represented with a � point since this technique always returns the same
deterministic result for a given instance

can claim that our PSO obtained statistically better results than
the other two algorithms compared: RANDOM (stochastic
search) and SCPG (deterministic). This also means that our
algorithm is intelligent and competent when compared to
greedy information and human knowledge.

A summary of these results can be seen in Fig. 7, where the
boxplots of the distribution fitness of PSO, and RANDOM are
plotted. The results of SCPG are represented with a � point
since this technique always returns the same deterministic
result. As expected, the distributions of PSO show better lower
quartiles, medians, and upper quartiles than RANDOM for all
the instances. Regarding SCPG, we can see that the median
values of PSO are in general, better than the results of SCPG.
Only in the case of Rivadavia Square with high densities of

traffic (300 and 500 vehicles), do the SUMO results get close
to the upper quartiles of our PSO distributions.

Concerning the two scenario instances, the resulting fitness
values in Rivadavia Square are in general better than the
ones obtained in Alameda Avenue. This difference in the
results is more noticeable when a large number of vehicles is
circulating (500), where the median fitness differ in two orders
of magnitude (from 7.93E-01 to 3.31E+01). We suspect that
the regular structure of Rivadavia Square (see Fig. 3) makes
the traffic more fluid in this scenario than in Alameda Avenua
(with irregular European design), which could lead the PSO
to obtain different ranges of results in similar conditions.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 13

TABLE IV
MEDIAN FITNESS VALUES OBTAINED BY OUR PSO, DE, AND STANDARD PSO 2011 FOR ALL THE SCENARIO INSTANCES. NTL IS THE NUMBER OF

TRAFFIC LOGICS

Instance NTL
Number of Vehicles

100 300 500
PSO DE SPSO2011 PSO DE SPSO2011 PSO DE SPSO2011

20 1.64E+00 2.18E+00 1.87E+00 8.40E-01 9.94E-01 9.82E-01 7.93E-01 9.80E-01 1.22E+00
Rivadavia Square 30 1.80E+00 2.25E+00 2.33E+00 9.09E-01 1.11E+00 1.28E+00 8.79E-01 1.02E+00 1.44E+00

40 1.79E+00 2.23E+00 2.50E+00 9.11E-01 1.13E+00 1.25E+00 8.96E-01 1.10E+00 1.40E+00
20 9.47E-01 1.22E+00 1.11E+00 8.44E-01 1.07E+00 9.12E-01 4.10E+00 4.98E+00 4.71E+00

Alameda Avenue 30 1.56E+00 2.19E+00 2.49E+00 1.74E+00 2.54E+00 3.47E+00 7.67E+00 8.57E+00 1.11E+01
40 1.88E+00 2.54E+00 3.21E+00 2.87E+00 4.06E+00 5.32E+00 9.39E+00 1.17E+01 1.30E+01

B. Comparison with Other Metaheuristic Algorithms:
Differential Evolution and Standard PSO 2011

For a further comparison, we have studied the performance
of two other metaheuristic algorithms for the same experimen-
tal procedure as our proposal. A first comparison concerns a
Differential Evolution algorithm (as described in Section V-B),
by means of which we expect to better justify the use of
PSO on the traffic light cycle program. Secondly, we compare
our PSO against the Standard PSO 2011 which performs a
different velocity calculation and discretization method.

The median fitness values (out of 30 independent runs)
resulted in the experimentation of DE and SPSO2011 are
included in Table IV together with the ones of our PSO for
the two scenario instances, Rivadavia Square and Alameda
Avenue. Again, we confirm that the PSO obtained the best
median fitness for all the combinations of number of vehicles
and number of traffic logics in each scenario instance. In
general, using a Wilcoxon Signed Rank test with α=0.05,
the differences in the distributions of the medians (Table IV)
resulted in a global p-value of 1.94E-4 when comparing PSO
with DE, and a global p-value of 1.96E-4 when comparing
PSO with SPSO2011. In the first case, the different learning
procedures that our PSO and DE perform is the main fac-
tor that influences the statistical differences in results, since
these two algorithms used the same discretization method.
In the second case, the different velocity calculation methods
influence the algorithms’ performances of our PSO and SPSO
2011, indicating that our proposal is better than the last
Standard PSO for the problem under consideration.

