
Information Sciences 277 (2014) 273–283
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
An improved trajectory-based hybrid metaheuristic applied
to the noisy DNA Fragment Assembly Problem
http://dx.doi.org/10.1016/j.ins.2014.02.020
0020-0255/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Tel.: +54 2302422780.
E-mail address: minettig@ing.unlpam.edu.ar (G. Minetti).
Gabriela Minetti a,⇑, Guillermo Leguizamón b, Enrique Alba c,d

a Laboratorio de Investigación en Sistemas Inteligentes, National University of La Pampa, Argentina
b Laboratorio de Investigación y Desarrollo en Inteligencia Computacional, National University of San Luis, Argentina
c Dpto. de Lenguajes y Ciencias de la Computación, University of Málaga, Spain
d Technical University of Ostrava, Czech Republic

a r t i c l e i n f o
Article history:
Received 28 October 2011
Received in revised form 9 December 2013
Accepted 9 February 2014
Available online 18 February 2014

Keywords:
Metaheuristic
Simulated Annealing
Problem Aware Local Search
Parallelism
Noisy instance
DNA Fragment Assembly Problem
a b s t r a c t

The DNA Fragment Assembly Problem (FAP) is an NP-complete that consists in reconstructing
a DNA sequence from a set of fragments taken at random. The FAP has been successfully and
efficiently solved through metaheuristics. But these methods usually face difficulties to suc-
ceed when noise appears in the input data or during the search, specially in large instances. In
this regard, the design of more efficient techniques are indeed necessary. One example of
these techniques found in literature is the Problem Aware Local Search (PALS) which
represents a state-of-the-art and robust assembler to solve noisy instances. Although PALS
performs better than other metaheuristics, the quality of the achieved solutions by this
method can still be improved. Towards this aim, this work proposes a new hybrid and
effective method that combines a local search technique specially designed for this problem
(PALS) with Simulated Annealing (SA), which is further distributed following an island model.
Our proposed hybrid approach showed an improved performance on the largest non-noisy
and noisy instances when compared separately with Simulated Annealing and PALS.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The Fragment Assembly Problem (FAP) consists in building a DNA sequence from several hundreds (or even thousands) of
fragments which are obtained in the laboratory. The DNA fragment assembly is needed because current technology, such as
gel electrophoresis, cannot sequence DNA molecules longer than 3000 bases in a direct and accurate way. Moreover, most
genomes are much longer than 3000 bases. FAP is the primary goal in any genome project and the remaining phases strongly
depend on the accuracy of the results at this stage. Therefore, we need accurate and efficient methods to solve this problem.
Unfortunately, the length of the DNA sequence is not the only difficulty that researchers face. Noise is another important
obstacle that can appear in the laboratory when the sequencing of long DNA strands is carried out in the laboratory. Thus,
the data used for assembling the fragments may contain errors.

Most sequence assembly algorithms are based on variations of a greedy algorithm, e.g., Phrap [11], CAP3 [12], Celera
assembler [25], TIGR Assembler [29], and STROLL [8]. Through such greedy approaches, the fragments are assembled by
repeatedly merging a pair of them with the highest overlap, according to a specific and complex criterion. The methods
mentioned before obtain high quality results for small–medium sequences, but they present some drawbacks with respect
to many large genome sequencing projects. In contrast, metaheuristic techniques are being used with accurate results on

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.02.020&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.02.020
mailto:minettig@ing.unlpam.edu.ar
http://dx.doi.org/10.1016/j.ins.2014.02.020
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

274 G. Minetti et al. / Information Sciences 277 (2014) 273–283
small–medium sequences and also in larger ones. What is more, many efficient assemblers are based on metaheuristics, such
as Simulated Annealing [19], Variable Neighbourhood Search (VNS) [2,5], Genetic Algorithms (GAs) [2,14–16], Ant Colony
Optimization (ACO) [19], and Problem Aware Local Search (PALS) [3,4].

It is worth noting that, on a general basis, the algorithms mentioned above have never dealt with problem instances con-
taining any kind of noise in their data. Furthermore, few works about metaheuristics report basic studies dealing with errors
or noise in some stages of FAP, for instance [13,20,21,31]. Specifically Minetti et al. [21], used SA, PALS, and GA to solve non-
noisy and noisy instances of FAP. Moreover, they dealt with three different sources of noise: Noisy Nucleotide Base (NB),
Noisy Score Matrix (NS), and Noisy Fitness (NF). The authors concluded that SA is the best of the three methods applied
to solve non-noisy instances whereas PALS is the best and most robust assembler to solve the noisy ones. Unfortunately,
for the largest instances, PALS found solutions with an undesirable number of contigs.

As obtaining a DNA sequence mainly depends on the accuracy and efficiency of the applied assemblers, our interest is
twofold: analyze the PALS shortcomings and propose a more accurate and efficient technique based on this metaheuristic
to solve noisy instances of FAP. Our proposal draws on the benefits of PALS strengths and mitigates their weaknesses. Thus,
the new assembler (in the same way as PALS) uses an inexpensive way to evaluate each candidate movement of fragments.
But, unlike PALS, it is designed to avoid a quick convergence to local optima by incorporating two useful design strategies:
hybridization with SA and parallelization through an island model.

