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This article analyses the use of a grid-based genetic algorithm (GrEA) to solve a real-world instance of
a problem from the telecommunication domain. The problem, known as automatic frequency planning
(AFP), is used in a global system for mobile communications (GSM) networks to assign a number of fixed
frequencies to a set of GSM transceivers located in the antennae of a cellular phone network. Real data
instances of the AFP are very difficult to solve owing to the NP-hard nature of the problem, so combining
grid computing and metaheuristics turns out to be a way to provide satisfactory solutions in a reasonable
amount of time. GrEA has been deployed on a grid with up to 300 processors to solve an AFP instance of
2612 transceivers. The results not only show that significant running time reductions are achieved, but that
the search capability of GrEA clearly outperforms that of the equivalent non-grid algorithm.
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algorithms

1. Introduction

Frequency assignment is a well-known problem in Operations Research (Aardal et al. 2007) and it

is of great importance in real global systems for mobile communications (GSM) networks (Mouly

and Paulet 1992). In these networks, the available frequency band is slotted into channels (or fre-

quencies) that have to be allocated to the elementary transceivers (TRXs) installed in the base sta-

tions of the network.This problem is known as automatic frequency planning (AFP), the frequency

assignment problem (FAP), or even the channel assignment problem (CAP) (Eisenblätter 2001).

An optimal frequency assignment allows the capacity of the networks to be increased by avoiding

the interferences provoked by channel reuse owing to the limited available radio spectrum, thus

improving the quality of service for subscribers and an income for the operators as well.

The AFP problem is an NP-hard problem (Hale 1980) that is even more difficult to address

when defined in the context of GSM networks. In such a scenario, solving the problem properly

requires realistic and precise interference information from a real-worldGSMnetwork in order for

an accurate frequency plan to be computed. This information has to consider actual technologies

currently used by GSM operators such as frequency hopping (Eisenblätter 2001). This leads to

further difficulties for telecommunication companies which, along with the complexity of the
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1068 F. Luna et al.

problem itself and the large size of real-world networks, need accurate physical models of the

GSM system (antennae, propagation, etc.). In this context, solving the AFP problem is a task

demanding both numerical and computational power in order to overcome the difficulties for

finding satisfactory solutions. The approach used in this work to cope with these two practical

requirements lies in using metaheuristics and grid computing.

Metaheuristics (Blum and Roli 2003) are a broad family of approximate techniques that can

be used to solve optimization problems. Contrary to exact techniques, metaheuristics do not

guarantee to find optimal solutions to the problems, but they allow good compromise solutions

to be reached in a reasonable amount of time. A metaheuristic can be defined as a high-level

strategy that controls a number of subordinated techniques (usually heuristics) in the search for

an optimum. These techniques are nowadays widely used. Among them, evolutionary algorithms

(EAs) and, in particular, a subfamily of them, genetic algorithms (GAs), have becomevery popular.

On the other hand, grid computing (Foster and Kesselman 1999, Berman et al. 2003) encom-

passes a number of issues related to the use of large-scale distributed systems as a unique parallel

computer. Grid computing systems are a natural evolution of distributed systems in theway that the

infrastructure provided by the Internet allows hundreds and thousands of computers to be joined,

leading to a computing power that even supercomputers are unable to provide; thisway, algorithms

that otherwise would be considered as unfeasible can be executed in a reasonable amount of time.

In this article, the performance of a distributed metaheuristic, a genetic algorithm called the

grid-based evolutionary algorithm (GrEA) (Nebro et al. 2008) is analysed. The GrEA is designed

to be executed in a grid computing system based on Condor (Thain et al. 2003), a grid computing

software. This algorithm has been applied to solve a real-world instance of the AFP problem that

corresponds to Denver, a city in Colorado, USA, of more than half a million people. This network

is composed of 2612 TRXs that have to be assigned with 18 different available frequencies, so

leading to a huge search space of size 182612 ≈ 5.11e3263. A novel formulation of the problem

presented in Luna et al. (2007) has been used, which is directly imported from real-world GSM

frequency planning as currently conducted in the industry.

Even though the instances of any formulation of the problem are potentially very large (e.g. the

size of current cellular networks is continuously increasing), few works approach this problem

with parallel algorithms for addressing the highly increasing computational resources required.

In the field of EAs, Crompton et al. (1993,1994) presented a distributed GA (Alba and Troya

1999) that uses two different encodings for the individuals and different recombination operators.

However, no details on the parallel computing platform are given.A parallel GA for hybrid channel

assignment has been proposed by Kwok (2000). The algorithm runs on a cluster composed of

twelve Linuxworkstations.Many otherworks exist inwhich the searchmodel is parallel (Alba and

Tomassini 2002), but the execution is carried out on sequentialmachines (e.g.Weinberg et al. 2001,

Alabau et al. 2002, Matsui et al. 2005). This is also a typical scenario in actual telecommunication

companies, where single computers—mostly laptops—are used to perform the optimization.