In a further comparison, SPSO2011 showed better fitness
values than DE, resulting in a global p-value of 1.47E-2. If
we take into account that DE uses a similar discretization
method as our PSO, the last results lead us to suspect that
the different discretization of vectors marginally influences the
global algorithm’s performance.

Therefore, within the scope of the experimental framework
adopted in this approach, we can claim that our PSO also
obtained statistically better results than the other metaheuristic
approaches (DE and SPSO2011) used to solve the optimal
cycle program of traffic lights.

C. Scalability Analysis
To study the scalability of our proposal, we now focus on

the influence of the two main factors defining the complexity
of the instances: the number of traffic logics (20, 30, and 40),
and the number of vehicles circulating (100, 300, and 500).

5,00E-01

1,00E+01

2,00E+02

20 30 40

Number of Traffic Logics - Alameda Avenue

100 Vehicles

300 Vehicles

500 Vehicles

Number of Traffic

Lights

Fig. 8. Increment of the median fitness with regards to the number of traffic
lights for the Alameda Avenue scenario. The values are in logarithmic scale

The first observation concerns the number of traffic logics
(and hence, the number of traffic lights), since it determines
the dimensionality of the problem. In Fig. 8, we can observe
that the mean fitness values increase with the number of traffic
logics, as expected. Although, this increment is moderate with
regards to the number of traffic lights (dotted lines).

A second interesting observation can be obtained from
Fig. 7, where the distribution of results concerning the number
of vehicles are completely different for both scenarios. Thus, in
Alameda Avenue (three boxplots at the top) the distribution of
results gets worse with an increase in the number of vehicles.
This seems logical since a high number of cars increases the
possibility traffic jams being generated. In addition, we must
take into account that the number of vehicles that arrive at
their destination directly influences the fitness function. To the
contrary, in Rivadavia Square (three boxplots at the bottom)
the distribution of results improves as the number of vehicles
increases. In this case, we suspect that the particular shape
of this scenario, with parallel streets and thus organized flow,
could influence in the number of vehicles that quickly reach
their destinations and leave the scenario, hence introducing
great benefits to the fitness calculation.

D. Computational Effort

Table V contains the mean times (and standard deviations)
in seconds required by our PSO to compute all the experi-
ments. We must state that these times are averaged, since they
were calculated in the scope of a Condor [47] middleware with
a pool of machines with different specifications.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 14

TABLE V
MEAN TIME AND STANDARD DEVIATION IN SECONDS OF OUR PSO TO COMPUTE ALL THE EXPERIMENTS

Instance Number of Traffic Logics Number of Vehicles
100 300 500

20 4.14E+02±6.74E+01 5.94E+02±6.83E+01 7.25E+02±6.53E+01
Rivadavia Square 30 4.09E+02±6.11E+01 5.04E+02±5.54E+01 7.44E+02±6.51E+01

40 3.56E+02±5.42E+01 4.43E+02±4.60E+01 6.66E+02±5.66E+01
20 4.30E+02±4.55E+01 1.20E+03±7.58E+01 1.59E+03±9.50E+01

Alameda Avenue 30 5.46E+02±5.48E+01 1.14E+03±7.43E+01 1.51E+03±8.59E+01
40 5.12E+02±5.12E+01 1.23E+03±8.03E+01 1.48E+03±8.51E+01

The lowest execution time (3.56E+02 seconds) was required
for solving the Rivadavia Square scenario with 40 traffic logics
and 100 vehicles. The highest time (1.59E+03 seconds) was
used in the resolution of Alameda Avenue scenario with 20
traffic lights and 500 vehicles. All these times are in a range
from 6.33 to 26.5 minutes, which is acceptable for the human
experts in civil engineering, designing and taking decisions on
the traffic network.

We stress that the computing time increases with the number
of vehicles (common sense), although it decreases with the
number of traffic lights (counterintuitive). This fact could be
due to the optimized cycle programs that control a great num-
ber of traffic lights. These optimized traffic lights enhance the
traffic flow meaning the cars get to their destinations quickly,
thereby reducing the computing load of the simulation.

E. Analysis of Solutions

Finally, in this section we focus on the cycle programs
obtained as solutions by our PSO, and the possible benefits
they can offer to the actual users in this field. So we show the
broad impact of using our strategy, able to compute realistic
and comprehensive traffic light cycle programs.

In this context, for each iteration step of the PSO and for
each particle in the swarm, we have saved the information
obtained from each simulation (solution evaluation) about
both, the number of vehicles that reached their destination
and the average duration of their journeys. This way, we can
distinguish the progressive improvement in the traffic flow
obtained from the initial solutions to the final ones, through
out the complete optimization procedure.

