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Abstract

This work analyzes the relative advantages of different metaheuristic approaches to the well-known natural language processing
problem of part-of-speech tagging. This consists of assigning to each word of a text its disambiguated part-of-speech according
to the context in which the word is used. We have applied a classic genetic algorithm (GA), a CHC algorithm, and a simulated
annealing (SA). Different ways of encoding the solutions to the problem (integer and binary) have been studied, as well as the
impact of using parallelism for each of the considered methods. We have performed experiments on different linguistic corpora and
compared the results obtained against other popular approaches plus a classic dynamic programming algorithm. Our results claim
for the high performances achieved by the parallel algorithms compared to the sequential ones, and state the singular advantages
for every technique. Our algorithms and some of its components can be used to represent a new set of state-of-the-art procedures
for complex tagging scenarios.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Part-of-speech (POS) tagging or simply “tagging” is
a basic task in natural language processing (NLP). Tag-
ging aims to determine which is the most likely lexical
tag for a particular occurrence of a word in a sentence.
There are many NLP tasks which can be improved by
applying disambiguation to the text [1]. The ambiguity
of syntactic analysis or partial parsing—a kind of analy-
sis limited to particular types of phrases—is highly sim-
plified in the absence of lexical ambiguity. Many partial
parses work on the output of a tagger [2] by testing the
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appearance of regular expressions of tags, which define
the searched patterns. For instance, the word can can be
a noun, an auxiliary verb or a transitive verb. The cat-
egory assigned to the word will determine the structure
of the sentence in which it appears and thus its meaning.

Other important applications of tagging are informa-
tion retrieval [3] and question answering. For exam-
ple, before identifying the documents relevant for the
requested information, an information retrieval system
needs to represent those documents according to some
criterion. Tagging and partial parsing can be very use-
ful here to perform such an organization and obtain the
representative terms.

Moreover, tagging is a difficult problem by itself,
since many words belong to more than one lexical class.
To give an idea, according to [4], over 40% of the words
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This the therapist may pursue in later questioning
DT AT NN NNP VB RP RP VB
QL MD VBP NNP RB NN

RB JJ JJ
NN JJR
FW
IN

Fig. 1. Tags for the words in a sentence extracted from the Brown
corpus. Underlined tags are the correct ones, according to the Brown
corpus. Tags correspond to the tag set defined in the Brown corpus:
DT stands for determiner/pronoun, AT for article, NN for common
noun, MD for modal auxiliary, VB for uninflected verb, etc.

appearing in the hand-tagged Brown corpus [5] are am-
biguous.

Because of the importance and difficulty of this task,
a lot of work has been carried out to produce automatic
taggers. Automatic taggers, usually based on Hidden
Markov Models, rely on statistical information to es-
tablish the probabilities of each scenario. The statistical
data are extracted from previously hand-tagged texts,
called corpus. These stochastic taggers [1,6] neither re-
quire knowledge of the rules of the language nor try to
deduce them, and thus they can be applied to texts in
any language, provided they can be previously trained
on a corpus for that language.

The context in which the word appears helps to de-
cide which is its more appropriate tag, and this idea is
the basis for most taggers. For instance, consider the
sentence in Fig. 1, extracted from the Brown corpus.
The word questioning can be disambiguated as a com-
mon name if the preceding tag is disambiguated as an
adjective. But it might happen that the preceding word
to be ambiguous, so there may be many dependencies
which must be resolved simultaneously.

The statistical model considered in this work amounts
to maximize a global measure of the probability of the
set of contexts (a tag and its neighboring tags) corre-
sponding to a given tagging of the sentence. Then, we
need a method to perform the search of the tagging
which optimizes this measure of probability.

The aim of this article is to check and compare differ-
ent metaheuristic algorithms to perform such a search,
such as a genetic algorithm (GA), a CHC algorithm, and
a simulated annealing (SA). One of the advantages of
using an evolutionary algorithm (EA) as the search algo-
rithm for tagging is that these algorithms can be applied
to any statistical model, even if they do not rely on the
Markov assumption (i.e., the tag of a word only depends
on the previous words), as it is required in classic search
algorithms for tagging, such as the widely used Viterbi
[7]. Genetic algorithms have been previously applied to
the problem [8,9], obtaining accuracies as good of those
of typical algorithms used for stochastic tagging. CHC
is a non-traditional genetic algorithm, which presents
some particular features: CHC guarantees the survival
of the best solutions found, does not allow the mating
of similar solutions, and uses specialized operations.