Over the last years, the interest in hybrid metaheuristics has notably increased. Combinations of trajectory-based meta-
heuristics, population-based metaheuristics, mathematical programming, constraint programming, and machine learning
techniques have provided very powerful search algorithms. The most frequently implemented model of hybrid metaheuris-
tics is the combination of trajectory-based (e.g., local search, Simulated Annealing, taboo search, etc.) with population-based
metaheuristics (e.g., genetic algorithms, scatter search, swarm optimization, etc.). This kind of hybridization is known as
low-level teamwork hybrid [30] and it was used by Chelouah and Siarry [7], Salto et al. [27], Minetti et al. [23], Duarte
et al. [9], among many other researchers.

Alternatively, only few hybrid metaheuristic models use the strategy called low-level relay hybrid [30] which consists in
embedding a given metaheuristic (such as SA) into a trajectory-based metaheuristic (such as PALS). For example, Martin
et al. [17] incorporated deterministic local search techniques into SA in order to explore only local optima, and Mashinchi
et al. [18] proposed a method based on taboo search and Nelder–Mead search strategy applied to global continuous optimi-
zation problems. Following this hybridization approach, we propose a low-level relay hybrid technique to embed SA into
PALS in order to avoid local optima, i.e., to promote exploration when a stagnation point is detected.

Also, it is worth noting that several parallel models that have been designed for metaheuristics collaborate with the
hybridization techniques to avoid local optima, since those parallel models usually increase the exploration. Furthermore,
these kinds of models constitute an effective strategy to reduce the search time, improve the solution quality and robustness,
and solve large-scale problems. For instance, the popular island model performs sparse exchanges of solutions among sets of
solutions (islands). Consequently, time complexity is significantly reduced but keeping two desirable features: diversity of
solutions and exploitation of promising regions of the search space. Based on the above considerations, we propose an
assembler based on a hybrid metaheuristic which is implemented according to the widely known island model formerly
proposed for parallel metaheuristics.

The rest of the paper begin describing in Section 2 the Fragment Assembly Problem. Section 3 introduces and explains our
algorithmic proposal and Section 4 describes the experimental design. Then, an analysis of the algorithmic behavior for non-
noisy and noisy instances is presented in Section 5. This analysis includes a detailed study of our proposal and a comparison
with existing assemblers. Finally, conclusions and hints for further research are discussed.

2. The DNA Fragment Assembly Problem

The reconstructs an original DNA sequence from a set of separate fragments which are obtained by a sequencing proce-
dure. One of the most widely used sequencing procedures is shotgun sequencing [28]. This procedure firstly cuts the DNA into
small pieces, then identifies the sequences in each of these fragments, and lastly puzzles the fragments together to create the
original contiguous sequence, i.e., the contig. The main advantages of the shotgun sequencing method are its high level of
automation and its scalability. Specifically, the shotgun sequencing method involves three steps:

1. Several copies of the DNA are produced and each copy is broken into millions of random fragments.
2. Those fragments are read by a DNA sequencing machine.
3. An assembler pieces together many overlapping fragments and reconstructs the original sequence.

The DNA fragment assembly process is divided into three different phases (as shown in Fig. 1):

1. Overlap: finding the overlapping among fragments (score). This phase consists in finding the best or longest match
between the suffix of the first sequence and the prefix of the second one for each pair of sequences. All possible pairs
of fragments are compared to determine their similarity. Usually, the dynamic programming algorithm is used in this step
to find semi-global alignments.

G. Minetti et al. / Information Sciences 277 (2014) 273–283 275
2. Layout: finding the fragment order based on computed similar scores. This is the most difficult step due to the fact that
true overlaps are hard to determine. After the order is determined, an alignment algorithm is applied to combine all the
pair-wise alignments obtained in the overlap phase.

3. Consensus: deriving the DNA sequence from the layout. The most common technique used in this phase is to apply the
majority rule to build the consensus.

If no sequencing error is detected at the overlap phase, the process simply finds the longest suffix of one string that
matches exactly the prefix of another one. However, when sequencing errors exist, the process searches for the best match
but a small percentage of errors still remains (1–3%). During the assembly process the only information available is the
sequence of bases; therefore, the ordering of the fragments must primarily rely on fragment similarity and on how much
they overlap.

Once the fragments have been ordered (layout), the final consensus is generated. This means that a multiple alignment is
computed to obtain a consensus sequence that will be used as the final genomic sequence. The quality of a consensus can be
measured by measuring the coverage distribution. The coverage at a base position is defined as the number of fragments
present in that position, i.e., it measures the redundancy of fragment data. Moreover, it represents on average, the number
of fragments in which a given nucleotide in the target DNA is expected to appear. The coverage is then computed as the
number of bases read from fragments over the length of the target DNA:
Coverage ¼
Pn

i¼1length of the fragment i
target sequence length

; ð1Þ
where n stands for the number of fragments. Thus, the higher the coverage and the smaller the number of gaps, the better the
results. A partial coverage is achieved provoked when the algorithm cannot assemble a given set of fragments into a single
contig. More precisely, a contig is defined as a layout consisting of contiguous overlapping fragments. Overlapping between
adjacent fragments must be greater than or equal to a predefined threshold (i.e., cutoff parameter).