A representative example can be observed in the opti-
mization process of the Alameda Avenue scenario with 30
traffic logics (130 traffic lights in the cycle program) and 300
vehicles. First, in Fig. 9 we can see the trace of the number
of vehicles that did reach their destination (upper continuous
line) versus the number of vehicles that did not reach their
destinations (lower dotted line) for each iteration step in a
run of PSO. The overlapped curves show the mean number of
vehicles (out of 30 independent runs) that did arrive and did
not arrive at their destination. In contrast, this figure also shows
the results (in dotted straight lines) of the SCPG (SUMO
algorithm) for this same instance.

We can easily see in Fig. 9 how the number of vehicles
that did arrive (did not arrive) at their destination increases
(decreases) as the algorithm reaches the stop condition of 300
iterations. In fact, at the initial steps of the optimization pro-
cess, the number of vehicles that reached their destination was

0 50 100 150 200 250 300

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

30 Traffic Logics - 300 Vehicles

Number of Iterations

N
u
m

b
e
r

o
f
V

e
h
ic

le
s

Vehicles that

did arrive

did not arrive

(SCPG) did arrive

(SCPG) did not arrive

Fig. 9. Number of Vehicles that did reach their destination (continuous lines)
versus vehicles that did not reach their destination (dotted lines) in the studied
time frame. Overlapped curves show the mean number of vehicles (out of 30
independent runs) that did arrive and did not arrive at their destination. SCPG
results are also shown with dotted straight lines

lower than the ones resulting in the cycle program generated
by SCPG. However, in the final steps of the PSO procedure,
the solutions obtained show a high quality in terms of the
traffic flow, since 295 vehicles of the initial 300 (98.33%)
finalized their trips successfully. Moreover, a mean number of
255 vehicles completed their journeys in the final solutions of
PSO (average of 30 runs). This contrasts with the 160 vehicles
that reached their destination in the SUMO cycle program. The
improvement obtained by our PSO over SCPG is 31.66%.

Another interesting behavior that can be observed in Fig. 9
is the alternating peaks and valleys that appear in the curves of
the single run of PSO. These peaks represent solutions with
an accurate fitness but with a low number of cars reaching
their destinations. This can be due to the fact that, the fitness
function (Equation 3) promotes cycle programs with large
durations of phases in which the proportion of traffic lights
in green is higher than in red. For certain intersections with
several secondary streets and only one big avenue, the traffic
lights controlling this avenue could extend their states in red,
thus resulting in a traffic jam that could delay the traffic
in other adjacent intersections/streets. A string influence on
the successful journeys in the fitness function (promoting the
number of vehicles that arrive and penalizing it when vehicles

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 15

0 50 100 150 200 250 300

2
5
0

3
0
0

3
5
0

30 Traffic Logics - 300 Vehicles

Number of Iterations

J
o
u
rn

e
y
 T

im
e

SCPG

PSO

Fig. 10. Mean journey time of vehicles calculated for each one of the
simulations performed through a representative run of PSO. SCPG results
are also shown with a dotted straight line. Y axis represents the journey time
in seconds

do not arrive) leads the PSO to avoid these kind of solutions.
From another viewpoint, Fig. 10 plots the trace of the

average journey time employed by the vehicles in the resulting
solutions of PSO through all the iterations of an example
run. In this case, the journey time becomes shorter as the
algorithm approaches the stop condition. We must note that,
in the calculation of the journey time, the vehicles that did
not arrive at their destinations took 500 seconds, the complete
simulation time. For this reason, SCPG solutions showed an
average journey time of 308.75 seconds while PSO solutions
obtained a journey length of 78 seconds, which means an
improvement of 74% with respect to the SCPG solution. In this
specific case, 295 vehicles (of 300) completed their journey
during the simulation time with an average journey time of 78
seconds to complete the urban scenario of 650 × 650 meters.
In the worst case, the remaining five vehicles will complete
their trips in at most 500+78 seconds, that is, the complete
simulation time plus the average journey time.

