
Dealing with hardware heterogeneity: a new parallel search model

Julián Domı́nguez • Enrique Alba

� Springer Science+Business Media Dordrecht 2012

Abstract In this article we present Ethane, a parallel

heterogeneous metaheuristic model specifically designed

for its execution on heterogeneous hardware environments.

With Ethane we propose a hybrid parallel search algorithm

inspired in the structure of the chemical compound of the

same name, implementing a heterogeneous island model

based in the structure of the chemical bonds of the ethane

compound. Here we also shape a schema for describing a

complete family of parallel heterogeneous metaheuristics

inspired by the structure of hydrocarbons in nature, Hyd-

roCM (HydroCarbon inspired Metaheuristics), establishing

a resemblance between atoms and computers, and between

chemical bonds and communication links. Our goal is to

gracefully match computers of different computing power

to algorithms of different behavior (genetic algorithm and

simulated annealing in this study), all them collaborating to

solve the same problem. In addition to the nice natural

metaphor we will show that Ethane, though simple, can

solve search problems in a faster and more robust way than

well-known panmictic and distributed algorithms very

popular in the literature, as well as can achieve a better

exploration/exploitation balance during the search process.

Keywords Parallel � Metaheuristics � Heterogeneous �
Heterogeneous hardware � Hybrid � Simulated annealing �
Genetic algorithm � Ethane � HydroCM

1 Introduction

Metaheuristics are an important branch of research since

they provide a fast an efficient way for solving problems. In

many cases, parallelism is necessary, not only to reduce the

computation time, but to enhance the quality of the solu-

tions obtained. Many parallel models exist, both for local

search methods (LSMs) and evolutionary algorithms (EAs),

and even parallel heterogeneous models combining both

methods are present in the literature (Alba 2005b; Alba et al.

2004).

In a modern lab, it is very common the coexistence of

many different hardware architectures. It has been proven

that such heterogeneous resources can also be used effi-

ciently to solve optimization problems with standard par-

allel algorithms (Alba et al. 2002; Salto and Alba 2012;

Salto et al. 2011), but there exist few works about the

design of specific parallel models for an heterogeneous

environment.

In this paper we propose a heterogeneous parallel search

algorithm designed for its execution in a heterogeneous

platform. We will also present a draft of a general model

for describing a family of heterogeneous metaheuristics

specifically designed for its execution in heterogeneous

hardware environments, being inspired in the structure of

the hydrocarbons that can be found in nature.

Our contribution is not only methodological, but we also

have carried out an analysis in order to study the behavior

of our proposal. For our analysis, we have implemented

two versions of the algorithm making use of two well-

known metaheuristics: steady state genetic algorithm

(ssGA) and simulated annealing (SA). We have compared

our proposal against the panmictic versions of these algo-

rithms as well as against a unidirectional ring of ssGA

islands and another one composed of SA islands, both

J. Domı́nguez (&) � E. Alba

Departamento de Lenguajes y Ciencias de la Computación,

Universidad de Málaga, Málaga, Spain

e-mail: julian@lcc.uma.es

E. Alba

e-mail: eat@lcc.uma.es

123

Nat Comput

DOI 10.1007/s11047-012-9360-7



executed on the same hardware infrastructure. Our results

show that the running times of our proposal are faster in all

the studied cases and even with a more robust behavior

than the reference ssGA and SA rings. We can also see how

our proposal is able to maintain a better population diver-

sity than the ssGA ring, thus, Ethane has shown a better

exploitation/exploration balance according to our analysis.

This paper is organized as follows. The next section

(Sect. 2) provides a brief review of decentralized and

parallel metaheuristics. Section 3 explains the proposed

algorithm and the model that arises from its chemical

inspiration. In Sect. 4 we describe some common perfor-

mance measures which are used in this work. Section 5

contains the problems, parameters and infrastructure used

in our study. The analysis of the tests is discussed in Sects.

6 and 7. Eventually, concluding remarks and future

research lines are shown in Sect. 8.

2 Decentralized, heterogeneous and hybrid parallel

metaheuristics

In this section we include a quick review on the existing

implementations of decentralized and parallel metaheuris-

tics, as well as on heterogeneity. We also include a

description of the metaheuristics used in our heterogeneous

algorithms and how they qualify as hybrid metaheuristics.

Many parallel implementations exist for different groups

of metaheuristics. We will focus in two of the more com-

mon families of metaheuristics: EAs and local search

metaheuristics (LSMs). On the one hand, EAs are popu-

lation based methods, where a random population is cre-

ated and further enhanced through a nature-like evolution

process. On the other hand, only one candidate solution is

used in LSMs, and it is enhanced by moving through its

neighborhood replacing the candidate solution by another

one, usually one with a better quality. EAs commonly

provide a good exploration of the search space, so they are

also called exploration-oriented methods. On the contrary,

LSMs allow to find a local optima solution and subse-

quently they are called exploitation-oriented methods.

Many different parallel models have been proposed for

each method, and here we present the more representative

ones.

2.1 Parallel EA models

A panmictic EA applies its stochastic operators over a single

population, which makes them easily parallelizable. A first

strategy for its parallelization is the use of a master–slave

approach where evaluations are performed in parallel but the

population, unless divided, is treated as a whole, maintaining

its panmictic behavior. This could be interesting for many

tasks, but it does not offer the benefits of a structured pop-

ulation. Therefore, we are going to focus in structured pop-

ulations, which leads to a distinction: cellular versus

distributed EAs (Alba 2005a) (Fig. 1).