Particularly, the assembly of DNA fragments into a consensus sequence corresponding to the parent sequence constitutes
the ‘‘Fragment Assembly Problem’’, which is a permutation NP-hard problem [26].

3. Parallel and hybrid PALS-based metaheuristic

PALS [3] uses a specific local search to improve a single solution. In this way, this metaheuristic assembler performs a
trajectory in the search space. PALS’ main strength is the inexpensive calculation of the variation in the overlap and in
the number of contigs between the current solution and the resulting solution after applying a movement. This calculation
is not computationally expensive since neither the fitness function nor the number of contigs are calculated in each iteration;
instead, PALS estimates the variation of these values. However, its most important weakness is the quick convergence to
local optima caused by the local search. This drawback is observed when PALS is already applied to large instances, especially
if those instances are noisy, as it has been reported [21].
Fig. 1. DNA Fragment Assembly Process.

Fig. 2. PH-PALS.

276 G. Minetti et al. / Information Sciences 277 (2014) 273–283
In order to take advantage of PALS’ strengths and improve the accuracy of results, we propose a new metaheuristic based
on PALS. Our proposal uses three different mechanisms to prevent local optima by:

1. Extending the local search to all possible fragment movements in a solution.
2. Applying SA (refer to [21]) when the best movement does not produce any change after a specified number of tries.
3. Using the island model to promote diversification as well as intensification during the search.

The main aim of the first mechanism is to force screening through all the remaining movements; however, only the best
one is kept. The second mechanism introduces an adaptive hybridization, since SA is applied if, after a certain number
(threshold) of tried moves, PALS does not accept another best movement. These two mechanisms generate a new hybrid
metaheuristic, called H-PALS (see Algorithm 1).

Algorithm 1. H-PALS.

Generate S; {generate the initial solution by using the greedy seeding strategy}
k ¼ 0; {initialize the current iteration counter}
threshold ¼ 5 � N; {N is the number of fragments}
repeat

t ¼ 0; {initialize the current movement counter}
L ¼£;
bestDc ¼ bestDf ¼ 0;
for i ¼ 0 to N do

for j ¼ 0 to N do
Dc; Df ¼ CalculateDeltaðS; i; jÞ; {see Algorithm 2}
if ðDc 6 0Þ and (Dc < bestDc) and (Df > bestDf) then

L ¼ L[< i; j;Dc;Df >; {Add candidate movements to L}
best Dc ¼ Dc;
best Df ¼ Df ;
t ¼ 0;

else
t ¼ t þ 1;

end if
end for
{K is the max. number of iterations per individual}
if ðthreshold P tÞ and ðk < KÞ then

Apply SAðS; kÞ; {Apply SA to the current solution increasing the number of iterations ðkÞ}
L ¼£;
best Dc ¼ bestDf ¼ t ¼ 0;

end if
end for
if L <> £ then
< i; j;Dc;Df >¼ ExtractðLÞ; {Select the best movement from L}
ApplyMovementðS; i; jÞ; {Modify the current solution}

G. Minetti et al. / Information Sciences 277 (2014) 273–283 277
k ¼ kþ 1; {Increment the number of iterations}
end if

until k >¼ K
return S;

The strategy of embedding SA into PALS – a low-level relay hybridization [30] – reintroduces exploration in the search
process without a negative impact on exploitation. In other words, as SA accepts with a high probability solutions of lower
quality during the first stage of the search, the hybrid algorithm will be capable of avoiding local optima. During the anneal-
ing process, this probability decreases, thus intensifying the search and reducing the exploration in order to exploit a
restricted area of a search space. Therefore, the algorithm can restart the search from another potential promising region
towards avoiding stagnation.
Algorithm 2. CalculateDelta.

Dc ¼ 0;
Df ¼ 0;
{Calculate the variation in the overlap}
Df ¼ wS½i�1�;S½j� þwS½i�;S½jþ1�; {Add the score of the new overlap}
Df ¼ Df �wS½i�1�;S½i� �wS½j�;S½jþ1�; {Remove the score of the current overlap}
{Test if a contig is broken, and if so, increase the number of contigs}
if (wS½i�1�;S½i� > cutoff) or (wS½j�;S½jþ1� > cutoff)then

Dc ¼ Dc þ 1;
end if
if (wS½i�1�;S½j� > cutoff) or (wS½i�;S½jþ1� > cutoff) then

Dc ¼ Dc � 1;
end if
return Dc; Df ;

Finally, H-PALS is distributed into small islands to take advantage of a multicore processor architecture. Thus, the number
of individuals (solutions) on each island matches the number of cores in the processor. Consequently, each core runs a thread
where only one permutation is processed by this new hybrid metaheuristic. In this way, two levels of parallelism can be
recognized: one is given by the island model that runs one island per machine, the other one is presented on each island.
Therefore, a thread is created on each core where only one permutation is computed at a time. As a consequence of applying
this third mechanism to H-PALS, a new parallel algorithm called PH-PALS is created.