Finally, in order to clarify the final implications of using
(or not using) an optimized cycle program, Fig. 11 shows the
simulation traces of the traffic flow resulting from solutions
generated by both, SCPG (left) and PSO (right). The pictures
were captured at the end of the simulation time (500 seconds),
and correspond to two simulation procedures of the scenario
instance Alameda Avenue with 40 traffic logics (184 traffic
lights) and 500 vehicles. As we can observe, the traffic density
of the SCPG cycle program is clearly higher than that of PSO,
even showing the former several intersections with traffic jams.
As to the PSO cycle program, all intersections are unblocked
at the end of the study.

VII. CONCLUSIONS

In this paper, we have proposed an optimization technique
based on a Particle Swarm Optimization algorithm that can

find successful traffic light programs. For the evaluation of
solutions we use SUMO, a well-known microscopic traffic
simulator. For this study we have tested two extensive and
heterogeneous metropolitan areas located in Bahı́a Blanca, and
Málaga.

From two scenarios, a total number of 18 different numeri-
cal instances have been generated depending on the number of
vehicles circulating and the number of traffic lights operating.
A series of analyses have been carried out from different
viewpoints: the performance of the optimization technique, the
scalability, the computational effort, and the quality of solu-
tions. From these, the following conclusions can be extracted:

1) Our PSO solver performs successfully in the generation
of optimized cycle programs for big realistic traffic sce-
narios. For all the instances, our proposal obtained robust
results statistically better than the other two algorithms
compared: the SUMO cycle programs generator (SCPG)
and a Random Search algorithm (RANDOM).

2) In comparison with the Differential Evolution and Stan-
dard PSO 2011 algorithms, our PSO also showed a better
performance.

3) In the scope of the scenario instances studied here, we
can claim that our PSO scales adequately in terms of
the number of traffic lights. Concerning an increase in
the number of vehicles, we have characterized how the
scenario topology can influence the scalability power of
our proposal, showing accurate results especially with
regular route designs.

4) The complete optimization process required a computa-
tional mean time in the range from 6.33 to 26.5 minutes,
which is completely acceptable for use by human experts
in civil engineering. Furthermore, these values suggest
that we can still work with larger scenario instances in
future experiments.

5) The final solutions obtained by our PSO can improve the
number of vehicles that reach their destination and the
mean journey time, for all the instances. In particular,
for the Alameda Avenue instance with 30 traffic logics
and 300 vehicles, the improvement obtained is around
31.66% in the number of completed journeys and 74%
in the journey time, regarding SCPG. All this means a
real improvement in city traffic.

For future work, we will be tackling the optimal cycle
program with other optimization techniques, and in particular
other metaheuristics. We are also interested in using other
traffic simulators and creating new larger dimension instances,
as close as possible to real scenarios of an entire city.

ACKNOWLEDGMENTS

Authors acknowledge funds from the Spanish
Ministry of Economy and Competitiveness (MEC) and
FEDER under contract TIN2011-28194 (roadME project
http://roadme.lcc.uma.es). José Garcı́a-Nieto is supported
by grant BES-2009-018767 from the MEC. Ana Carolina Olivera
is supported by the Consejo Nacional de Investigaciones Cientı́ficas
y Técnicas of Argentina (CONICET, www.conicet.gov.ar)
and funds from the ANPCyT (http://www.agencia.gov.ar)
under contract PICT-2011-0639.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 16

Fig. 11. Simulation traces of the traffic flow (cars in white) resulting from the cycle programs generated by both, SCPG (left) and PSO (right). The pictures
show snapshots at the end of the simulation time. The reader can see that the SCPG leaves a dense traffic while PSO has cleared the routes and the traffic is
very fluid and smooth

REFERENCES

[1] J. McCrea and S. Moutari, “A hybrid macroscopic-based model for traf-
fic flow in road networks,” European Journal of Operational Research,
vol. 207, no. 1, pp. 676–684, 2010.

[2] J. Sánchez-Medina, M. Galán, and E. Rubio, “Applying a traffic lights
evolutionary optimization technique to a real case: “Las Ramblas”
area in Santa Cruz de Tenerife,” IEEE Transactions on Evolutionary
Computation, vol. 12, no. 1, pp. 25–40, feb. 2008.

[3] J. C. Spall and D. C. Chin, “Traffic-responsive signal timing for
system-wide traffic control,” Transportation Research Part C: Emerging
Technology, vol. 5, no. 3-4, pp. 153 – 163, 1997.

[4] R. Bretherton, N. Hounsell, and B. Radia, “Public
transport priority in scoot”, 1996. [Online]. Available:
http://eprints.soton.ac.uk/75299/

[5] D. A. Hensher and K. J. Button, Handbook of transport systems and
traffic control. Elsevier Science, Amsterdam ; London :, 2001.