• Distributed EAs (dEA) In the case of distributed EAs, the

population is divided into a number of islands that run an

isolated instance of the EA (Fig. 1b). Although there is

not a single population the sub-populations are not

completely isolated: some individuals are sent from one

population to another following a migration scheme.

There usually exists only a few sub-algorithms, loosely

coupled among them.

• Cellular EAs (cEA) In the cellular model, there exists

only one population which is structured into neighbor-

hoods, so that an individual can only interact with the

individuals inside its neighborhood (Fig. 1c). Different

neighborhood structures can lead to a different behav-

ior. In a cellular model there exists a large number of

overlapped sub-algorithms and they are tightly coupled

(Alba and Dorronsoro 2008).

2.2 Parallel LSM models

Many different parallel models have been proposed for

LSMs, but there exist three models that are widely exten-

ded in the literature: parallel multistart model, parallel

moves model, and move acceleration model (Fig. 2).

• Parallel multistart model In this model, several inde-

pendent instances of the LSM are launched simulta-

neously (Fig. 2a). They can exchange individuals

following a migration scheme. This model can usually

compute better and more robust solutions than the

panmictic version.

• Parallel moves model This model is a kind of master–

slave model where the master runs a sequential LSM but,

at the beginning of each iteration, the current solution is

distributed among all the slaves (Fig. 2b). The slaves

perform a move and return the candidate solution to the

master, which selects one of them. This model does not

alter the behavior of the sequential algorithm.

• Move acceleration model The quality of each candidate

solution is evaluated in a parallel centralized way

(Fig. 2c). It is useful when the evaluation function can

be itself parallelized. The move acceleration model

does not alter the behavior of the sequential algorithm.

In both, EAs and LSMs parallel models, each sub-algorithm

includes a phase for communication with a neighborhood

according to some topology. This communication can be

J. Domı́nguez, E. Alba

123



carried out in a synchronous or asynchronous manner. Many

works have found advantages in using an asynchronous exe-

cution model (Alba and Troya 2001; Crainic and Toulouse

2003). Additionally, asynchronism is essential in our study

because of the heterogeneous hardware, which could easily

produce bottlenecks, so our communications will be carried

out in an asynchronous way.

2.3 Achieving the heterogeneity

In the models presented above, all the sub-algorithms share

the same search features. But we could modify the behavior of

a parallel metaheuristic by changing the search features

between sub-algorithms, obtaining a globally heterogeneous

hybrid metaheuristic. Also the hardware being used to run the

algorithm could be homogeneous or heterogeneous, so we

have not to be confused between the hardware platform het-

erogeneity and the heterogeneous software model. Parallel

heterogeneous metaheuristics can be classified into four levels

depending on the source of heterogeneity (Alba 2005a):

• Parameter level At this level, the same algorithm is

used in each node, but the configuration parameters are

different in one or more of them.

• Operator level At operator level, heterogeneity is

achieved by using different mechanisms for exploring

the search space, such as different operators.

• Solution level Heterogeneity is obtained using a

different encoding for the solutions in each component.

• Algorithm level At this level, each component can run a

different algorithm. This level is the most widely used.

Here we present an algorithm level parallel heteroge-

neous metaheuristic which is later run in heterogeneous

hardware. This solver is based in two different methods.

We have chosen one method of each of the two well-

known families, LSMs and EAs, in order to obtain a good

Fig. 1 A panmictic EA (a), and two structured EAs: distributed (b) and cellular (c)

Fig. 2 Parallel multistart model (a), parallel moves model (b), and move acceleration model (c)

Dealing with hardware heterogeneity

123



balance between exploitation and exploration. The used

methods are a genetic algorithm (GA) and a SA.

GAs are one of the more popular EAs present in the

literature. In Algorithm 1 we can see an outline of a pan-

mictic GA. A GA starts by randomly generating an initial

population P(0), with each individual encoding a candidate

solution for the problem and its associated fitness value. At

each iteration, a new population P000ðtÞ is generated using

simple stochastic operators, leading the population towards

regions with better fitness values.

In our algorithm, we have actually used a special variant

of the generic GA called ssGA (Syswerda 1991). The

difference between a common generational GA and a ssGA

is the replacement policy: while in a generational GA a full

new population replaces de old one, in a ssGA only a few

individuals, usually one here, are generated at each itera-

tion and merged with the existing population.

Because of its easy utilization SA has become one of the

most popular LSMs. SA is a stochastic algorithm which

explores the search space using a hill-climbing process. A

panmictic SA is outlined in Algorithm 2. SA starts with a

randomly generated solution S. At each step, a new

candidate solution S0 is generated. If the fitness value of S0

is better or equal than the old value, S0 is accepted and

replaces S. As the temperature Tk decreases, the probability

of accepting a lower quality solution S0 decays exponen-

tially towards zero according to the Boltzmann probability

distribution. The temperature is progressively decreased

following an annealing schedule.

Based on the classic SA, many different versions have

been implemented by using a different annealing schedule.

In our algorithm we have used the new simulated annealing

(Yao 1995), which uses a very fast annealing schedule.

2.4 Classifying hybrid metaheuristics

Attending to the classification proposed in Talbi (2002)

(Fig. 3), we can classify a hybrid metaheuristic attending to

its structure (hierarchical) or to the features of the algo-

rithms involved in the hybrid (flat). Four classes are

derived from the hierarchical taxonomy:

• Low-level relay hybrid (LRH) This class of hybrids

represents algorithms in which a given metaheuristic is

embedded into a single-solution algorithm. We can find

some examples of LRH in the literature (Aarts and

Verhoeven 1997; Martin et al. 1992).