In the island model, a set of solutions (population in the island) is processed independently from others. Moreover,
PH-PALS tries to overcome premature convergence by preserving the diversity generated by the semi-isolation of the
populations. With a given migration frequency, the multiple islands exchange solutions between them over a certain
communication topology. Due to this, PH-PALS enables cooperation by exploiting promising areas found by other islands.

PH-PALS arranges the islands in a unidirectional ring with asynchronous communication and each island migrates a solution
when k is multiple of 25,000. Besides, the source island chooses the best solution as a migrant, and the target island selects and
replaces the worst individual if the incoming one is better. Hence, the algorithm jumps to another search area where better solu-
tions have been found. Fig. 2 shows a working scheme of PH-PALS where the master process is in charge of:

1. generating n islands,
2. receiving a copy of the best individual from each island, and
3. selecting and returning the best individual received.

In addition, each island completes these tasks by:

1. generating m threads and one individual per thread,
2. running H-PALS over the individual in each thread,
3. selecting the best individual and sending a copy of it to the next island,
4. receiving an individual from the previous island,
5. replacing the worst individual if the incoming one is better or equal, and
6. selecting the best individual and sending a copy of it to the master when all threads end.

The main idea of the second level of parallelism is to take advantage of the current processor architecture. In order to do
so, a thread is created to run H-PALS in each core. Therefore, m permutations are processed in parallel on each island. Besides,

Table 1
Information of data sets. Accession numbers are used as instance names.

Instances Coverage Mean fragment length Number of fragments Original sequence length

GenFrag instances
x60189_4 4 395 39 3835
x60189_5 5 386 48
x60189_6 6 343 66
x60189_7 7 387 68
m15421_5 5 398 127 10089
m15421_6 6 350 173
m15421_7 7 383 177
j02459_7 7 405 352 20000
bx842596_4 4 708 442 77292
bx842596_7 7 703 773

DNAgen instances
acin1 26 182 307 2170
acin2 3 1002 451 147200
acin3 3 1001 601 200741
acin5 2 1003 751 329958
acin7 2 1003 901 426840
acin9 7 1003 1049 156305

278 G. Minetti et al. / Information Sciences 277 (2014) 273–283
if the first level of parallelism is considered, m� n permutations are processed at the same time in the ring. Consequently,
while PALS processes one solution at a particular time, PH-PALS processes m� n solutions simultaneously.

In previous works [21–24] we detected significant improvements in the performance of metaheuristic assemblers when a
greedy seeding strategy was used to create FAP initial solutions. Therefore, PH-PALS is designed to use the greedy technique
proposed by Minetti et al. [22] in order to create the respective initial solutions on each core.

We also considered a panmictic version of this algorithm, called PanH-PALS, where a population of m� n individuals is
processed in only one computer. In this case, each individual is processed separately from others using H-PALS during
500,000 iterations.
4. Experimental methodology

In this section we describe the problem instances used in the different computational experiments designed for this work,
as well as the execution environment.

We chose four sequences from the NCBI website1: a human MHC class II region DNA with fibronectin type II repeats HUM-
MHCFIB, with accession number x60189; a human apolopoprotein HUMAPOBF, with accession number M15421; the complete
genome of bacteriophage lambda, with accession number J02459; and a sequence of Neurospora crassa BAC, with accession
number BX842596 (GI38524243). As shown in Table 1, we used data generated by GenFrag [10] to generate the different data
sets from these sequences. GenFrag is a UNIX/C application created to accept a DNA sequence as input, and to generate a set of
overlapping fragments as output. Furthermore, we selected other sequences from the NCBI website, which correspond to a hu-
man microbion bacterium ATCC 49176 with accession numbers from ACIN02000001 to ACIN02000026. Particularly, we used
the longest sequences from this genome, and we fragmented them with the DNAgen application2. These new instances are
shown in the second part of Table 1. The cutoff, which we set to thirty (a very high value), provides a filter for spurious overlaps
introduced by experimental error.

This set of instances only contains non-noisy data whereas our goal is to test the capacity of the proposed assembler to
deal with instances with and without noise. Particularly in this work, noise comes from three different sources: the Nucle-
otide Bases (NB), the Score Matrix (NS), and Fitness (NF). Therefore, noise occurs in three different phases of FAP resolution:
before the first phase – Overlap – if it occurs in the nucleotide bases; during the Overlap phase if errors appear in the score
(or overlapping) matrix, and during the Layout phase, if the fitness is noisy. A noteworthy fact is that the NB and NS sources
of noise lead to difficulties in aligning the overlapping portions of sequences and in determining the consensus sequence,
while NF can misguide the metaheuristic search. In Minetti et al. [21], new sets of noisy instances were generated by these
three sources of noise, using the instances described in Table 1. Consequently, we used the instances with noise in
the nucleotide bases, NB-originalInstanceName (e.g., NB-x60189_4), the instances with 10% of noise in the score
matrix, NS10-originalInstanceName (e.g., NS10-acin1), and instances with noisy fitness, NF-originalInstanceName (e.g.,
NF-38524243_7).