One of the aims of this work is to investigate if the
particular mechanisms of CHC for diversity can im-
prove the selection of different sets of tags. From pre-
vious work, it has been observed that words incorrectly
tagged are usually those which require one of their more
rare tags, or which appear in an infrequent context. We
plan to use a quality function based on the probability of
the contexts of a sequence of tags assigned to a sentence.
A priori, it should be difficult for a GA to find appropri-
ate tags within high probability contexts. CHC allows
simultaneously changing several tags of the sequence,
which can hopefully lead to explore combinations of
tags very different from those of the ancestors and then
to better results. Thus, it is interesting to study what is
more advantageous; the smooth exploration of the GA
or the more disruptive one of CHC. We have also com-
pared the results of the GAs with those obtained from
Simulated Annealing, in order to ascertain the suitabil-
ity of the evolutionary approach compared with other
optimization methods.

For most tagging applications, the whole process of
search is time consuming, what made us to include a
parallel version of the algorithms. We also compare the
results of our approaches with the ones of Viterbi, a clas-
sical method for solving this problem, in order to test
the accuracy of all our methods in a wider spectrum of
techniques.

The rest of the paper proceeds as follows: Section 2
describes the kind of statistical models to which our al-
gorithms can be applied. Sections 3, 4 and 5 describe
the GA, CHC, and SA algorithms, and Section 6 dis-
cusses the parallel version of these algorithms. Section 7
presents the details on how the algorithms are applied to
tagging. Section 8 describes and discusses the computa-
tional results, and Section 9 draws the main conclusions
of this work.

2. A probabilistic approach for tagging

Statistical tagging, probably the most extended ap-
proach nowadays, is based on statistical models defined
on a number of parameters, which take their values from
probabilities extracted on tagged texts. The goal of these
models is to assign to each word of a sentence the most
likely lexical tag according to the context of the word,
i.e., according to the tags of other words surrounding
the considered one. Therefore, we can collect statistics
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on the number of occurrences of the contexts resulting
of assigning their different valid part-of-speech to the
considered word, and then choose the more likely one.
However, the surrounding words may also be ambigu-
ous, and thus, we need some kind of statistical model
to select the “best” tagging for the whole sequence ac-
cording to the model. More formally, the part-of-speech
tagging problem can be stated as

t1,n = arg max
t1,n

P (t1,n|w1,n),

where arg maxx f (x) is the value of x which maximizes
f (x), and t1,n is the tag sequence of the words w1,n

which compose the sentence being tagged.
If we assume that the tag of a word only depends

on the previous tag, and that this dependency does not
change throughout the time, we can adopt a Markov
Model for tagging. Let wi the word at position i in the
text, ti the tag of wi , wi,j the words appearing from po-
sition i to j , and ti,j the tags for the words wi,j . Then,
the model states that

P(ti+1|t1,i ) = P(ti+1|ti ).
If we also assume that the probability of a word ap-
pearing at a particular position only depends on the
part-of-speech tag assigned to that position, the optimal
sequence of tags for a sentence can be estimated as

t1,n = arg max
t1,n

P (t1,n|w1,n)

=
n∏

i=1

P(wi |ti )P (ti |ti−1).

Accordingly, the parameters of the Markov model tag-
ger can be computed from a training corpus. It can be
done by recording the different contexts of each tag in a
table called training table. This table can be computed
by going through the training text and recording the dif-
ferent contexts and the number of occurrences of each
of them for every tag in the tagset.

The Markov model for tagging described above is
known as a bigram tagger because it makes predictions
based on the preceding tag, i.e., the basic unit consid-
ered is composed of two tags: the preceding tag and the
current one. This model can be extended in such a way
that predictions depend on more than one preceding tag.
For example, a trigram model tagger makes its predic-
tions depending on the two preceding tags.