• Low-level teamwork hybrid (LTH) This class comprises

combinations of metaheuristics with strong exploring

capabilities (like most EAs) with exploitation-oriented

metaheuristics (most single-solution metaheuristics). Usu-

ally, exploitation-oriented methods replace or extend

genetic operator such as mutation or crossover. There

are numerous examples of this strategy, for example Chen

and Flann (1994), Fleurant and Ferland (1996), and

Lozano et al. (2004).

• High-level relay hybrid (HRH) In this class of algo-

rithms, self-contained metaheuristics are executed in a

sequence. In HRH, an algorithm is used for improving

the results obtained by another one. Many authors have

used this idea (Mahfoud and Goldberg 1995; Talbi

et al. 1994).

• High-level teamwork hybrid (HTH) Self-contained

algorithms perform a search in parallel, and cooperat-

ing to find an optimum. This model has been widely

used in the literature (De Falco et al. 1994; Voigt et al.

1990).

As to the flat classification, we can distinguish between:

• Homogeneous/heterogeneous In homogeneous hybrids,

all the combined algorithms use the same metaheuris-

tic, while in heterogeneous algorithms different meta-

heuristics are used.

• Global/partial In global hybrids, all the algorithms

search in the whole search space. However, the search

J. Domı́nguez, E. Alba

123



space is decomposed into subspaces in the partial

hybrids.

• Specialist/general In a general hybrid, all the algorithms

solve the same problem, while specialist hybrids com-

bine algorithms targeted to solve different problems.

Attending to this taxonomy, our model can be classified

as a HTH metaheuristic, while several self-contained

algorithms cooperate in order to find a solution. Ethane can

be classified as well as heterogeneous, global, and general,

because two different metaheuristics search in the whole

solution space trying to solve the same problem.

3 Description of the model

In this section we present the particularities of Ethane, as

well as we briefly outline the proposal of a more generic

model being inspired in the chemical compounds called

hydrocarbons.

3.1 Ethane

With Ethane we propose a nature inspired heterogeneous

parallel search algorithm specifically designed for it exe-

cution in heterogeneous hardware platforms.

Usually, using a generic parallel model within a heter-

ogeneous platform leads to bottlenecks caused by islands

with limited resources which can not provide good enough

solutions to islands whose populations are much more

evolved. Furthermore, many communication topologies, as

ring, star, torus, cube or hypercube, do not take care of the

underlying hardware architecture and could worsen this

problem by overloading these slow islands with too much

communication. With Ethane, we propose a communica-

tion schema where the most of the communication load is

distributed over the fastest nodes of the platform, and the

slowest ones are placed as their slaves.

The chemical compound called ethane consists of two

carbon atoms and six hydrogen atoms, joined together with

single chemical bonds. We have established a resemblance

between the atoms and the computers of the platform, and

between the chemical bonds and communication channels.

In ethane, each carbon atom is bonded to three hydrogen

atoms, and there is another bond between both carbon

atoms. In our Ethane algorithm, we propose the same

schema, using two basic algorithms resembling different

atoms, and migration channels resembling bonds.

For our study, we have implemented two different ver-

sions of our algorithm. In Fig. 4 it is shown the schema for

the two instances of Ethane studied in this paper. Ethane G

(Fig. 4a) assigns a ssGA sub-algorithm to the central car-

bon nodes, and a SA sub-algorithm to the slave nodes. On

the contrary, Ethane S (Fig. 4b) allocates a SA sub-algo-

rithm in each one of the central nodes, and a ssGA sub-

algorithm in the slave nodes. With this schema, most of the

communication load falls on the master nodes, which are

provided with the best hardware, taking some of the load

out of the slowest nodes.

Fig. 3 Classification of hybrid

metaheuristics

Dealing with hardware heterogeneity

123



3.2 An overview of HydroCM

From this chemical inspiration it arises a generic model

based on the different structures of hydrocarbons. We have

called it HydroCM (HydroCarbon inspired Metaheuristics).

We shaped HydroCM as a generic model for a complete

family of parallel heterogeneous metaheuristics. The goal of

the model is to provide a schema for the islands and com-

munications of the parallel algorithm to efficiently perform

a search over heterogeneous hardware architectures.

Figure 5 represents some different structures for hydro-

carbons as we can find them in nature. Hydrocarbons are

based in only two different atoms, carbon and hydrogen, and

each of them can keep a number of bounds, being one for

hydrogen and four for carbon.

In our model, we establish a resemblance between com-

puters and atoms in the hydrocarbon. The bonds between

atoms have a correspondence to communication channels,

and double or triple bonds can be modeled as the amount of

information being migrated (intensity of the interaction) or,

in the case of non-population based algorithms, a higher

migration rate. In our model, the fastest machines are

associated with central carbon atoms (because of the higher

computational effort caused by the migrations) and the

slowest ones are associated with hydrogen atoms.

This model provides us with plenty of different schemes

for designing a parallel heterogeneous algorithm because of

the amount of hydrocarbons present in nature and their dif-

ferent architectures: linear, ring, branches… obtaining a

huge amount of different combinations depending on the

number of fast and slow available computers and the topol-

ogy of the network.

Ethane can be viewed as an instance of HydroCM for an

environment composed of eight nodes, where two of them

are more powerful than the rest, and making use of ssGA

and SA. As well as Ethane is such an instance, we could

instantiate many different algorithms depending on the

underlying hardware architecture following the model

proposed by HydroCM.

4 Performance measures and speedup

In this section we present the performance measures used

for assessing the performance of the studied algorithms. The

measures that are going to be used are the numerical effort,

the total run time, and the speedup. We will also analyze the

evolution of the fitness and the evolution of the mean

entropy to show the differences in the way each algorithm

converge to the optimum.