We used the MALLBA library [6] to implement H-PALS, PanH-PALS, and PH-PALS. The experimentation was carried out on
a cluster of 12 computers with Intel Core 2 Duo at 3 GHz, linked by Fast Ethernet, under Linux with a 2.4.19–4 GB kernel
version.
1 http://www.ncbi.nlm.nih.gov/.
2 http://mdk.ing.unlpam.edu.ar/lisi/principal.html.

http://www.ncbi.nlm.nih.gov/
http://mdk.ing.unlpam.edu.ar/lisi/principal.html

Table 2
Parametric values used by H-PALS, PH-PALS, and PanH-PALS.

Parameter Value

H-PALS
Markov chain length 10
Temperature decay 0.99
Selection movement The best movement
Threshold 5� Number of fragments
Max. iterations ðKÞ 500,000

PH-PALS
Number of individuals per Island ðmÞ 2
Number of Islands ðnÞ 3, 6, 9, and 12
Migration frequency 25,000 iterations
Migration policy The best individual is sent

The worst individual is replaced
If the incoming one is better or equal

PanH-PALS
Population size m� n

Instances x60189

C
on

tig
s

Instances m15421

C
on

tig
s

Instances j02459

C
on

tig
s

Instances 38524243

C
on

tig
s PALS

PanH−PALS
PH−PALS

Non−Noisy NF NS10 Non−Noisy NF NS10 Non−Noisy NF NS10

Non−Noisy NF NS10 Non−Noisy NF NS10

Instances acin

C
on

tig
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0
1

2
3

4

0
10

20
30

40

0
10

0
20

0
30

0
40

0

Fig. 3. Average number of contigs found by PALS, PanH-PALS, and PH-PALS under the panmictic and distributed versions for each group of non-noisy and
noisy instances. (Solving NF instances with PALS makes non-sense).

G. Minetti et al. / Information Sciences 277 (2014) 273–283 279
Each island was physically run on a separate processor. In order to study the PH-PALS behavior on different numbers of
processors, PH-PALS has been distributed on 3, 6, 9, and 12 islands. Two permutations were processed in parallel in each
processor, one by core. Furthermore, the panmictic version was also tested. Because of the stochastic nature of the
algorithms, 30 independent runs of each test were performed to gather meaningful experimental data and apply statistical
confidence metrics to validate the results and conclusions. Some preliminary runs were performed and the best results were
found by using the parameter values summarized in Table 2.

280 G. Minetti et al. / Information Sciences 277 (2014) 273–283
5. Experimental results

In this section we analyzed the behavior of PanH-PALS and PH-PALS to solve non-noisy and noisy FAP instances. We also
compared their outcomes with the results obtained by PALS [21]. After that, we used the speedup measure to study the
PH-PALS performance. Finally, we compared the quality of the results obtained by PanH-PALS and PH-PALS with other
assemblers proposed in literature. It should be noted that each analysis was statistically corroborated by applying the
Kruskal–Wallis test with a 95% of confidence level to the results obtained for each instance.

5.1. Behavior analysis

Fig. 3 shows the results obtained from PALS, PanH-PALS, and PH-PALS for the non-noisy and noisy cases. It must be noted
that PALS does not evaluate the fitness function during the search; as a consequence, solving NF instances with PALS makes
no sense.

Afterwards, we compared the behavior of PALS, PanH-PALS, and PH-PALS on non-noisy instances and all three sources of
noise (NB, NF, and NS10) and, based on this comparison (see Fig. 3) we detected that:

� For the smallest instances (accession number x60189), all three assemblers found the optimal number of contigs on
non-noisy, NB, NF, and NS10 cases.
� For medium instances (m15421), a good behavior is shown by all three assemblers since they find solutions with at most

two contigs (optimal is always one contig). Furthermore, PALS, PanH-PALS, and PH-PALS showed a similar behavior
2
4

6
8

10
12

Instances x60189

#processors

sp
ee

du
p

3 6 9 12

2
4

6
8

10
12

Instances m15421

#processors

sp
ee

du
p

3 6 9 12

2
4

6
8

10
12

Instances j02459

#processors

sp
ee

du
p

3 6 9 12

2
4

6
8

10
12

Instances 38524243

#processors

sp
ee

du
p

3 6 9 12

Linear Speedup
Non−Noisy
NB
NF
NS10

2
4

6
8

10
12

Instances acin

#processors

sp
ee

du
p

3 6 9 12

Fig. 4. PH-PALS speedup for different number of processors.

Table 3
Average number of contigs obtained by PH-PALS, SA, PALS, GA, CAP3, and PHRAP. Symbol – showed that this information cannot be computed. The best values
are in boldface.