Once the statistical model has been defined, most
taggers use the Viterbi algorithm [7] (a dynamic pro-
gramming algorithm) to find the tag sequences which
maximize the probability according to the selected
Markov model.
We here offer an alternative approach to tagging
which can be used instead of the Viterbi algorithm. This
approach relies on using evolutionary algorithms, which
include a number of search templates based on the pro-
duction of offsprings and the survival of the fittest.
These heuristic techniques provide us a general method
that can be applied to any statistical model. For exam-
ple, they can be applied to perform tagging according to
the Markov model described above or not. In this way,
they can also be applied to other models for which there
is no known efficient algorithm. For instance, they can
be applied to a model which has been proven to improve
the results over a Markov one [10], in which the context
of a word is composed of both, the tag of the preceding
words and also the tag of the following words. The po-
tential problem in using evolutionary algorithms (EAs)
is that many of them do not guarantee to reach the opti-
mum solution but a reasonably good approximation, ac-
cording to the resources assigned (time and memory). In
addition, the probability of error can be systematically
decreased in EAs by increasing the number of points
explored with a fine tuning of the algorithm parameters.

According to these considerations, we are going to
explore different metaheuristic techniques for tagging.
The statistical model we consider amounts to maximize
a global measure of the probability of the set of con-
texts (a tag and its neighboring tags) corresponding to a
given tagging of the sentence. The contexts considered
are very general and widely applicable since they are
composed of a certain number of tags on the left and an-
other on the right of the word at the considered position.

3. Genetic algorithm

Genetic algorithms (GAs) [11] are stochastic search
methods that have been successfully applied in many
real applications. A GA is an iterative technique that
applies stochastic operators on a pool of individuals
(tentative solutions). A fitness function allocates a real
value to every individual indicating its suitability to the
problem. Traditionally, GAs are associated to the use
of a binary representation, but nowadays you can find
GAs that use other types of representations. A GA usu-
ally applies a recombination operator on two solutions,
plus a mutation one that randomly modifies the individ-
ual contents to promote diversity and thus reaching new
portions of the search space not implicitly present in the
previous generations.

4. CHC algorithm

CHC [12] is a variant of a genetic algorithm with a
particular way of promoting diversity. It uses a highly
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disruptive crossover operator to produce new individ-
uals maximally different from their parents. It is com-
bined with a conservative selection strategy which in-
troduces a kind of inherent elitism. The main features
of this algorithm are:

– The mating is not restricted to the best individuals,
but parents are randomly paired in a mating pool.
However, recombination is only applied if the Ham-
ming distance between the parents is above a certain
threshold (incest prevention).

– CHC uses a half-uniform crossover (HUX), which
exchanges half of the differing genes.

– CHC guarantees survival of the best individuals se-
lected from the set of parents and offsprings.

– Mutation is not applied directly. Instead, CHC uses
a re-start mechanism when the population remains
unchanged after a given number of generations.

5. Simulated annealing

Simulated annealing (SA) [13] is a stochastic search
technique that can be seen as a hill-climber with an in-
ternal mechanism to escape from local optima. In SA,
the solution s′ is accepted as the new current solution
s if δ � 0 holds, where δ = f (s′) − f (s). To allow es-
caping from a local optimum, moves that decrease the
energy function are accepted with a decreasing proba-
bility exp(δ/T ) if δ < 0, where T is a parameter called
the “temperature”. The decreasing values of T are con-
trolled by a cooling schedule, which specifies the tem-
perature values at each stage of the algorithm, what rep-
resents an important decision for its application. Here,
we are using a proportional method for updating the
temperature (Tk = α · Tk−1, where α indicates the de-
crease speed of the temperature).

6. Parallel metaheuristics

A parallel EA (PEA) is an algorithm composed of
multiple EAs, regardless of their population structure.
Each component (usually a traditional EA) subalgo-
rithm includes an additional phase of communication
with a set of subalgorithms [14]. In this work, we have
chosen a distributed EA (dEA) because of its popular-
ity and because it can be easily implemented in clus-
ters of machines. In distributed EAs (also known as
Island model) there exists a small number of islands
performing separate EAs, and periodically exchanging
individuals after a number of isolated steps (migration
frequency). Concretely, we use a static ring topology in
which the best individual is migrated, and asynchro-
nously included in the target population only if it is
better than the local worst-existing solution.