Going one step further here, theAFP problem has been tackled in a grid computing platform with

the aim of solving a very large instance of the problem in an affordable wall clock time.

The contributions of the present work can be summarized in the following points.

• A grid-based genetic algorithm has been used to solve a complex instance of theAFP problem.

To the best of our knowledge, this is the first time this kind of problem has been addressed with

grid technologies (using up to 300 processors).

• An accurate statistical analysis has been carried out to validate the results obtained.

• The study indicates that the search capabilities of GrEA outperform those of its sequential

counterpart.

• As a result of the experiments, the best solution known so far to the problem considered has

been obtained.
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Engineering Optimization 1069

The rest of the article is structured as follows. In the next section, the reader is provided with

the details of frequency planning in GSM networks. Section 3 details GrEA, the grid-based GA

approach. Some implementation details are given in the following section. In Section 5, the

experimental results are presented and analysed. Finally, the conclusions and lines of future work

are included in Section 6.

2. Frequency assignment in GSM networks

In the following, a brief description of the GSM architecture is provided first, whereby the basic

terminology of the problem is introduced. Next, details of the frequency planning task in GSM

networks are given. Finally, a precise mathematical formulation of the AFP model addressed in

this article is presented.

2.1. The GSM system

An outline of the GSM network architecture is shown in Figure 1.As can be seen, GSM networks

consist of many different components. The most relevant ones to frequency planning are base

transceiver stations (BTSs) and transceivers (TRXs). Essentially, a BTS is a set of TRXs. In

GSM, one TRX is shared by up to eight users in time division multiple access (TDMA) mode.

The main role of a TRX is to provide conversion between the digital traffic data on the network

side and radio communication between the mobile terminal and the GSM network. The site at

which a BTS is installed is usually organized in sectors: one to three sectors are typical. The area

in which each sector operates defines a cell.

Figure 1. Outline of the GSM network architecture.
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1070 F. Luna et al.

The solid lines connecting components in Figure 1 carry both traffic information (voice or

data) as well as the ‘in-band’ signalling information. The dotted lines are signalling lines. The

information exchanged over these lines is necessary for supporting usermobility, network features,

operation and maintenance, authentication, encryption and many other functions necessary for

the network’s proper operation.

2.2. Frequency planning in GSM networks

Frequency planning is the last step in the layout of a GSM network. Prior to tackling this problem,

the network designer has to address some other issues: where to install the BTSs or how to set

the configuration parameters of the antennae (tilt, azimuth, etc.), among others (Mishra 2004).

Once the sites for the BTSs are selected and the sector layout is decided, the number of TRXs

to be installed per sector has to be fixed. This number depends on the traffic demand that the

corresponding sector has to hold. Frequency planning lies in the assignment of a channel (a

frequency) to every TRX (Eisenblätter 2001). The optimization problem arises because the usable

radio spectrum is generally very scarce and, consequently, frequencies have to be reused by many

TRXs in the network.

The multiple use of the same frequency may cause interferences that may reduce the quality

of service (QoS) down to unsatisfactory levels. Indeed, significant interference may occur if the

same or adjacent channels are used in neighbouring, overlapping cells. The point here is that

computing this level of interference is a difficult task, which depends not only on the channels,

but also on the radio signals and the properties of the environment. The more accurate the measure

of the interference in a given GSM network, the higher the quality of the frequency plan that can

be computed for this network. Several ways of quantifying this interference exist, ranging from

theoretical methods to extensive measurements (Kuurne 2002). They all result in a so-called

interference matrix, denoted by M . Each element M(i, j) of M indicates the degradation of

the network quality if cells i and j operate on the same frequency. This is called co-channel

interference. Apart from co-channel interference, so-called adjacent-channel interference may

exist, which occurs when two TRXs operate on adjacent channels (i.e. one TRX operates on

channel f and the other on channel f + 1 or f − 1). An accurate interference matrix is therefore

an essential requirement for frequency planning because the ultimate goal of any frequency

assignment algorithm will be to minimize the sum of the interferences.

In real-life situations, additional complicating factors such as separation constraints among

cells, or advanced interference reduction techniques such as frequency hopping or dynamic power

control, may be considered. The interested reader is referred to Eisenblätter (2001) for a more

detailed description of frequency planning in actual GSM networks.