Instances PH-PALS SA PALS GA CAP3 PHRAP

x60189 1.00 1.00 1.00 1.00 1.00 1.00
m15421 1.67 1.00 1.67 1.67 3.33 1.50
j02459 1.00 1.00 1.00 1.00 1.00 1.00
38524243 4.50 1.00 4.50 4.50 5.00 4.00
acin 169.5 1.00 404.00 404.17 407.33 –

NB-x60189 1.00 1.00 1.00 1.00 1.00 –
NB-m15421 1.67 1.67 1.67 1.67 3.33 –
NB-j02459 2.00 3.00 3.00 2.00 1.00 –
NB-38524243 37.00 6.00 4.50 5.00 6.50 –
NB-acin 200.33 404.00 556.33 404.00 412.33 –

G. Minetti et al. / Information Sciences 277 (2014) 273–283 281
pattern when solving non-noisy and NB instances. Instead, when the NF-m15421 instances were solved, PanH-PALS
obtained slightly better solutions than PH-PALS. Finally, for NS10-m15421 instances PALS and PH-PALS found better solu-
tions than PanH-PALS.
� For the instances with accession number j02459 and 352 fragments we found more differences than similarities on the

behavior of the three assemblers. For non-noisy, NF, and NS10 instances, only PALS and PH-PALS found optimal solutions.
Instead, for the NB cases, PALS and PanH-PALS found the optimal number of contigs.
� For still instances (38524243), none of the three assemblers found the optimal solution. Specifically for the non-noisy, NF,

and NS10 instances, all three assemblers behaved in a similar way since, on average, they obtain solutions with five con-
tigs. However, for the NB cases, PALS was the best choice, since it obtained results with five contigs in contrast with PanH-
PALS and PH-PALS that found solutions with 35 or more contigs.
� For the largest instances (acin), the number of contigs found by PanH-PALS and PH-PALS decreased more than 50% in com-

parison with the results found by PALS. In particular, for non-noisy and NF instances, PanH-PALS was the best choice, and
for NB and NS10 instances the best one was PH-PALS.

To summarize, when PanH-PALS and PH-PALS solve the largest instances, they achieve the goal proposed in this paper.
Thus, they are capable of avoiding local optima and decreasing the number of contigs in the solutions for larger noisy
instances. Moreover, for the remaining instances, our proposal performs as well as PALS. Additionally, PH-PALS and PALS share
an interesting feature; they are robust in the presence of noisy information, since no significant differences are detected among
solutions found in non-noisy and noisy instances.
5.2. Performance analysis

In this section we analyzed (see Fig. 4) the PH-PALS performance taking into account the speedup measure. The speedup
measure compares the serial time with respect to the parallel time to solve a particular instance of FAP. More specifically, we
used the weak speedup proposed by Alba [1] because PH-PALS is a non-deterministic algorithm. In order to assess the speed-
up of PH-PALS properly, we ran this assembler on 3, 6, 9, and 12 processors using 3, 6, 9, and 12 islands, respectively.

We also studied the PH-PALS speedup on non-noisy instances and all three sources of noise (NB, NF, and NS10). After per-
forming this study (Fig. 4), we concluded that:

� In general, the speedup grows as the number of processors increases (except for NB-x60189 and NF-j02459 instances).
� For all cases, we obtained a sublinear speedup, since it was less than the respective number of processors.
� In general, PH-PALS achieved a higher speedup when solving non-noisy instances, although the differences between non-

noisy instances and each noisy scenario (NB, NF, and NS10) were not statically significant.

In general, we can stated that PH-PALS is able to scale with larger computational resources, what constitutes a desirable
feature of all parallel algorithms.
5.3. Comparison with existing assemblers

In this section, we compared the behavior of our approach with other well-known assembler algorithms found in liter-
ature: CAP3 [12], PHRAP [11], SA [21], PALS [21], and GA [21]. The first two packages automate fragment assembly by using a
variety of greedy-based techniques. On the other hand, the last three assemblers are metaheuristic algorithms adapted to
solve FAP. It is worth mentioning that, regarding the computational effort, these assemblers apply the stopping criterion pro-
posed by Minetti et al. [21] in order to make a similar effort to solve the same instance.

282 G. Minetti et al. / Information Sciences 277 (2014) 273–283
To compare the algorithms mentioned above, in Table 3 we show the average number of contigs that PH-PALS, SA, PALS,
GA, and CAP3 found for non-noisy and noisy instances (NB). Due to the way in which noise is considered in the problem,
CAP3 can only work with the NB instances and PHRAP with several non-noisy instances: x60189, m15421, j02459, and
38524243. On the other hand, given the absence of an ‘‘evaluation’’ concept in PALS and the huge sets of data in Bioinfor-
matics, we decided to use real time as stopping criterion to establish a fair comparison among these metaheuristic assem-
blers. For this reason, PH-PALS, SA, PALS, and GA are given 60 s as execution time and then their attained accuracy is
reported.