The parallel SA (PSA) is also composed of multiple
asynchronous SAs. Each component SA, starts off from
a different random solution and exchanges the best solu-
tion found (cooperation phase) with its neighboring SA
in the ring.

7. Evolutionary design for tagging

The first step in designing an evolutionary algorithm
is to define the data structure included into the individ-
uals which compose the population. Genetic operators
on them must also be defined, as well as a selection
policy based on a measure of the individual quality, or
“fitness”.

7.1. Individuals

Tentative solutions here are made of sequences of
genes. Each gene corresponds to each word in the sen-
tence to be tagged. Fig. 2 shows some example individ-
uals for the sentence in Fig. 1.

Each gene represents a tag and additional informa-
tion useful in the evaluation of the solution, such as
counts of contexts for this tag according to the train-
ing table. Each gene’s tag is represented by an index to
a vector which contains the possible tags of the corre-
sponding word. The composition of the genes depends
on the chosen coding, as Fig. 3 shows. In the integer
coding the gene is just the integer value of the index. In
the binary coding the gene is the binary representation

Sent. This the therapist may pursue in later questioning

Ind. 1: DT AT NN NNP VBP IN JJ VB
Ind. 2: DT AT NN MD VB RB RB NN
Ind. 3: QL AT NN NNP VB FW JJ JJ

Fig. 2. Potential individuals for the sentence in Fig. 1.

Word Tag index int bin

0 1 2 3 4 5 . . .

This
the
therapist
may
pursue
in

DT QL 0 000
AT 0 000
NN 0 000
NNP MD 1 001
VB VBP 0 000
RP NNP RB NN FW IN 5 101

. . .

Fig. 3. Integer and binary codings of a possible selection of tags cho-
sen for the words of a sentence extracted from the Brown corpus. The
selected tags appear underlined.
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of the index. As in the texts we have used for experi-
ments the maximum number of tags per word is 6, we
have used a binary code of 3 bits.

The chromosomes forming the initial population are
created by randomly selecting from a dictionary one of
the valid tags for each word, with a bias to the most
probable tag. Words not appearing in the dictionary are
assigned the tag which produces, along with the tags as-
signed to its neighbor words, the most probable context,
according to the training text.

7.2. Fitness evaluation

The fitness of an individual is a measure of the total
correctness probability of its sequence of tags, accord-
ing to the data from the training table. It is computed as
the sum of the fitness of its genes,

∑
i f (gi). The fitness

of a gene is defined as

f (g) = logP(T |LC,RC),

where P(T |LC,RC) is the probability that the tag of
gene g is T , given that its context is formed by the se-
quence of tags LC to the left and the sequence RC to the
right (the logarithm is taken in order to make fitness ad-
ditive). This probability is estimated from the training
table as

P(T |LC,RC) ≈ occ(LC, T ,RC)∑
T ′∈T occ(LC, T ′,RC)

,

where occ(LC, T ,RC) is the number of occurrences of
the list of tags LC, T ,RC in the training table, and T is
the set of all possible tags of gi .

A particular, sequence LC, T ,RC may not be listed
in the training table, either because its probability is
strictly zero (if the sequence of tags is forbidden for
some reason) or, most likely, because there is insuffi-
cient statistics. In these cases we proceed by succes-
sively reducing the size of the context, alternatively ig-
noring the rightmost and then the leftmost tag of the
remaining sequence (skipping the corresponding step
whenever either RC or LC are empty) until one of these
shorter sequences matches at least one of the training ta-
ble entries or until we are left simply with T . In this lat-
ter case we take as fitness the logarithm of the frequency
with which T appears in the corpus (also contained in
the training table).

7.3. Genetic operators

For the GA, we use a one point crossover, i.e., a
crossover point is randomly selected and the first part
of each parent is combined with the second part of the
other parent thus producing two offsprings. Then, a mu-
tation point is randomly selected and the tag of this
point is replaced by another of the valid tags of the
corresponding word. The new tag is randomly chosen
according to its probability (the frequency at which it
appears in the corpus).