[6] D. Zhao, Y. Dai, and Z. Zhang, “Computational Intelligence in Urban
Traffic Signal Control: A Survey,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 4, pp.
485–494, Jul. 2012.

[7] E. Bingham, “Reinforcement learning in neurofuzzy traffic signal con-
trol,” European Journal of Operational Research, vol. 131, pp. 232–241,
2001.

[8] K. N. Hewage and J. Y. Ruwanpura, “Optimization of traffic signal
light timing using simulation,” in WSC ’04: Proceedings of the 36th
conference on Winter simulation. Winter Simulation Conference, 2004,
pp. 1428–1436.

[9] C. Karakuzu and O. Demirci, “Fuzzy logic based smart traffic light sim-
ulator design and hardware implementation,” Applied Soft Computing,
vol. 10, no. 1, pp. 66 – 73, 2010.

[10] G. Lim, J. J. Kang, and Y. Hong, “The optimization of traffic signal
light using artificial intelligence,” in FUZZ-IEEE, 2001, pp. 1279–1282.

[11] C. Tolba, D. Lefebvre, P. Thomas, and A. E. Moudni, “Continuous
and timed petri nets for the macroscopic and microscopic traffic flow
modelling,” Simulation Modelling Practice and Theory, vol. 13, no. 5,
pp. 407 – 436, 2005.

[12] T. Nagatani, “Effect of speed fluctuation on green-light path in 2d traffic
network controlled by signals,” Physica A: Statistical Mechanics and its
Applications, vol. 389, no. 19, pp. 4105–4115, 2010.

[13] E. Angulo, F. P. Romero, R. Garcı́a, J. Serrano-Guerrero, and J. A.
Olivas, “A methodology for the automatic regulation of intersections in
real time using soft-computing techniques,” in Modelling, Computation
and Optimization in Information Systems and Management Sciences.
Springer, 2008, pp. 379–388.

[14] E. Brockfeld, R. Barlovic, A. Schadschneider, and M. Schreckenberg,
“Optimizing traffic lights in a cellular automaton model for city traffic,”
Phys. Rev. E, vol. 64, no. 5, p. 056132, Oct 2001.

[15] M. Kutz, Handbook of Transportation Engineering. McG.-Hill, 2004.
[16] M. C. et al., “Standard PSO 2011,” Particle Swarm Central, Tech.

Rep. [online] http://www.particleswarm.info/, January 2011. [Online].
Available: http://www.particleswarm.info/

[17] M. A. M. de Oca, T. Stützle, M. Birattari, and M. Dorigo, “Franken-
stein’s pso: a composite particle swarm optimization algorithm,” Trans-
actions on Evolutionary Compunation, vol. 13, no. 5, pp. 1120–1132,
2009.

[18] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Francisco,
California: Morgan Kaufmann Publishers, 2001.

[19] D. Krajzewicz, M. Bonert, and P. Wagner, “The open source traffic
simulation package SUMO,” RoboCup 2006 Infrastructure Simulation
Competition, 2006.

[20] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and
convergence in a multidimensional complex space,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[21] S. Dipti, C. Min, and L. Ruey, “Neural networks for real-time traffic sig-
nal control,” IEEE Transactions on Intelligent Transportation Systems,
vol. 7, no. 3, pp. 261–272, 2006.

[22] B. P. G. and D. S., “Distributed geometric fuzzy multiagent urban
traffic signal control,” IEEE Transactions on Intelligent Transportation
Systems, vol. 11, no. 3, pp. 714–727, 2010.

[23] K. Wood, “Urban traffic control, systems review.” TRL, Crowthorne,
Tech. Rep. PR41, 1993.

[24] S. M. Rahman and N. T. Ratrout, “Review of the fuzzy logic based
approach in traffic signal control: Prospects in saudi arabia,” Journal of
Transportation Systems Engineering and Information Technology, vol. 9,
no. 5, pp. 58 – 70, 2009.

[25] S. Lämmer and D. Helbing, “Self-control of traffic lights and vehicle
flows in urban road networks,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2008, no. 4, p. P04019, 2008.

[26] C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM Computing Surveys
(CSUR), vol. 35, no. 3, pp. 268–308, 2003.