After analyzing Table 3, we found that SA provided the best solution for all non-noisy instances. Furthermore, PH-PALS
outperformed PALS, GA, CAP3, and PHRAP when solving the non-noisy acin instances; since the number of contigs decreased
between 30% and 75%. For the remaining non-noisy instances, PH-PALS behaved in a similar way to PALS, GA, CAP3, and
PHRAP. In addition, for NB-acin instances PH-PALS outperformed all these assemblers, including SA, by reducing the number
of contigs to between 50% and 65%. For the rest of NB instances PH-PALS generally equaled the quality achieved by the
remaining assemblers.

To summarize, for the largest instances PH-PALS outperformed PALS, GA, CAP3, and PHRAP and, for the remaining
instances, the behavior was similar among all of them.
6. Conclusions

In this paper we presented PH-PALS, a new parallel and hybrid metaheuristic based on PALS for solving noisy instances of
FAP. PH-PALS is the result of the hybridization of PALS with SA, which is additionally distributed and parallelized according
to an island model. The use of SA helps PH-PALS to escape from local optima and, as a result, the parallelization increases PH-
PALS performance. The quality of the results found by the proposed PH-PALS algorithm clearly outperformed SA, PALS, GA,
and CAP3, when it solved the largest noisy instances for all different sources of noise (NS, NB, and NF). PH-PALS also behaved
better than PALS, GA, and CAP3 when the largest non-noisy were solved. For the remaining instances, PH-PALS showed the
same behavior with respect to the other assemblers. In short, PH-PALS may constitute a new state-of-the-art technique for
FAP, since it equals and outperforms the rest of the competitors. Indeed, PH-PALS can be considered a robust assembler, in
view of its high accuracy and real time efficiency, both for non-noisy and noisy FAP instances.

As further research lines, we would first attempt to fine-tune the algorithmic parameters with the aim of improving the
current results and, hopefully, reach the optimal solutions for noisy instances (ideally, one contig). As a second research line,
we plan to increase the speedup of our algorithm in order to obtain, at least, a linear speedup. Another proposal would
address the exchange of useful information among individuals belonging to the same island, by applying some crossover
operator among them, as previously tested in [22]).

Acknowledgements

The authors wish to thank the following institutions for their financial support which funded this research: National
University of La Pampa; ANPCYT, PICTO 2011-0278; National University of San Luis; Spanish Ministry of Sciences and
Innovation European FEDER under contract TIN2011-28194 (road ME Project, available at URL http://roadme.lcc.uma.es);
VSB-Technical University of Ostrava and IT4Innovation center (Czech Republic) through contract 806/5474142.

References

[1] E. Alba, Parallel evolutionary algorithms can achieve super-linear performance, Inf. Process. Lett. 82 (2002) 7–13.
[2] E. Alba, Parallel Metaheuristics: A New Class of Algorithms, WILEY Series on Parallel and Distributed Computing, Wiley, 2005.
[3] E. Alba, G. Luque, A new local search algorithm for the DNA fragment assembly problem, in: Proceedings of Evolutionary Computation in Combinatorial

Optimization, EvoCOP’07, Lecture Notes in Computer Science, vol. 4446, Springer, Valencia, Spain, 2007, pp. 1–12.
[4] E. Alba, G. Luque, A hybrid genetic algorithm for the DNA fragment assembly problem, in: C. Cotta, J. van Hemert (Eds.), Recent Advances in

Evolutionary Computation for Combinatorial Optimization, Studies in Computational Intelligence, vol. 153, Springer, Berlin/Heidelberg, 2008, pp. 101–
112.

[5] E. Alba, G. Luque, G. Minetti, Variable neighborhood search for solving the DNA fragment assembly problem, in: Proceedings of XIII Congreso Argentino
de Ciencias de la Computación (CACIC 2007), Corrientes, Argentina, pp. 1359–1370.

[6] E. Alba, G. Luque, J. Nieto, G. Ordóñez, G. Leguizamón, MALLBA: a software library to design efficient optimization algorithms, Int. J. Innov. Comput.
Appl. 1 (2007) 74–85.

[7] R. Chelouah, P. Siarry, Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions,
Euro. J. Operat. Res. (2003) 335–348.

[8] T. Chen, S. Skiena, A case study in genome-level fragment assembly, in: Proceedings of The Eighth Symposium on Combinatorial Pattern Matching
(CPM 1997), pp. 206–223.

[9] A. Duarte, R. Martí, F. Glover, F. Gortázar, Hybrid scatter tabu search for unconstrained global optimization, Ann. OR 183 (2011) 95–123.
[10] M.L. Engle, C. Burks, Artificially generated data sets for testing DNA sequence assembly algorithms, Genomics 16 (1993) 286–288.
[11] P. Green, Phrap, version 1.090518, 2009. <http://www.phrap.org>.
[12] W. Huang, A. Madan, CAP3: a DNA sequence assembly program, Genome Res. 9 (1999) 868–877.
[13] K. Kim, C. Mohan, Parallel hierarchical adaptive genetic algorithm for fragment assembly, Proceedings of The 2003 Congress on Evolutionary