The CHC algorithm applies HUX crossover, ran-
domly taking from each parent half of the tags in which
they differ and exchanging them.

Individuals resulting from the application of the ge-
netic operators along with the old population are used
to create the new one.

8. Computational experiments

We have used as the set of training texts for our tag-
gers the Brown [5] and Susanne [15] corpora, two of
the most widespread in linguistics. For the Brown cor-
pus we have used a training set of 165 276 words, a data
set to tune the parameters of 2477 words, and a test set
of 2421 words. For the Susanne corpus we have used a
training set of 145 778 words, a data set to tune the pa-
rameters of 2489 words, and a test set of 2510 words.
The CHC algorithm has been run with a crossover rate
of 50%, without mutation. Whenever convergence is
achieved, 90% of population is renewed. The GA ap-
plies the recombination operator with a rate of 50%, and
the mutation operator with a rate of 5%. In the parallel
version, the migration occurs every 10 generations. We
made preliminary tests with different parameter settings
for determining the best values for each algorithms. The
analysis of other specific operators is deferred for a fu-
ture work.

Tables 1, 2, and 3 show the results obtained with
CHC, GA, and SA algorithms, using both, integer and
binary codings. The two upper rows correspond to the
Brown text with two different contexts (1-0 is a con-
text which considers only the tag of the preceding word
and 2-0 considers the tag of the two preceding words)
and the two lower rows are the results for the Susanne
text. The two texts contain 2500 words approximately.
Figures represent the best result out of 30 independent
runs. The globally best result for each row appears in
boldface. Integer stands for the integer representation
and Binary for the binary representation with a code
of 3 bits. For CHC and GA, measures have been taken
for two population sizes. Furthermore, sequential and
parallel versions with 4 islands are analyzed. In evolu-
tionary algorithms, the population size of each island is
the global population size divided by the number of is-
lands.
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Table 1
Tagging accuracy obtained with the CHC algorithm for two test texts

Context Integer Binary

PS = 32 PS = 64 PS = 32 PS = 64

Seq. Par. Seq. Par. Seq. Par. Seq. Par.

Brown 1-0 91.02 91.74 91.35 91.55 94.98 95.32 94.67 94.62
2-0 91.31 91.31 91.83 92.18 95.35 95.35 95.18 95.03

Susanne 1-0 91.43 91.19 92.32 92.68 94.35 95.01 93.61 94.41
2-0 93.42 93.75 93.53 93.56 94.37 94.82 93.96 94.31

PS stands for Population Size.

Table 2
Accuracy obtained with the GA for the two test texts

Context Integer Binary

PS = 32 PS = 64 PS = 32 PS = 64

Seq. Par. Seq. Par. Seq. Par. Seq. Par.

Brown 1-0 95.83 96.01 94.34 94.95 93.15 93.02 92.97 93.02
2-0 96.13 96.41 95.14 95.42 94.86 94.82 94.54 94.89

Susanne 1-0 96.41 96.74 95.46 96.25 95.12 95.32 94.96 94.54
2-0 97.32 97.32 96.91 97.01 95.39 95.43 95.34 95.39

PS stands for Population Size.
Looking at Table 1, the first conclusion is that the
binary coding always achieves a higher accuracy with
respect to the integer one. This suggests that the inte-
ger representation is not appropriate for CHC, probably
because the low number of genes of the latter interferes
with the CHC mechanism to avoid crossover between
similar individuals. Regarding the parallel executions,
we can observe that the parallel version usually pro-
vides more accurate results, particularly for a population
of 32 individuals, because for such a small population
the higher diversity introduced by parallelism is benefi-
cial. In general, the accuracy obtained for Brown text is
better than for Susanne text, probably because the statis-
tics provided by the Susanne corpus are poorer1 and the
CHC mechanism for diversity is limited by these data.
Anyway, the best results are always obtained using bi-
nary coding and parallel executions for any instance.