2.3. Mathematical formulation

Let T = {t1, t2, . . . , tn} be a set of n transceivers, and let Fi = {fi1, . . . , fik} ⊂ N be the set

of valid frequencies that can be assigned to a transceiver ti ∈ T , i = 1, . . . , n. Note that k—

the cardinality of Fi—is not necessarily the same for all the transceivers. Furthermore, let S =
{s1, s2, . . . , sm} be a set of given sectors (or cells) of cardinality m. Each transceiver ti ∈ T is

installed in exactly one of the m sectors. Henceforth, we denote the sector in which a transceiver

ti is installed by s(ti) ∈ S. Finally, a matrix M = {(µij , σij )}m×m is given, called the interference

matrix. The two elements µij and σij of a matrix entry M(i, j) = (µij , σij ) are numerical values

greater than or equal to zero. In fact, µij represents the mean and σij the standard deviation

of a Gaussian probability distribution describing the carrier-to-interference ratio (C/I) (Walke

2002) when sectors i and j operate on the same frequency. The higher the mean value, the lower
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Engineering Optimization 1071

the interference and thus the better the communication quality. Note that the interference matrix

is defined at sector (cell) level, because the transceivers installed in each sector all serve the

same area.

A solution to the problem is obtained by assigning to each transceiver ti ∈ T one of the frequen-

cies from Fi . A solution (or frequency plan) is henceforth denoted by p ∈ F1 × F2 × · · · × Fn,

where p(ti) ∈ Fi is the frequency assigned to transceiver ti . The objective is to find a solution

p that minimizes the following cost function:

C(p) =
∑

t∈T

∑

u∈T ,u 6=t

Csig(p, t, u). (1)

In order to define the function Csig(p, t, u), let st and su be the sectors in which the transceivers t

and u are installed, i.e. st = s(t) and su = s(u), respectively. Moreover, let µst su
and σst su

be the

two elements of the corresponding matrix entry M(st , su) of the interference matrix with respect

to sectors st and su. Then,

Csig(p, t, u) =































K if st = su, |p(t) − p(u)| < 2

Cco(µst su
, σst su

) if st 6= su, µst su
> 0, |p(t) − p(u)| = 0

Cadj(µst su
, σst su

) if st 6= su, µst su
> 0, |p(t) − p(u)| = 1

0 otherwise.

(2)

K >> 0 is a very large constant defined by the network designer so as to make it undesirable

to allocate the same or adjacent frequencies to transceivers serving the same area. Furthermore,

function Cco(µ, σ ) is defined as follows:

Cco(µ, σ ) = 100

[

1.0 − Q

(

cSH − µ

σ

)]

, (3)

where

Q(z) =
∫ ∞

z

1√
2π

e−x2/2 dx (4)

is the tail integral of a Gaussian probability distribution function with zeromean and unit variance,

and cSH is a minimum quality signalling threshold. Function Q is widely used in digital com-

munication systems because it characterizes the error probability performance of digital signals

(Simon and Alouini 2005). This means that Q[(cSH − µ)/σ ] is the probability of the C/I ratio

being greater than cSH and, therefore, Cco(µst su
, σst su

) computes the probability of the C/I ratio in

the serving area of sector st being below the quality threshold owing to the interferences provoked

by sector su. That is, if this probability is low, the C/I value in the sector st is not likely to be

degraded by the interfering signal coming from sector su and thus the communication quality

yielded is high. (Note that this fits with the definition of a minimization problem.) On the con-

trary, a high probability—and consequently a high cost—causes the C/I mostly to be below the

minimum threshold cSH, thus incurring low-quality communications.

As function Q has no closed form for the integral, it has to be evaluated numerically. For this

purpose, the complementary error function E has been used:

Q(z) = 1

2
E

(

z√
2

)

. (5)
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1072 F. Luna et al.

In Press et al. (1992), a numerical method is presented that allows the value of E to be computed

with a fractional error smaller than 1.2 × 10−7.Analogously, the function Cadj(µ, σ ) is defined as

Cadj(µ, σ ) = 100

[

1.0 − Q

(

cSH − cACR − µ

σ

)]

= 100

[

1.0 − 1

2
E

(

cSH − cACR − µ

σ
√
2

)]

. (6)

The only difference between functions Cco and Cadj is the additional constant cACR > 0 (adjacent

channel rejection) in the definition of the function Cadj. This hardware-specific constant measures

the receiver’s ability to receive the wanted signal in the presence of an unwanted signal at an

adjacent channel. Note that the effect of constant cACR is thatCadj(µ, σ ) < Cco(µ, σ ). This makes

sense, since using adjacent frequencies (channels) does not provoke such a strong interference as

using the same frequencies.

Our model ultimately aims at measuring the overall signalling performance of the GSM net-

work. The keystone of this model is to be found in the definition of the interference matrix, which

includes the entire probability distribution of the C/I ratio. This definition, which is directly

imported from real-world GSM frequency planning as currently conducted in the industry (and

not generated in a computer by sampling random variables), allows not only the computation of

high-performance frequency plans, but also the prediction of QoS. Indeed, both the definition of

the interference matrix and the subsequent computations to obtain the cost values are motivated

by real-world GSM networks since they are related to the computation of the bit error rate (BER)

performance of Gaussian minimum shift keying (GMSK), the modulation scheme used for GSM

(Simon and Alouini 2005).