A widely accepted way of measuring the performance of a

parallel metaheuristic is to check the number of evaluations

Fig. 4 Communication schema for Ethane G (a) and S (b)

Fig. 5 Different hydrocarbon configurations that can be found in

nature; their structures are the basis of HydroCM

J. Domı́nguez, E. Alba

123



of the fitness function needed to locate an optimum. This

performance measure is called numerical effort. Numerical

effort is widely used in the field of metaheuristics because it

removes the effects of the implementation and the platform,

but it could be misleading in many cases for parallel methods

if used alone. Furthermore, the goal of the parallelism is not

the reduction of the number of evaluations (this is a goal for

decentralized algorithms) but the reduction of the running

time.

The most significant performance measure for a parallel

algorithm is the total run time needed to locate a solution. In

a non-parallel algorithm, the use of the CPU time is a com-

mon performance measure. While parallelizing an algorithm

should definitely include some overhead, for example for

communications, we are not able to use only the CPU time as

a performance measure. Since the goal of parallelism is to

reduce the real time needed to solve the problem, for parallel

algorithms it becomes necessary to measure the real run time

(wall-clock time) to find a solution.

Because of the non-deterministic behavior of metaheu-

ristics, average values for time and numerical effort are

usually needed. We have executed the tests 100 times in

this chapter in order to perform a rigorous statistical

analysis.

In our analysis we will also study the speedup. The

speedup sm (Eq. 1) represents the ratio between sequential

and parallel average execution times (E[T1] and E[Tm]

respectively).

sm ¼
E½T1�
E½Tm�

ð1Þ

For the speedup to be a meaningful metric, we have to

take care of several aspects for its analysis. Because of the

aforementioned non-deterministic behavior of metaheuristics

it is necessary to use average times, being these times the

wall-clock times. The algorithms run in the single and

multiprocessor platform must be exactly the same, thus

panmictic algorithms can not be used for the speedup

analysis. The algorithms have to be executed until they find

the optimum or a solution of the same quality (Alba 2002).

Since in our study we are working over a heterogeneous

platform, our reference point is the execution time of the

program on the fastest single processor.

In order to analyze the convergence speed of the algo-

rithms we will analyze their behavior from two different

points of view: the best fitness reached and the diversity of

the population (Folino et al. 2003). From the first point of

view we will analyze the evolution of the global best fitness

of each algorithm. From the point of view of the diversity

we will analyze the mean population entropy as a way of

monitoring the information quantity of the population. The

mean entropy H of a population P(t) at a time t is defined in

Eq. 2, where i : Pi
0 is the proportion of 0’s at string position

i : 1; . . .; l; and i : Pi
1 is the proportion of 1’s.

H½PðtÞ� ¼ � 1

l
�
Xi¼1

l

ðPi
0 � log2 Pi

0 þ Pi
1 � log2 Pi

1Þ ð2Þ

5 Problems, parameters, and platform

In this section we include the basic information necessary

to reproduce the experiments that have been carried out for

this article. First we will present the set of benchmark

problems used for assessing the performance of our pro-

posal. Second we will briefly explain the parameters used

within the sub-algorithms, and then the underlying hard-

ware and software platforms.

5.1 Benchmark problems

In order to assess the performance of our algorithms, we have

used four problems in the analysis: the subset sum problem

(SSP) (Jelasity 1997), the massively multimodal deceptive

problem (MMDP) with 6 bits (Goldberg et al. 1992), the

multimodal problem generator P-PEAKS (De Jong et al.

1997) and the well-known MAXSAT problem (Garey and

Johnson 1990). We have chosen this set of problems because

they show some features that are interesting for our study,

like complexity, epistasis, multimodality, deceptiveness,

and the features of a problem generator.

(1) SSP The SSP problem consists in finding a subset

of values V � W from a set of integers W ¼
fw1;w2; . . .;wng; such that the subset sum approaches a

constant C without exceeding it. We have chosen an

instance with 2,048 random integer numbers in the

range ½0 � � � 104� following a Gaussian distribution,

being the value of the sum for the optimum

C = 3,256,234.

We formulate SSP as a maximization problem whose

fitness is given by the function:

f ðx~Þ ¼ a � Pðx~Þ þ ð1� aÞ �max½C � 0:1 � Pðx~Þ; 0� ð3Þ

where Pðx~Þ is the sum of the integers of a tentative solu-

tion, and a = 1 when x~ is admissible ðC�Pðx~ÞÞ and a = 0

otherwise. Solutions exceeding C are penalized.

(2) MMDP MMDP is one of so called deceptive prob-

lems. Deceptive problems are specifically designed to

make the algorithm converge to wrong regions of the

search space, decorrelating the relationship between

the fitness of a string and its genotype. In MMDP a

binary string encodes k 6-bit sub-problems which

contribute with a partial fitness depending on its

number of 1’s (unitation) following Table 1. We have

Dealing with hardware heterogeneity

123



used an instance with strings of 150 bits so that the

global optimum is k = 25.

(3) P-PEAKS The P-PEAKS problem is a multimodal

problem generator. Using a problem generator, we

evaluate our algorithms on a high number of random

problem instances, since a different instance is solved

each time the algorithm is run, removing the opportu-

nity to hand-tune algorithms to a particular instance.