Table 2 shows the results obtained with the GA. In
this case, the integer representation provides the best
results. Again, parallel versions improve the sequential
results, obtaining the best results when the population
is composed of 32 individuals. We can observe that for
this algorithm, the accuracy increases when the context
is larger. The same trend was observed before for CHC,
but not so conclusively as for the GA. Also, we can no-
tice that unlike the previous results for CHC, the results

1 Due to the large tagset of this corpus.
Table 3
Accuracy obtained with the SA algorithm for the two test texts (best
result out of thirty independent runs)

Context Integer Binary

Seq. Par. Seq. Par.

Brown 1-0 91.41 91.83 91.25 91.58
2-0 91.92 92.28 91.68 91.72

Susanne 1-0 91.03 91.87 89.79 90.53
2-0 92.31 92.31 91.31 91.74

for Susanne text are more accurate than the ones for
Brown text.

Table 3 presents the data obtained with the SA algo-
rithm. The SA algorithm performs 5656 iterations using
a Markov chain of length 800 and with a decreasing fac-
tor of 0.99. In the parallel version, each SA component
exchanges the best solution found with its neighbor SA
in the ring every 100 iterations. We can observe that SA
always provides worse results than any of the evolu-
tionary algorithms, thus proving the advantages of the
evolutionary approach. Anyhow, the parallel SA is still
better in accuracy than the sequential version, as we also
noticed for CHC and GA. In general, the results ob-
tained for this algorithm are very poor, indicating that
SA is not able to solve this problem adequately.

Table 4 presents the best value and the average for the
configuration which provides the best results of each al-
gorithm, i.e., parallel implementation using integer cod-
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Table 4
Comparison of the results of all the algorithms for the two test texts

Context GA-Int CHC-Bin SA-Int Viterbi

Best Mean Best Mean Best Mean Best

Brown 1-0 96.01 95.26 95.32 94.91 91.83 90.95 97.04
2-0 96.41 96.23 95.35 94.80 92.28 92.14 97.48

Susanne 1-0 96.74 96.51 95.01 94.72 91.87 91.43 96.36
2-0 97.32 96.84 94.82 94.38 92.31 91.45 96.53

Table 5
Execution times of the different versions of the algorithms (in seconds)

Context GA-Int CHC-Bin SA-Int Viterbi

Seq. Par. Seq. Par. Seq. Par. Seq.

Brown 1-0 12.31 7.02 20.48 9.60 5.84 2.98 0.47
2-0 47.93 21.19 60.92 26.44 17.32 7.93 0.47

Susanne 1-0 10.86 6.32 17.28 8.03 4.37 1.85 1.21
2-0 75.12 24.31 123.94 58.31 32.12 10.42 6.53
ing for GA and SA, and binary one for CHC. We do not
show the standard deviation because the fluctuations in
the accuracy of different runs are always within the 1%
interval, claiming that all the algorithms are very ro-
bust. Also, we include the results of the Viterbi method
(as said before, a typical algorithm widely used for sto-
chastic tagging) to perform a comparison between our
evolutionary approach and a classical tagging method.
The results of this algorithm have been obtained with
the TnT system [16], a widely used trigram2 tagger.

First we compare our algorithms, and latter, we com-
pare our results with the Viterbi ones. We can observe in
Table 4 that the GA has reached the globally best results
for all the test texts and contexts, though the differences
are small. This proves that the exploration of the search
space given by the classical crossover and mutation op-
erators are enough for this specific problem.

Now, we compare the Viterbi method against the GA
(which obtains the best results of all our approaches).
Viterbi obtains the best results for the Brown corpus, al-
though the difference of accuracy with respect to GA
is around 1%. However, for the Susanne corpus, which
provided poorer statistics, the GA results outperform
Viterbi’s one. In this way, the heuristic nature of the ge-
netic algorithm is illustrated as useful for tagging where
traditional algorithms have low accuracy.

After these results another finding that is worth men-
tioning is that the accuracy obtained with the parallel
versions of GA, around 97%, is a very good result [6]
according to the statistical model used. We must take

2 It considers the previous two tags for deciding on the current tag.
into account that the accuracy is limited by the statisti-
cal data provided to the search algorithm. Moreover, the
goal of the model is to maximize the probability of the
context composed by the tags assigned to a sentence, but
it is only an approximate model. The correct tag for a
word is not always the most probable one (though most
times it is), and the algorithm is conditioned by this fact,
but sometimes it is not the one which provides the most
probable context either, and it is just in these cases when
the tagger fails.