3. Using GrEA for solving the AFP problem

This section is devoted to presenting the algorithmic approach used for solving the AFP problem

described in Section 2. Next, GrEA is introduced along with the representation of the individuals,

the genetic operators applied, and a local search algorithm used to improve the solutions.

3.1. GrEA

GrEA (Nebro et al. 2008) is a steady-state GA (ssGA) following the master/worker parallel

model. It has been developed using Condor (Thain et al. 2003) and theMW framework (Linderoth

et al. 2000). GrEA is also a hybrid algorithm (Talbi 2002) since a local search method, which was

specially designed for thisAFP problem by Luna et al. (2007), is applied to the individuals that are

generated after the recombination and mutation operators. The basic idea is that a master process

executes the main loop of ssGA and the workers perform the function evaluations and the local

search step in an asynchronousway.Contrary to a fully sequential version of ssGA,GrEAperforms

several individual evaluations in parallel; ideally, there should be as many parallel evaluations as

available processors in the grid.

For better describing the algorithm, let us call GrEA-master the part of the algorithm corre-

sponding to the master process, as opposed to the worker counterpart, named GrEA-worker. The

pseudo-code of GrEA-master is described in Algorithm 1. GrEA-master starts by creating an

empty population (line 1) and generating a task list, each task containing a randomly generated

individual (line 2). The tasks in the list are sent to the available workers by the underlying Condor

system (see Section 4.2).After these two steps, GrEA-master works in a reactive way: when a task
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Engineering Optimization 1073

Algorithm 1 Pseudo-code for GrEA-master.

1: population ← ∅
2: Initialize taskList

3: while not stoppingCondition do

4: Receive task

5: individual ← task.individual

6: Insert individual into population

7: while new available workers do

8: newIndividual ← GA_step()

9: newTask ←new Task(newIndividual)

10: taskList.add(newTask)

11: end while

12: end while

is received from aworker (line 4), the individual contained in that task is extracted (line 5), and it is

inserted into the population (line 6). Then, for each new available worker detected, the following

steps are carried out: first, a GA step (selection, recombination and mutation) is executed (line 8),

producing a new individual; secondly, this individual is added to a new task (line 9); finally, this

task is inserted into the task list, which is ready to be sent to a worker (by Condor).

Algorithm 2 Pseudo-code for GrEA-worker.

1: while true do

2: Receive task

3: individual ← task.individual

4: newIndividual ← LocalSearch(individual)

5: newTask ←new Task(newIndividual)

6: Return newTask

7: end while

The mission of GrEA-worker is to receive an individual, evaluate it, and apply the local search.

Since the local search may modify the individual, it has to be returned back to GrEA-master. The

pseudo-code of GrEA-worker is included in Algorithm 2.

Salient features of GrEA are the awareness of new processors and fault tolerance. These char-

acteristics play a key role in order to make GrEA a grid-enabled algorithm. Thus, whenever a

new processor is detected by GrEA, a GA step is performed and a new individual is obtained for

evaluation in the worker that will be deployed in the new processor. Concerning fault tolerance,

crashes in GrEA-master are automatically managed by Condor by using checkpointing; faults in

the processes running GrEA-worker are simply ignored because they do not affect the working

principles of the genetic algorithm. For further details, the reader is referred to Nebro et al. (2008).

3.2. Solution encoding and genetic operators

As defined in Section 2.3, a solution to the problem is obtained by assigning to each transceiver

ti ∈ T one of the frequencies fromFi , the set of valid frequencies forTRX ti .A solution is therefore

encoded as an array of integer values, p, where p(ti) ∈ Fi is the frequency assigned to transceiver

ti . That is, the solutions manipulated by GrEA are tentative frequency plans of the given AFP

problem instance. As to the genetic operators, binary tournament has been used as the selection
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1074 F. Luna et al.

scheme. This operator works by randomly choosing two individuals from the population and the

one having the best (lowest) fitness is selected. GrEA applies a uniform crossover (UX) in which

every allele of the offspring (i.e. the frequency of each TRX) is chosen randomly from one of the

two parents with a probability of 0.5. Finally, the mutation operator used is random mutation, in

which the frequencies of a set of randomly chosen TRXs of the solution are reassigned with a

random valid frequency. Note that the two operators always assign valid frequencies to each TRX

and no repair step is required.

It is well known that randomized genetic operators, and especially classical recombination

operators, perform very badly in GAs for solving frequency assignment problems (Dorne and

Hao 1995, Crisan andMühlenbein 1998). However, when combined with an accurate local search

method (hybridization), they achieve a good intensification/diversification tradeoff. This is the

approach followed in this work: the highly randomized UX and random mutation are devoted to

explore new regions of the search space, while the local search (see the next section) is designed

to seek for accurate solutions located in these regions.