[27] N. M. Rouphail, B. B. Park, and J. Sacks, “Direct signal timing
optimization: Strategy development and results,” In XI Pan American
Conference in Traffic and Transportation Engineering, Tech. Rep., 2000.

[28] P. Holm, D. Tomich, J. Sloboden, and C. Lowrance, “Traffic analysis
toolbox volume iv: Guidelines for applying corsim microsimulation
modeling software,” Nat. Tech. Information Service - 5285 Port Royal
Road Springfield, VA 22161 USA - Final Report, Tech. Rep., 2007.

[29] F. Teklu, A. Sumalee, and D. Watling, “A genetic algorithm approach for
optimizing traffic control signals considering routing,” Computer-Aided
Civil and Infrastructure Engineering, vol. 22, pp. 31–43, 2007.

[30] D. Van Vliet, “SATURN–A modern assignment model,” Traffic Engi-
neering and Control, vol. 23, pp. 578–581, 1982.

[31] A. M. Turky, M. S. Ahmad, M. Z. Yusoff, and B. T. Hammad, “Using
genetic algorithm for traffic light control system with a pedestrian
crossing,” in RSKT ’09: Proceedings of the 4th International Conference
on Rough Sets and Knowledge Technology, 2009, pp. 512–519.

[32] J. Chen and L. Xu, “Road-junction traffic signal timing optimization by
an adaptive particle swarm algorithm,” in ICARCV, 2006, pp. 1–7.

[33] L. Peng, M.-H. Wang, J.-P. Du, and G. Luo, “Isolation niches particle
swarm optimization applied to traffic lights controlling,” dec. 2009, pp.
3318 –3322.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. Y, JANUARY ZZZZ 17

[34] S. Kachroudi and N. Bhouri, “A multimodal traffic responsive strategy
using particle swarm optimization,” in Proceedings of the 12th IFAC
Symposium on Transportation Systems, 2009, pp. 531–537.

[35] E. Alba, J. Garcı́a-Nieto, J. Taheri, and A. Zomaya, “New research in
nature inspired algorithms for mobility management in gsm networks,”
in LNCS of EvoWorkshops08, Napoli Italy, 2008, pp. 1–10.

[36] J. Garcı́a-Nieto and E. Alba, “Automatic parameter tuning with meta-
heuristics of the AODV routing protocol for vehicular ad-hoc networks,”
in Applications of Evolutionary Computation, ser. LNCS. Springer
Berlin / Heidelberg, 2010, vol. 6025, pp. 21–30.

[37] K. E. Parsopoulos and F. M. Vrahatis, “Unified particle swarm opti-
mization for solving constrained engineering optimization problems,” in
Advances in Natural Computation. Springer, 2005, pp. 582–591.

[38] E. Alba, J. Garcia-Nieto, L. Jourdan, and E.-G. Talbi, “Gene selection in
cancer classification using PSO/SVM and GA/SVM hybrid algorithms,”
sep. 2007, pp. 284 –290.

[39] J. Garcı́a-Nieto, J. Toutouh, and E. Alba, “Automatic tuning of commu-
nication protocols for vehicular ad hoc networks using metaheuristics,”
Engineering Applications of Artificial Intelligence, Advances in meta-
heuristics for hard optimization: new trends and case studies, vol. 23,
no. 5, pp. 795 – 805, 2010.

[40] M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street
Maps,” IEEE Pervasive Computing, vol. 7, pp. 12–18, 2008.

[41] J. Leung, L. Kelly, and J. H. Anderson, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. Boca Raton, FL, USA:
CRC Press, Inc., 2004.

[42] S. Krauß, “Microscopic Modeling of Traffic Flow: Investigation of
Collision Free Vehicle Dynamics,” Ph.D. dissertation, 1998.

[43] N. Hansen, R. Ros, N. Mauny, M. Schoenauer, and A. Auger, “PSO
facing non-separable and ill-conditioned problems,” 2008. [Online].
Available: http://hal.inria.fr/inria-00250078/en/

[44] J. Sánchez-Medina, M. Galán, M. Royo, and E. Rubio, “Stochastic vs
deterministic traffic simulator. comparative study for its use within a
traffic light cycles optimization architecture,” in Artificial Intelligence
and Knowledge Engineering Applications: A Bioinspired Approach, ser.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2005, vol. 3562, pp. 622–631.