The idea behind P-PEAKS is to generate P random

N-bit strings that represent the location of P peaks in the

search space. The fitness value of a string is the number

of bits the string has in common with the nearest peak in

the space divided by N (Equation 4). In this work we

have used an instance of P = 1,000 peaks and a length

of N = 2,048 bits.

fP�PEAKSðx~Þ ¼
1

N
max

1� i� p
fN � HammingDðx~;PeakiÞg ð4Þ

(4) MAXSAT In MAXSAT problem we try to satisfy the

maximum number of clauses of a logical expression.

Formally this problem is formulated as follows. Being

U ¼ fu1; . . .; ung a set of n logical variables. An

assignment for u is a function t : U ! ftrue; falseg.
The literal u (or :u) is true conditioned by assignation

t if and only if t(u) = true (or tð:uÞ ¼ false). A clause

is defined as a set C of literals that are connected by the

disjunction. The set of clauses is called formula. A

formula f consists of the conjunction of its clauses

(conjunctive normal form). An assignment t satisfies a

formula f if and only if t satisfies all the clauses in

f. Each clause C is satisfied if there exists, at least, a

literal u 2 C which is true conditioned by assigna-

tion t. The SAT problem lies in, given a formula f, find

an assignment t which satisfies these formula or

expression. The MAXSAT problem consists in

finding an assignment t that maximize the number of

satisfied clauses within a formula f. The MAXSAT

instance used in our analysis consists of 75 variables

and 325 clauses, existing an assignment which makes

true all the clauses, thus the global optimum value is

325. This instance has been obtained from SATLIB

(Hoos and Sttzle 2000) and is an instance from the

phase transition region (Cheeseman et al. 1991) of the

Random-3-SAT problem.

5.2 Parameters of the algorithms and platform

The parameters used in every ssGA sub-population are: a

population size of 64 individuals, a crossover probability

of 0.8 and a mutation probability of 1.0 divided by the

chromosome length. The genetic operators are a single

point crossover and a bit flip mutation. For the SA, we

used the same mutation probability. For the SSP and

P-PEAKS problems the chromosome length is 2048, for

MAXSAT its length is 75, and in the case of MMDP its

length is 150 for both algorithms. In the case of the

panmictic ssGA, the population size has been also set to

64 individuals.

Several initial preliminary experiments were run to

establish a migration schema, taking care of the CPUs and

network speeds, as well as the complexity of the problems.

We have chosen a migration frequency of 200 iterations for

all the configurations for being the best performing tested

rate (among 10, 25, 50, 100, 200 and 500) for the algo-

rithms in the ring topology. The number of individuals

migrated is 1 in all cases. For the ssGA, the emigrant is

randomly selected and the immigrant always replaces the

worst individual of the population. In the SA, the immi-

grant is treated as a new move. As we noted before, the

communication takes place asynchronously.

The hardware infrastructure used in our analysis (Fig. 6)

consists of 8 different machines: two of them have an Intel

Core 2 Quad Q9400 @ 2.66 GHz processor and 4 GB of

RAM (namely Type A, fast), the other six computers have

an Intel Pentium 4 @ 2.4 GHz processor and 1 GB of RAM

(namely Type B, slow). All the computers are managed by a

GNU/Linux distribution, being Debian 5.0 for Type A, and

SuSE 8.1, Debian 3.1 and Ubuntu 6.10 for Type B. The

computers are connected by a Gigabit Ethernet Network.

The algorithms have been implemented in Java in order to

support both hardware and software heterogeneity. For the

purpose of the analysis the version 1.6.0_01 of the Java

Virtual Machine (JVM) is used in all the nodes.

6 Tests and analysis

In this section we analyze the behavior of Ethane, and

compare it with the well-known ssGA unidirectional ring,

as well as a SA unidirectional ring. As we can see in

Table 2, the results of the panmictic versions of ssGA and

SA were not competitive with the parallel models (they

needed much more time or were not able to find the opti-

mum), thus in the forthcoming analysis we are not going to

Table 1 Bipolar deception (6 bits) sub-function value

#ONES sub-function value
0 1.000000
1 0.000000
2 0.360384
3 0.640576
4 0.360384
5 0.000000
6 1.000000

J. Domı́nguez, E. Alba

123



study their behavior. We have analyzed the aforementioned

performance measures, being numerical effort, total run

time and speedup. In the next section we will analyze the

evolution of the fitness and the mean entropy.

We have implemented two different algorithms based on

Ethane. For the first one, Ethane G, we have provided the

Type A computers with a central ssGA island, and Type B

computers with a SA island. For the second algorithm,

Ethane S, the fastest machines run central SA islands and

the slowest ones run ssGA. As we mentioned above, the

migration scheme resembles a molecule of ethane as repre-

sented in Fig. 4. In the parallel ssGA and SA used as refer-

ence, the islands have been distributed over a unidirectional

ring, placing the most powerful computers in the first and

fourth place in a sort of MaxSumSort (Branke et al. 2004).

All the data obtained during the testing is summarized in

Table 2. We have included statistical measures like mean,

median, standard deviation, range, skewness, and kurtosis

to better understand the results and make a fair comparison.

As we do not know the statistical distribution of the data,

they have been statistically compared with Mann–Whitney

U test, using a value of 95 % for the confidence.

6.1 Numerical effort

In Table 2 we have presented different statistical measures

for numerical effort and total run time. In the first place we

are going to analyze the numerical effort.

For the SSP, we can see that both Ethane G and Ethane

S performed clearly better than ssGA and SA rings,

attending to both the mean and the median values for

numerical effort. The ssGA ring median number of eval-

uations was more than four times higher than Ethane G or

S, and for the SA ring it was almost 20 times higher.