Let us now analyze Table 5, the average execution
time for the configurations of the GA, CHC, and SA al-
gorithms, the ones providing the best results for each of
them, also including the execution time of the Viterbi
method. We can observe that the execution time in-
creases with the size of the context. We can also observe
that GA is faster than CHC. Probably, this is due to
two reasons: first, binary codings are slower than in-
teger ones, because they require a decodification step
prior to apply the fitness function, and second, CHC
needs additional computations to detect the converge
of the population or to detect incest mating. SA is the
fastest of our algorithms. The reason of this is that the
SA operates on a single solution, while the rest of the
methods are population-based and in addition they exe-
cute more complex operators. The table also shows that
the parallel implementation reduces the execution time
considerably (between 42% and 78%), and this reduc-
tion is increasingly beneficial for larger contexts.

If we compare our approach with the Viterbi algo-
rithm we can observe that the classical tagging algo-
rithm is rather fast compared to the rest of our proposed
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Table 6
Accuracy and execution times obtained with the GA for the two test
texts using two new contexts

Context Seq. Par.

Best Mean Time Best Mean Time

Brown 1-1 96.72 96.41 56.92 96.78 96.56 19.98
2-1 96.43 96.22 210.36 96.43 96.27 67.28

Susanne 1-1 98.36 98.11 77.14 98.59 98.39 21.25
2-1 97.78 97.31 283.49 98.01 97.64 78.17

algorithms, though the differences for the Susanne cor-
pus are smaller. Viterbi, and in general any specific al-
gorithm for a problem, will always be more efficient
than an evolutionary algorithm, which is a general tech-
nique that can be applied to any variant of the problem.
However this generality provides some important ad-
vantages, such as the applicability to extensions of the
model, such as contexts with tags on both sides, in our
case. Another advantage concerning the execution time
is that there exists parallel versions of the evolutionary
algorithm which highly reduce the execution time with-
out requiring addition design effort. In this way the evo-
lutionary algorithm can reach generality and efficiency
at the same time.

Finally, in order to offer a through analysis, we have
also tested our best algorithm (a GA using integer cod-
ing) with two more complex contexts (1-1 and 2-1).
Table 6 shows the results of these experiments. Viterbi
cannot applied in this case because this algorithm is de-
signed to search the data sequence which maximizes
the observed data according to a Markov model, i.e., a
model in which the current state only depends on the
previous one. If we consider tags on the right of the
word being tagged, our model is not a Markov process
any more and Viterbi cannot be applied. This alone is
a strong reason to further research with metaheuristics.
As we saw before, the parallelism allows to improve the
accuracy and, at the same time, the execution time is
reduced considerably (see Table 5). In this case, we ob-
serve that the increase of the length of the context (from
1-1 to 2-1) provokes a larger execution times.

In the above experiments, the test data sets used had a
small/medium size. Now, we want to analyze the behav-
ior of our approaches with two larger instances. We now
use a test set of 17 303 words from the Brown corpus,
and of 15 006 words from the Susanne corpus. These
values represent the 10% of the whole data approxi-
mately. We have perform 30 independent runs for these
instances using the best configuration of our methods.
The results of these experiments are shown in Table 7.
Several conclusions can be extracted from these results.
Table 7
Accuracy and execution times obtained with all the methods for larger
test data sets

Corpus alg. Seq. Par.

Best Mean Time Best Mean Time

Brown GA 96.67 96.37 334.1 96.75 96.61 113.7
CHC 95.37 95.07 372.2 95.48 95.11 158.3
SA 92.03 91.68 149.5 92.17 91.87 46.6

Susanne GA 98.32 98.105 410.9 98.61 98.37 128.7
CHC 95.12 94.77 658.3 95.19 94.81 190.5
SA 91.89 91.37 189.2 92.03 91.52 59.8

First of all, we notice that the algorithms show a similar
behavior to the one presented in previous experiments,
i.e., the parallel versions outperform the serial ones, and
the GA is the best approach to tackle this problem.
In fact, we have carried out statistical analyses using
t-test with a confidence level of 95%, which indicate
that there is no statistically significant difference in the
solution quality found between these experiments and
the previous ones (with the exception of some results of
the SA method). This demonstrates that our proposals
have a very good scalability. Scalability is a very im-
portant feature of any algorithm if it is expected to be
actually useful for the research community. However,
as we expected, the execution time is higher than in pre-
vious experiments because the number of words in the
test data sets has been incremented drastically.