3.3. Local search

In order for a GA to performwell onAFP problems, its hybridization with a local search algorithm

is almost mandatory. Indeed, the most recent and efficient GAs for solving several flavours of

the problem are endowed with some kind of local search: a probabilistic Tabu Search in Alabau

et al. (2002), an adaptation of Markov Decision Processes in Idoumghar and Schott (2006), the

CAP3 method in Kim et al. (2007), or others specifically designed for the problem being solved

(seeMatsui et al. 2003, Colombo 2006). The usage of local search turned out also to be essential in

ACOalgorithms for solving frequency assignment problems (Graham et al. 2007), and particularly

in the version of the AFP problem used, as shown in Luna et al. (2007).

The local search method used in this work is included in Algorithm 3. It first ranks the TRXs

with respect to their component cost, CC. Given a frequency plan p and a TRX t , CC(p, t) is

defined as

CC(p, t) =
∑

u∈T ,u 6=t

Csig(p, t, u), (7)

Algorithm 3 Pseudo-code for the local search.

1: input: a solution p, a number of steps d

2: improved ← true

3: k ← 1

4: while k ≤ d and improved = true do

5: improved ← false

6: Rank every TRX ti with CC(p, ti)

7: for i ← 1 to n do

8: Replace frequency p(ti) with the frequency from Fi that most reduces the objective

function value

9: if the objective function value was reduced then improved = true

10: Update CC(p, ti)

11: end for

12: k ← k + 1

13: end while

14: output: a possibly improved solution p
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Engineering Optimization 1075

i.e. CC(p, t) is the value with which TRX t contributes to the total cost of the frequency plan p

(Equation 2 defines Csig). This ranking allows the TRXs occurring in the strongest interference

to be assigned in the beginning so as to fix low-quality assignments quickly and to lead to further

improvements. Then, all the TRXs are traversed and the frequency that most reduces the AFP

cost of the entire plan (Equation 1) is chosen (line 8). In the AFP instance solved, this would

require 2612 × 18 = 47,016 evaluations of the AFP cost at each step, which makes the local

search unaffordable. Therefore, rather than using Equation (1) for computing the new objective

function value, an incremental cost function has been used because the increase of the AFP cost

caused by the setting p(ti) = f can be computed as follows:

1(p, p(ti) = f ) =
∑

t∈T̂

(Csig(p, t, ti) + Csig(p, ti, t)). (8)

Finally, the component cost of eachTRX is updated and a new iteration starts (line 10 ofAlgorithm

3) so as to reassign again first those TRXs that most contribute to the AFP cost. Parameter d

indicates for howmany steps this algorithm should bemaximally executed.After somepreliminary

tests with the instance solved in this work (see Section 5.2), the local search converges towards a

local minimum after six steps and this is the value used for the subsequent experimentation.

4. Implementation details

In this section a brief introduction to Condor is given as well as details about how the MW library

is used to implement GrEA.

4.1. Condor

Condor is a grid system software package designed to manage distributed collections (pools)

of processors spread among a campus or other organizations (Thain et al. 2003). Each machine

is supposed to have an owner, who can specify the conditions under which jobs are allowed

to run; by default, a Condor job stops when a workstation’s owner begins using the computer.

Hence, Condor jobs use processor cycles that otherwise would be wasted. Compared to other grid

computing software, Condor is easy to install and to administrate, and existing programs do not

need to be modified or re-compiled to be executed under Condor (they must only be re-linked

with the Condor library).

Salient features of Condor include remote system calls, job checkpointing and process migra-

tion. Furthermore, Condor pools can be composed of heterogeneous machines, and several pools

can be combined using Globus (Foster and Kesselman 1997) and Condor-G (Frey et al. 2001).

4.2. The MW library

GrEA has been implemented using MW (Linderoth et al. 2000), a software library that enables

the development of master worker parallel applications using Condor and the C++ Programming

Language.

An MW application consists mainly of subclassing three base classes: MWTask, MWDriver

and MWWorker.AnMWTask represents the unit of work to be computed by a worker. It includes

the inputs and outputs to be marshalled to and from the workers. In this implementation, the input

is an integer array (the permutation representing an individual) and the output is a real value

containing the fitness value plus another integer array (because the individual can be modified by
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1076 F. Luna et al.

an improvement method). The MWWorker provides the context for the task to run; in concrete,

in GrEA the subclass of MWWorker contains the GrEA-worker code. Finally, the MWDriver

subclass manages the whole process: creating tasks, receiving the results of the computations, and

deciding when the computation is complete. The GrEA-master code is executed in this subclass.

The MW framework works with Condor to find computing resources for the available tasks,

handle communication between the nodes, re-assign tasks if their current machine fails, and

globally manage all the parallel computations. That is, MW generates tasks whose computation

is subsequently managed by Condor. MW provides hooks to save the state of the driver, so that if

the driver, or its machine, crashes, the computation can make progress upon driver restart.