Attending to dispersion and asymmetry measures, we can

see how the standard deviation and the range was also

better (more robust) for our proposal, and they obtained

quite good values for the skewness too. While the value for

standard deviation and range is much lower for our pro-

posal, the high value for the kurtosis in Ethane G suggests

that the behavior of our proposal described a distribution

with higher peakedness, denoting a more stable behavior.

In the case of MMDP, the SA ring was not able to

achieve the global optimum in a reasonable time, and ssGA

ring obtained only a 97 % of hits, while our proposal

always reached the optimum. However, ssGA ring was the

algorithm with the lower mean and median number of

evaluations. Ethane S obtained also good values for the

median and the mean, but attending to the diversity in the

distribution, both Ethane G and S obtained better values for

the standard deviation and range, as well as their distri-

butions showed lower asymmetry and a higher concentra-

tion, showing again a more robust behavior.

For P-PEAKS, the mean and median values for numer-

ical effort showed again that the best performing algorithm

was Ethane G, being Ethane S the second best algorithm

attending to the median value. From the point of view of the

shape of the distribution, Ethane G was patently the more

stable algorithm, showing the best values for standard

deviation and range, and almost a null asymmetry.

In the case of MAXSAT, in the first place we have to talk

about the hit percentage; Ethane S and ssGA ring reached

the optimum 89 and 92 % of the times, while Ethane G only

Fig. 6 Schema of the infrastructure showing the heterogeneous hardware and software systems used in our study

Dealing with hardware heterogeneity

123



T
a

b
le

2
N

u
m

er
ic

al
ef

fo
rt

(n
u

m
b

er
o

f
ev

al
u

at
io

n
s)

an
d

to
ta

l
ru

n
ti

m
e

(m
s)

fo
r

th
e

te
st

ed
m

o
d

el
s

an
d

p
an

m
ic

ti
c

al
g

o
ri

th
m

s

A
lg

o
ri

th
m

P
ro

b
le

m
T

im
e

(m
s)

N
u

m
er

ic
al

ef
fo

rt
(e

v
al

u
at

io
n

s)
%

H
it

M
ea

n
M

ed
ia

n
S

td
.

d
ev

.
R

an
g

e
S

k
ew

n
es

s
K

u
rt

o
si

s
M

ea
n

M
ed

ia
n

S
td

.
d

ev
.