Though what we propose in this paper is a search
method valid for different tagging models, and thus our
goal is not to compete with other models, in order to
give an idea of the quality of the particular model that
we have used, we present a comparison with the ac-
curacy results of other systems evaluated on the same
corpus. This corpus is the Wall Street Journal section
of the Penn Treebank [17]. We have used a training set
of 554 923 words and a test set of 2544 words. Table 8
compares our results, obtained with the GA and the inte-
ger representation, with the results obtained by Pla and
Molina [18] and Halteren et al. [19]. Pla and Molina
proposed a lexicalized HMM taking into account a set of
selected words empirically obtained. However, the re-
sults shown in Table 8 correspond to the non-lexicalized
model, because we do not use lexicalization. Halteren et
al. propose a combination of different methods for tag-
ging using several voting strategies. The figure which
appears in the table for this work corresponds to the
results for a single method, which is an HMM. These
results confirm the conclusions obtained in the previ-
ous experiments. We can observe that in general, our
approach has a better behavior when it uses a more
complete information, i.e., using a higher context or us-
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Table 8
Comparison with other systems tagging the Wall Street Journal sec-
tion of the Penn Treebank

Context GA-Int Pla and Molina [18] Halteren et al. [19]

1-0 95.79 96.13 –
2-0 96.39 96.44 96.63
1-1 96.63 – –

“–” indicates that this information is not provided by the correspond-
ing paper.

ing tags on the right of the word being tagged. In fact,
our general method outperforms the results presented by
[18] when right tags are used. Also it is able to find the
best known solution [19] using 1-1 contexts.

We can observe that our general approach offers
competitive results with respect to the specific meth-
ods presented in [18] and [19]. Nevertheless, the quality
of our results can be improved by introducing in the
model the refinements proposed by the other works,
such as lexicalization, combination of different mod-
els, etc. Moreover, our method allows extending those
models with new features such as right-hand contexts,
what can lead to further improvements. We have also
observed that our approaches can deal with larger in-
stances adequately.

The obtained results show that a generic metaheuris-
tic such as our genetic algorithm is able to solve the
tagging problem with the same accuracy as an specific
method which was designed for this problem. In addi-
tion, GAs can perform the search of the best sequence of
tags for any context-based model, even if it does not ful-
fill the Markov assumption. Thus, it is a general method
with a proved high quality, and even still able of hy-
bridization with problem-dependent operations to yield
more accurate results (future line of research).

9. Conclusions

This work compares different optimization methods
to solve an important natural language task: the cat-
egorization of each word in a text. The optimization
methods considered here have been a genetic algorithm
(GA), a CHC algorithm, and a simulated annealing
(SA). We have compared their results with a widely
used method for tagging such as Viberti.

Results obtained allow extracting a number of con-
clusions. The first one is that the integer coding per-
forms better than the binary one for the GA and the
SA, while the binary one is the best for the CHC al-
gorithm. Parallelism has also proven to be useful, al-
ways throwing the more accurate results even with small
populations, and reducing the execution time of all the
algorithms. The GA has been found to be better than
CHC, indicating that the exploration of the search space
achieved by the classical genetic operators is enough
for this problem. The two evolutionary algorithms have
outperformed SA. Also, we have observed that our evo-
lutionary approach is able of outperform classical al-
gorithms such as Viberti in some cases. These results
showed that a metaheuristic such as our genetic algo-
rithm is able to solve the tagging problem with the same
accuracy as the Viterbi method (an specific method for
this problem) with additional scenarios for application
forbidden to other techniques.

For the future, we plan to investigate other genetic
operators for the evolutionary algorithms considered
herein, as well as other kinds of metaheuristic methods
for tagging.
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