[45] D. Krajzewicz, E. Brockfeld, J. Mikat, J. Ringel, C. Rössel,
W. Tuchscheerer, P. Wagner, and R. Wösler, “Simulation
of modern Traffic Lights Control Systems using the open
source Traffic Simulation SUMO,” 2005. [Online]. Available:
http://elib.dlr.de/21012/

[46] E. Alba, G. Luque, J. Garcı́a-Nieto, G. Ordonez, and G. Leguizamón,
“Mallba: a software library to design efficient optimisation algorithms,”
International Journal of Innovative Computing and Applications 2007
(IJICA), vol. 1, no. 1, pp. 74–85, 2007.

[47] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the condor experience.” Concurrency - Practice and Experi-
ence, vol. 17, no. 2-4, pp. 323–356, 2005.

[48] R. Eberhart and Y. Shi, “Comparing Inertia Weights and Constriction
Factors in Particle Swarm Optimization,” in Proceedings of the IEEE
Congress on Evolutionary Computation CEC’00, vol. 1, La Jolla, CA,
USA, 2000, pp. 84–88.

[49] K. V. Price, R. Storn, and J. Lampinen, Differential Evolution: A
practical Approach to Global Optimization. London, UK: Springer-
Verlag, 2005.

[50] R. Wilcox, New statistical procedures for the social sciences. Hillsdale,
1987.

[51] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman & Hall/CRC, 2007.

José Garcı́a-Nieto PhD José Garcı́a-Nieto had his
degree in engineering and PhD in Computer Sci-
ence in 2006 and 2013, respectively, by the Uni-
versity of Málaga, Spain. He currently works as
research assistant member of the NEO Research
Group (http://neo.lcc.uma.es), and he collaborates in
teaching activities at the Department of Computer
Sciences (University of Málaga.). His research topics
are metaheuristics and specially swarm intelligence,
and their application to real-parameter benchmarking
and real-world problems in the domains of telecom-

munications, bioinformatics, and road-traffic optimization. He has published
8 articles in journals indexed by JCR Thomson ISI, 2 articles in other
international journals, 2 book chapters, 4 papers in LNCS, and more than
20 referred international and national conferences.

Ana Carolina Olivera Ana Carolina Olivera
is a Ph.D. in Computer Science from the De-
partment of Computer Science and Engineer-
ing (DCIC: http://www.cs.uns.edu.ar/) that be-
longs to the Universidad Nacional del Sur (UNS:
http://www.uns.edu.ar/). She works as a Teaching
Assistant in the Department of Computer Science
and Engineering. In the University, she is a re-
searcher who belongs to the Laboratory of Research
and Development in Scientific Computing (LIDeCC:
http://lidecc.cs.uns.edu.ar/) in the following national

projects: “PICT 2011-0639 (Agencia Nacional de Promoción Cientı́fica y Tec-
nológica - FONCyT)”; “PICTO UNS N 917 FONCYT”; and “PGI 24/N026”.
Assistant Researcher at National Council of Scientific and Technological
Research (CONICET: http://www.conicet.gov.ar/) from the Ministerio de
Educación de la Nación.

Enrique Alba Prof. Enrique Alba had his degree in
engineering and PhD in Computer Science in 1992
and 1999, respectively, by the University of Mlaga
(Spain). He works as a Full Professor in this univer-
sity with different teaching duties: data communi-
cations and evolutionary algorithms at graduate and
master programs, respectively. Dr. Alba leads a team
of 15 researchers in the field of complex optimiza-
tion. In addition to the organization of international
events (IEEE IPDPS-NIDISC, IEEE MSWiM, IEEE
DS-RT, ACM GECCO) Dr. Alba has offered dozens

doctorate courses, multiple seminars in more than 20 international institutions
and has directed several research projects (6 with national funds, 5 in Europe
and numerous bilateral actions). Also, Dr. Alba has directed 6 contracts for
innovation and transference to the industry (OPTIMI, Tartessos, ACERINOX,
ARELANCE) and he works as invited professor for several European and
American universities. He is an editor in several international journals and
book series of Springer-Verlag and Wiley, as well as he often reviews articles
for more than 30 impact journals. He has published more than 65 articles
in journals indexed by Thomson ISI, 17 articles in other journals, 40 papers
in LNCS, and more than 250 refereed conferences. Besides that, Dr. Alba
has published 11 books, 39 book chapters, and has merited 6 awards to his
professional activities. Pr. Alba’s H index is 34, with more than 5500 cites to
his works.