MW can run with one of several RMComm (Resource Management and Communication)

implementations. This layer implements communication between the master and the workers, and

the management of the worker machines. There are several choices, including communicating via

PVM, sockets and shared files. We have chosen the last option because it is the most robust; for

example, if the driver (master) crashes, the workers can continue their computation, which is not

possible using PVM and sockets. Although process communication using files is rather slow, this

application is not intensive in data exchanges, and the communication costs can be acceptable if

the computation time is long enough.

4.3. Grid platform details

In the experiments the computers of seven laboratories of the Computer Science Department of

the University of Málaga have been used. Many of them are equipped with PCs having modern

Intel Core 2 Duo, 3GHz processors. This means that each processor has two cores, so Condor

assumes that there are two processors per computer. For the sake of clarity, the term processorwill

be used throughout the article, although the correct term is core. The Condor pool also includes

slower single-core machines with Pentium IV at 1.66GHz and AMDAthlon at 1.1 and 2.0GHz.

Up to 300 processors have been used, being all interconnected through a 100Mbps Fast Ethernet

network. The code is written in C++, and all themachines run different flavours of Linux (Fedora

Core, Debian, SuSE, etc.).

5. Results

This section presents the experiments conducted to evaluate GrEA. First, some details of the

algorithm settings are given and, secondly, the GSM network instance used is described. Finally,

the experiments are presented from the point of viewof both parallelism (the parallel efficiency, the

workers used, and the tasks computed per minute are analysed in detail) and numerical accuracy.

5.1. Experimental setup

The results of running the sequential counterpart of GrEA have been included here. It is a standard

ssGA that uses the same operators (selection, crossover, mutation and local search). The aim is

to test the performance of GrEA in terms of both the parallelism of the grid-based approach and

its numerical accuracy. The parameter settings of these two GAs are detailed in Table 1.

Because of the stochastic nature of GAs, 30 independent runs of the GrEA have been done, but

only ten runs of the ssGA were performed owing to time constraints (each execution lasts more

than five days on a Pentium IV at 2.8GHz). Working with real problems and grids is very hard,

and thus a small number of independent runs is usually reported (Melab et al. 2006, Kuś 2007,

Lim et al. 2007). The same is done here with ssGA, but reporting on 30 independent runs for

GrEA, a value considered as the minimum for statistical significance.
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Engineering Optimization 1077

Table 1. Parameter settings of the GAs.

Parameter Value

Population size 100 individuals

Representation Integer (array of size 2612)

Crossover operator Uniform crossover (pc = 0.5)

Mutation operator Random (pm = 0.01)

Local search steps 6

Selection method Binary tournament

Replacement strategy Worst individual

Stopping condition 50,000 iterations

Figure 2. Topology of the GSM network used. Available in colour online.

5.2. GSM instance used

The GSM network used here has 711 sectors with 2612 TRXs to be assigned a frequency; the

constants in Equations (2), (3) and (6) were set to K = 100,000, cSH = 6 dB and cACR = 18 dB,

respectively. EachTRXhas 18 available channels (from 134 to 151). Figure 2 displays the network

topology, every triangle representing a sectorized antenna in which several TRXs operate.

This GSM network is currently operating in Denver (CO, USA), a 400 km2 city with more than

500,000 people, so its solution is of great practical interest.The data source to build the interference

matrix based on the C/I probability distribution uses thousands of Mobile Measurement Reports

(MMRs) (Kuurne 2002), rather than propagation prediction models. MMRs are a more accurate

data source, as they capture the call location pattern in the network and do not rely on predictions.

These properties make this GSMproblemmore realistic than standard available benchmarks (FAP

Web 2008). Indeed, the most similar available instances are the COST 259 benchmark, but the

basic traffic load is drawn at random according to an empirically observed distribution, and signals

are predicted with several propagation models. The Philadelphia, CELAR and GRAPH instances

(FAPWeb 2008) are even simpler.

5.3. Parallel performance

In this section the performance of GrEA is analysed when solving the AFP network consid-

ered. Table 2 summarizes the best value, the mean x̄, and the standard deviation σn, of several

performance measures.
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1078 F. Luna et al.

Table 2. Performance measures for GrEA.

Measure Best value x̄ σn

Max number of workers 282 235 24

Average number of active workers 164 140 10

Total CPU time (s) 659,149 680,274 8476

(7.62 days) (7.87 days)

Wall clock time (s) 4094 4879 429

(1.14 hours) (1.36 hours)

MW parallel performance 73.44% 71.79% 0.72%

Sequential ssGA time (s) 463,014 473,259 12 321

(3.36 days) (5.48 days)

Average parallel efficiency 41.28%

Although the Condor pool is composed of 300 processors at most, a maximum number of 282

have been used, and 235 on average. This is typical behaviour of grid computing systems, where

the number of available processors is dynamic, and they have to be shared among different users.