R
an

g
e

S
k

ew
n

es
s

K
u

rt
o

si
s

E
th

an
e

G
S

S
P

3
,8

3
9

1
,7

4
2

3
,9

6
9

1
5

,5
1

0
1

.7
3

2
.1

2
5

3
,5

0
1

2
3

,6
4

4
5

6
,7

3
1

2
1

9
,4

7
8

1
.7

3
2

.1
2

1
0

0

M
M

D
P

6
0

,5
0

0
5

7
,7

0
4

1
6

,1
1

2
7

5
,5

9
6

0
.9

3
0

.8
8

7
,8

9
4

,4
0

2
7

,5
1

9
,0

6
3

2
,1

1
1

,7
1

6
9

,8
6

5
,0

7
0

0
.9

3
0

.8
6

1
0

0

P
-P

E
A

K
S

2
6

5
,3

9
2

2
6

4
,8

6
3

1
9

,5
7

9
7

5
,7

9
5

0
.3

4
-

0
.7

3
9

6
,6

0
1

9
5

,8
5

9
7

,1
8

1
2

8
,4

1
7

0
.3

5
-

0
.6

6
1

0
0

M
A

X
S

A
T

1
,4

1
9

1
,2

0
6

8
6

1
3

,3
1

5
1

.2
3

1
.2

6
7

6
,7

9
6

6
5

,6
2

4
6

8
,6

0
6

3
4

8
,8

9
8

2
.2

4
7

.8
3

4
9

E
th

an
e

S
S

S
P

7
,7

4
4

3
,5

8
4

7
,7

5
3

2
7

,2
4

1
1

.2
7

0
.3

9
5

9
,8

2
4

2
6

,8
5

7
6

0
,6

3
5

2
1

4
,6

0
6

1
.2

7
0

.4
0

1
0

0

M
M

D
P

1
0

5
,7

2
1

1
0

3
,1

3
6

3
5

,1
5

8
1

3
4

,8
5

9
0

.4
9

-
0

.5
2

5
,8

1
4

,1
1

0
5

,5
9

0
,6

9
3

1
,9

4
0

,7
6

6
7

,4
1

6
,7

1
7

0
.5

1
-

0
.4

9
1

0
0

P
-P

E
A

K
S

9
9

0
,5

7
5

7
7

0
,2

4
3

4
2

0
,4

7
3

1
,1

6
5

,6
0

0
0

.4
8

-
1

.5
7

1
7

7
,9

1
5

1
3

9
,2

2
5

7
5

,7
2

2
1

0
8

,1
3

6
0

.4
9

-
1

.5
7

1
0

0

M
A

X
S

A
T

1
,3

2
7

9
9

9
9

4
6

3
,7

7
4

1
.5

9
1

.6
7

7
9

,0
4

4
5

2
,5

9
4

6
5

,0
3

5
2

6
4

,1
4

3
1

.6
4

1
.8

6
8

9

ss
G

A
ri

n
g

S
S

P
1

0
,3

0
4

7
,2

9
2

7
,8

0
5

3
3

,2
4

2
1

.6
0

1
.8

5
1

4
8

,9
7

8
1

0
3

,8
2

8
1

1
3

,8
9

4
4

8
3

,2
3

7
1

.5
9

1
.8

6
1

0
0

M
M

D
P

8
7

,4
8

7
6

8
,1

1
1

6
6

,6
8

7
2

4
0

,5
1

3
0

.7
2

-
0

.6
9

4
,5

5
4

,5
9

7
3

,4
3

7
,3

7
4

3
,4

6
5

,4
3

8
1

2
,1

5
3

,4
3

6
0

.6
8

-
0

.7
6

9
7

P
-P

E
A

K
S

2
7

3
,2

1
4

2
7

2
,0

3
5

2
0

,6
8

0
9

0
,2

8
3

0
.7

0
0

.2
1

1
4

4
,6

1
5

1
4

4
,2

8
4

1
1

1
,1

3
7

4
7

,6
2

1
0

.6
1

2
0

.0
9

1
0

0

M
A

X
S

A
T

1
,4

6
1

1
,3

8
7

4
8

8
1

1
5

,7
7

7
0

.9
8

0
.5

9
1

1
7

,4
1

0
1

1
5

,2
9

5
4

7
5

,3
3

3
1

2
,7

8
5

,3
2

1
1

.0
2

0
.9

3
9

2

S
A

ri
n

g
S

S
P

2
3

,1
9

7
1

7
,6

4
3

2
4

,4
4

8
9

7
,3

5
4

1
.2

8
1

.0
2

5
4

1
,1

0
1

4
6

9
,5

8
5

5
0

4
,5

6
7

1
,8

7
5

,9
1

4
0

.9
0

-
0

.1
1

1
0

0

M
M

D
P

*
*

*
*

*
*

*
*

*
*

*
*

0

P
-P

E
A

K
S

6
5

5
,9

5
7

6
3

9
,2

4
2

9
0

,6
4

1
3

9
2

,8
0

4
0

.7
7

0
.1

7
2

3
4

,3
2

6
2

2
9

,5
2

6
2

7
,4

3
8

1
1

0
,4

3
1

0
.4

3
-

0
.5

8
1

0
0

M
A

X
S

A
T

3
3

,8
3

5
2

5
,7

3
0

4
3

,3
7

8
1

0
5

,7
2

7
1

.5
4

2
.5

1
9

,3
2

6
,9

2
0

7
,0

0
2

,2
4

9
1

2
,0

6
9

,5
9

4
2

9
,3

9
4

,2
0

5
1

.5
4

2
.5

0
5

S
td

.
ss

G
A

S
S

P
1

6
,3

8
7

1
1

,8
7

1
1

7
,0

0
4

7
4

,5
6

5
1

.7
6

3
.9

4
1

4
1

,4
8

3
1

0
2

,8
1

2
1

4
6

,9
7

2
6

4
5

,4
0

7
1

.7
6

3
.9

5
1

0
0

M
M

D
P

*
*

*
*

*
*

*
*

*
*

*
*

0

P
-P

E
A

K
S

1
,1

5
6

,4
6

3
1

,1
3

3
,4

0
7

1
0

5
,8

7
5

4
2

1
,8

9
5

0
.7

7
0

.1
1

6
4

,9
7

2
6

3
,2

0
4

5
,9

1
4

2
3

,8
5

5
0

.9
5

0
.6

4
1

0
0

M
A

X
S

A
T

2
2

,8
1

1
5

,0
9

4
2

7
,5

5
4

6
8

,6
4

9
0

.7
7

-
1

.3
2

7
7

2
,7

1
7

1
6

5
,5

7
6

9
3

4
,5

9
4

2
,3

3
1

,2
8

8
0

.7
7

-
1

.3
1

1
8

S
td

.
S

A
S

S
P

1
6

,5
3

6
1

1
,9

9
4

1
9

,1
1

8
9

8
,5

1
9

3
.2

1
1

2
.7

6
1

5
9

,0
6

9
1

1
6

,3
7

5
1

8
6

,1
2

7
9

5
8

,8
5

5
3

.2
3

1
2

.8
5

1
0

0

M
M

D
P

*
*

*
*

*
*

*
*

*
*

*
*

0

P
-P

E
A

K
S

7
1

3
,8

5
8

6
9

1
,8

7
3

1
4

5
,8

1
7

6
3

7
,0

3
2

0
.3

2
0

.0
8

4
0

,3
9

9
3

9
,1

6
2

8
,2

6
8

3
6

,1
3

1
0

.3
2

0
.0

9
1

0
0

M
A

X
S

A
T

*
*

*
*

*
*

*
*

*
*

*
*

0

B
o

ld
n

u
m

b
er

s
id

en
ti

fi
es

th
e

b
es

t
v

al
u

e;
it

al
ic

n
u

m
b

er
id

en
ti

fi
es

th
e

se
co

n
d

b
et

te
r

v
al

u
e

J. Domı́nguez, E. Alba

123



obtained a 49 % of hit and SA ring a lower 5 %. Attending

to the mean and median values, our algorithms obtained the

best results again, clearly outperforming the ssGA and SA

rings.

The diversity and shape measures for the distribution

were also better for our proposal, showing a much more

stable behavior. In summary, attending to the numerical

effort, our proposals were the best performing algorithms

in 3 out of 4 problems, and were also more robust in all the

benchmark problems, obtaining better values for diversity

and shape measures. All the differences noted in this sub-

section are statistically significant according to the Mann–

Whitney U.

6.2 Total run time

Now we are going to study a more meaningful metric in a

parallel algorithm, the total run time. Table 2 also contains

the data for the run time.

For the SSP, as for the numerical effort, we can see that

both Ethane G and Ethane S performed clearly better than

ssGA and SA rings from the point of view of the wall-clock

time. The mean values were quite lower for our proposal,

and the median was even more better. From the point of

view of dispersion and asymmetry measures, we can see

how the standard deviation and the range was also clearly

better for our proposal. They obtained quite good values for

the skewness too, and the lower deviation and higher

kurtosis suggest a more shaped distribution for Ethane G

(values are more concentrated), showing a robust behavior.