Computation, CEC03, vol. 1, IEEE, 2003, pp. 600–607. ISBN: 0-7803-7804-0.
[14] L. Li, S. Khuri, A comparison of DNA fragment assembly algorithms, in: Proceedings of The 2004 International Conference on Mathematics and

Engineering Techniques in Medicine and Biological Sciences, Las Vegas, 2004, pp. 329–335.
[15] G. Luque, E. Alba, Metaheuristics for the DNA fragment assembly problem, Int. J. Comput. Intell. Res. 1 (2005) 98–108.

http://roadme.lcc.uma.es
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0045
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0050
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0050
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0055
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0055
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0055
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0060
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0060
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0060
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0060
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0060
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0060
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0065
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0065
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0070
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0070
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0075
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0080
http://www.phrap.org
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0085
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0090
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0090
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0090
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0095

G. Minetti et al. / Information Sciences 277 (2014) 273–283 283
[16] G. Luque, E. Alba, S. Khuri, Chapter 16: assembling DNA fragments with a distributed genetic algorithm, in: Parallel Algorithms for Bioinformatics,
Wiley, 2006.

[17] O. Martin, S. Otto, E. Felten, Large-step Markov chains for the TSP incorporating local search heuristics, Operat. Res. Lett. (1992) 219–224.
[18] M.H. Mashinchi, M.A. Orgun, W. Pedrycz, Hybrid optimization with improved tabu search, Appl. Soft Comput. 11 (2011) 1993–2006.
[19] P. Meksangsouy, N. Chaiyaratana, DNA fragment assembly using an ant colony system algorithm, Proceedings of The 2003 Congress on Evolutionary

Computation, CEC03, vol. 3, IEEE, 2003, pp. 1756–1763. ISBN: 0-7803-7804-0.
[20] J.R. Miller, A.L. Delcher, S. Koren, E. Venter, B. Walenz, A. Brownley, J. Johnson, K. Li, C. Mobarry, G. Sutton, Aggressive assembly of pyrosequencing reads

with mates, Bioinformatics 24 (2008) 2818–2824.
[21] G. Minetti, E. Alba, Metaheuristic assemblers of DNA strands: noiseless and noisy cases, in: Proceedings of IEEE Congress on Evolutionary Computation

(CEC 2010), pp. 1–8.
[22] G. Minetti, E. Alba, G. Luque, Seeding strategies and recombination operators for solving the DNA fragment assembly problem, Inform. Process. Lett.

108 (2008) 94–100.
[23] G. Minetti, G. Luque, E. Alba, Variable neighborhood search as genetic algorithm operator for DNA fragment assembling problem, in: Proceedings of

Eighth International Conference on Hybrid Intelligent Systems (HIS’08), Barcelona, Spain, pp. 714–719.
[24] G. Minetti, G. Luque, E. Alba, A new hybrid SA for solving the DNA fragment assembly problem, in: Proceedings of XXVIII Internacional Conference of

the Chilean Computing Science Society, Chilean Computing Science Society (SCCC 2009), 2009, pp. 109–116.
[25] E.W. Myers, A whole-genome assembly of drosophila, Science 287 (2000) 219–2204.
[26] P. Pevzner, Computational Molecular Biology: An Algorithmic Approach, The MIT Press, 2000.
[27] C. Salto, G. Leguizamón, E. Alba, J.M. Molina, Hybrid ant colony system to solve a 2-dimensional strip packing problem, in: Eighth International

Conference on Hybrid Intelligent Systems (HIS’08), pp. 708–713.
[28] F. Sanger, A. Coulson, G. Hong, D. Hill, G. Petersen, Nucleotide sequence of bacteriophage lambda DNA, J. Mol. Biol. 162 (1982) 729–773.
[29] G.G. Sutton, O. White, M.D. Adams, A.R. Kerlavage, TIGR assembler: a new tool for assembling large shotgun sequencing projects, Genome Sci. Technol.

(1995) 9–19.
[30] E.G. Talbi, A taxonomy of hybrid metaheuristics, J. Heuristics 8 (2002) 541–564.
[31] A. Valouev, D.C. Schwartz, S. Zhou, M.S. Waterman, An algorithm for assembly of ordered restriction maps from single DNA molecules, Proc. Natl. Acad.

Sci. 103 (2006) 15770–15775.

http://refhub.elsevier.com/S0020-0255(14)00126-1/h0100
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0100
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0100
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0105
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0110
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0115
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0115
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0115
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0120
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0120
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0125
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0125
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0130
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0135
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0135
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0140
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0145
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0145
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0150
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0155
http://refhub.elsevier.com/S0020-0255(14)00126-1/h0155

	An improved trajectory-based hybrid metaheuristic applied to the noisy DNA Fragment Assembly Problem
	1 Introduction
	2 The DNA Fragment Assembly Problem
	3 Parallel and hybrid PALS-based metaheuristic
	4 Experimental methodology
	5 Experimental results
	5.1 Behavior analysis
	5.2 Performance analysis
	5.3 Comparison with existing assemblers

	6 Conclusions
	Acknowledgements
	References