If the number of active workers is considered, it is around 140 on average. This is a consequence

of the behaviour of GrEA under Condor/MW. Whenever an MW application has tasks to be

computed, it asks the Condor system for available workers. The way MW asks for more workers

to Condor is by requesting a predefined number of them. This fixed number is configurable and

it has been set up to be 100 workers. This value corresponds to the set of initial tasks created to

evaluate the initial population, thus guaranteeing that there will be in the beginning one worker

for each task. This effect can be observed in Figure 3. It can be seen that, at the beginning of

the computation, the number of worker tasks increases up to 100; after a few minutes, another

100 processors are requested to the grid system. Finally, the algorithm obtains the rest of the

available processors. Although the total number of processors is roughly constant (about 220 in

the execution depicted in Figure 3), the average number of them is affected by the initial stage of

the algorithm.

An advantage of using grid computing systems is to solve, in a reasonable amount of time,

problems that otherwise would be considered unfeasible. In Table 2 it can be observed that

the average total CPU time reported by Condor (i.e. the sum of the computing time of all the

Figure 3. Number of workers during a typical GrEA execution.
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processors) is near to 8 days, while the wall clock time is 1.36 hours (more than 139 times faster).

These values clearly state the benefits of using the proposed approach.

The parallel performance reported by Condor is about 72% (a parallel efficiency of 0.72),

which can be considered as an excellent result in a grid platform. However, the computation/

communication could be improved by using a more computing intensive local search. Additional

experiments have been done with 10 and 20 local search steps (d = 10 and d = 20), and the

parallel performance grew up to 81% and 90%, respectively. The point here is that the local

search strategy is so accurate that it reaches a local optimum after five or six iterations, and

therefore the numerical results are similar to the ones reported in this work. It is clear then that

there is room for increasing the efficiency of GrEA.

The last two rows of Table 2 include the computing times of the sequential ssGA when solving

theAFP problem considered (about 5.4 days), as well as the parallel efficiency against the average

wall clock time required by GrEA. When comparing both ssGA and GrEA, the efficiency goes

down to 41.28%. The explanation is twofold. On the one hand, the ssGA has been compiled with

several optimization options to speedup the computation as much as possible, and some of them

are related to the type of processor of the machine where the program runs; these options are

disabled in GrEA owing to the heterogeneity of the processors in the grid. On the other hand,

there are processors in the grid platform that are much slower (see Section 4.3) than the one used

to run ssGA, a Pentium IV at 2.8GHz, so therefore workers spend longer times to compute the

same tasks thus delaying the entire computation. However, in practical terms, ssGA requires more

than five days to solve the problem while the grid only needs an hour and a half, so the benefits

of this approach still hold.

The throughput (tasks computedperminute) ofGrEAwhen solving theAFPproblem is analysed

next. In Figure 4 it can be observed that this number remains almost constant at around 630 tasks

per minute. This contrasts with the behaviour of the algorithm reported in Nebro et al. (2008),

where the throughput dropped in time owing to the computation time of the tasks decreasing

when the search progressed (from 30 seconds at the beginning down to two seconds at 60% of

the computation). This issue does not appear when evaluating the AFP, so it is not necessary to

adjust the computation grain dynamically as in Nebro et al. (2008).

Figure 4. Tasks per minute computed by the GrEA.
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Table 3. Numerical efficiency of the algorithms.

AFP Cost

Algorithm Best (min) x̄ σn

ACO 88,345.95 90,382.56 935.31

ssGA 85,463.20 86,234.68 523.75

GrEA 83,991.30 84,936.32 375.89

5.4. Accuracy

In this section, the numerical efficiency of GrEA is compared to both ssGA and the algorithm

for which the best results so far for this problem have been reported, the ACO presented in Luna

et al. (2007) (its parametrization is detailed in the given reference). Even though the GAs and the

ACO algorithm are not directly comparable (the ACO execution time was limited to 30 minutes

because other measures were used), the previous results on the problem cannot be ignored and

they are included both for completeness and for showing the competitivity of these proposals.

Table 3 includes the best (lowest), themean x̄, and the standard deviation σn of the resultingAFP

costs reached by the three algorithms. As stated before, 30 independent runs for GrEA and 10 for

ssGA have been run. For the ACO algorithm, the results reported in Luna et al. (2007) have been

used. An accurate statistical analysis has been performed here in order to compare the algorithms

numerically with confidence (Sheskin 2003, Dems̆ar 2006). First, a Kolmogorov–Smirnov test

is performed in order to check whether the values of the results follow a normal (Gaussian)

distribution or not. If the distribution is normal, the Levene test checks for the homogeneity of the

variances. If samples have equal variance (positive Levene test), anANOVA test is done; otherwise

aWelch test is performed. For non-Gaussian distributions, the non-parametric Kruskal–Wallis test

is used to compare the medians of the algorithms. Figure 5 summarizes the statistical analysis.

A confidence level of 95% is always considered (i.e. significance level of 5% or p-value under

0.05) in the statistical tests, which means that the differences are unlikely to have occurred by

chance with a probability of 95%. The result tables show x̄ and σn because all the samples follow

a Gaussian distribution.

To further analyse the results statistically, a post-hoc testing phase has been included in Table 4

which allows for a multiple comparison of the samples. The multcompare function provided

byMatlab © has been used. This function chooses the most appropriate type of critical value to be

used in the multiple comparison, which ranges from themore conservativeHSD or Tukey–Kramer

method to the less conservative Scheffe’s S procedure (Hochberg and Tamhance 1987). The same

confidence level has been kept for this testing phase (α = 0.05). The ‘+’ symbols in the table

point out that all pairwise comparisons among the algorithms are significant.

The first conclusion that can be drawn from the results is that the two GAs outperform theACO

algorithm. As stated before, this is somehow expected because the computational effort used in

Figure 5. Statistical analysis performed in this work.
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Table 4. Post-hoc tests of the results.

ssGA +
GrEA + +

ACO ssGA

the GAs is larger than the ACO one. The improvements are noticeable in both the best solu-

tion (88,345.95 down to 83,991.30) and the average solution (90,382.56 down to 84,936.32).

If σn is considered as a measure of robustness, GrEA and ssGA also outperform the ACO

approach.

But the really interesting fact that Table 3 shows is that GrEA has computed more accurate

frequency plans (lower AFP costs) than its sequential counterpart, ssGA, and with statistical

confidence, as the ‘+’ symbols of Table 4 show (indeed, this is the only actual goal of compa-

nies). The relevance of these results arises because these two algorithms share the same operators

and parameter settings, and they also use the same computational effort. The only difference is

the asynchronism introduced in GrEA, in which individuals evaluated by slower processors are

returned back when several iterations (with individuals sent to faster processors) have proceeded.

This means a higher diversity in the search is introduced, especially in the early steps, which later

Figure 6. Evolution of theAFP cost in GrEA and ssGA during (a) the whole execution and (b) the first 1000 iterations.
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1082 F. Luna et al.

guides the algorithm towards high-quality solutions (Alba and Troya 2001). Figure 6 graphically

displays this fact by including the best AFP cost of a typical run of GrEA and ssGA. In the

left-hand side of the figure, the evolution of the fitness during the entire computation (50,000

iterations) is shown. It can be seen that GrEA gets stuck later than ssGA and from then they

both improve the solution slightly. In Figure 6(b), the first 1000 generations of the same execu-

tion have been enlarged in order to show the higher diversity in GrEA at the beginning of the

computation. Indeed, ssGA outperform GrEA in the first 500 iterations, but it finds difficulties

to continue after that (see the flat regions during iterations 500 and 700). In the meanwhile,

GrEA keeps improving the solution. Within the context of this work, it can be concluded that

deploying ssGA on the grid is not only a way of reducing the computational time, but also of

improving the underlying search models, which allows the algorithm to compute more accurate

solutions.

6. Conclusions and future work

This work addresses a real-world instance of the AFP problem. The instance considered has a

huge search space, so the approach has been to combine the use of metaheuristics (numerically

powerful) and grid computing (computationally powerful). In particular, the GrEA algorithm

has been used. It is a grid-enabled GA that runs on a grid platform composed of up to 300

processors.

The problem has been first analysed from the point of view of its solution by a sequential GA;

thus, issues such as the problem representation, genetic operators (selection, mutation, crossover)

and local search strategy, have been addressed.A very accurate formulation has been used, which

is rarely found in the literature of this problem. Secondly, the GrEA algorithm has been applied

to solve a complex AFP instance corresponding to an actual city in the USA (Denver, CO).

The experiments carried out reveal that ssGA requires about five days of computation in a

modern PC, while executing GrEA in the grid reduces the time to one hour and a half. The overall

parallel efficiency obtained is around 72%, which is a quite satisfactory value considering the

number of processors used and that shared files in Condor are being used as the message passing

mechanism. This value also suggests that there is more room for improvement; for example, more

steps in the local search could bring a better computation/communication ratio.

While the reduction of the computing time from several days to less than two hours is an

interesting result in practical terms, it is also remarkable that the search capability of the GrEA

algorithm outperforms that of the equivalent sequential GA. The fact that better (lower) fitness

values can be obtained in the parallel algorithmwould allow us to reduce the computing time even

more in order to have high-quality solutions in shorter times; this can be useful in real scenarios,

where telecommunication companies need to perform many simulations to achieve a satisfactory

frequency plan for large cities (like Los Angeles, with more than 40,000 TRXs).

As future work, we are interested to use GrEA to solve even larger instances of theAFP (e.g. the

aforementioned Los Angeles instance). The use of this algorithm to solve other problems from

the telecommunication domain, such as ACP (Automatic Cell Planning), is a matter of future

research.
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