As we noted in the previous subsection, for the MMDP

the SA ring was not able to achieve the global optimum and

ssGA ring obtained a 97 % of hits, being a 100 % in both

Ethane versions. Although ssGA ring performed a lower

number of evaluations, attending to the total run time,

Ethane G was the best performing algorithm. Furthermore,

its values for diversity and concentration were the best too.

Ethane S obtained also good values for the diversity mea-

sures, being the ssGA ring the worst algorithm attending to

these measures. Our proposal showed again a more stable

behavior than the reference models.

As we can see in Table 2, for P-PEAKS problem gen-

erator, Ethane G was again the best performing and more

stable algorithm, obtaining the best values for mean, med-

ian, standard deviation and range, and the lower skewness.

In this case the difference was not very high, but statistically

significant, so the behavior of the proposed Ethane G was

better and more robust, although it was also good and robust

for the ssGA ring.

For the case of MAXSAT, we have to remember that

only Ethane G and ssGA ring were able to obtain the

optimum in almost all the runs. Looking at the mean and

median values, our algorithms obtained the best results

again, but in this case the difference is not very high

comparing to the ssGA ring. However, the dispersion

measures for the distribution were much better for our

proposal, showing a much more stable behavior.

Attending to the total run time, which is the most

meaningful metric in a parallel system, our proposals were

the best performing and also more robust in all the

benchmark problems, obtaining better values for the mean,

median, deviation, and shape measures. Again, all the

differences noted in this subsection are statistically sig-

nificant according to the Mann–Whitney U test with more

than a 95 % confidence.

6.3 Speedup

In the Table 3, we can see a summary of the execution time

of the studied algorithms within the fastest processor and

its speedup with respect to its own execution in the eight

processors heterogeneous platform. As we can see, both

versions of Ethane have obtained a better speedup than the

ssGA and SA rings in 3 out of 4 benchmark problems.

As it is shown in Table 3, Ethane G has performed

better than the reference ssGA ring even in a single pro-

cessor in the case of SSP. Even when its performance over

a single processor is still better, its speedup is the best of

the four models, however, the value for the speedup is not

good for any of the algorithms for this problem, being the

value for Ethane G 4.019.

In the case of the MMDP, Ethane G obtained again the

best speedup value, although it was not a high value. The

Table 3 Time (ms) for the tested models in a single processor and its speedup

Algorithm Subset sum MMDP6 P-PEAKS MAXSAT

Avg. time Speedup Avg. time Speedup Avg. time Speedup Avg. time Speedup

Ethane G 15,385 4.019 149,495 2.479 6,453,594 24.329 7,565 5.339

Ethane S 18,905 2.459 128,310 1.219 5,991,042 6.049 3,251 2.459

ssGA ring 25,074 2.439 911,108 1.049 9,190,826 33.649 3,675 2.519

SA ring 92,617 3.989 * * 5,278,337 8.059 166,998 4.939

Bold numbers identifies the best values

Dealing with hardware heterogeneity

123



speedup for Ethane S and ssGA ring was almost null,

because of the light computational effort required for this

problem.

For the P-PEAKS problem, Ethane G, ssGA ring and SA

ring were able to achieve super-lineal speedup, being the

best value obtained by ssGA ring. However, Ethane G was

faster than ssGA ring when run in a single processor. The

values for the speedup achieved an impressive 33.649 for

ssGA ring and 24.329 for Ethane G.

In the MAXSAT case, the higher speedup value was

obtained by Ethane G, with a value of 5.339. The speedup

was more than twice the one obtained by ssGA ring, while

the distributed SA ring obtained a good value because of its

poor performance within a single processor.

In summary, the speedup of the proposed and reference

algorithms was not really high except for the P-PEAKS

problem, but in 3 out of 4 benchmark problems our pro-

posal was able to obtain the best speedup values. This fact

could be explained by the huge difference among the

power of the different hardware configurations used

(remember that the reference point for speedup is the best

performing processor, a difficult challenge). We can see

that the value for the speedup was higher with the problems

where more computational effort was needed.

Fig. 7 Evolution of the fitness. a SSP, b MMDP, c P-PEAKS, and d MAXSAT

J. Domı́nguez, E. Alba

123



7 Analysis of the diversity

In this section we will graphically analyze the evolution of

the fitness and the diversity of the population during the

search. For this purpose we are going to track the value of

the best fitness found and the mean population entropy

along the search.

7.1 Evolution of the fitness

Figure 7a–d is showing the evolution of the best value for

the fitness along the median execution of each algorithm

for each problem.

In the case of SSP (Fig. 7a), the figure shows that both

Ethane versions clearly outperforms the ssGA ring, con-

verging to the optimum quite faster. We can see how

Ethane G performs even better than Ethane S for this

problem. The SA ring converged even faster than both

Ethane versions, but it got stuck in a local optima, finding

the global optimum in an almost ten times higher time than

the median value for Ethane G. The table is not showing

the complete curve for SA ring in order to maintain the

representativity for the rest of the algorithms.

For the MMDP (Fig. 7b), Ethane G performed better

than Ethane S, obtaining a quasi-lineal convergence curve.

The ssGA ring converged faster than Ethane G at the

Fig. 8 Evolution of the entropy. a SSP, b MMDP, c P-PEAKS, and d MAXSAT

Dealing with hardware heterogeneity

123



beginning of the run, but its fitness curve was stuck close to

the optimum and was not able to find it in a better time than

Ethane G. As we will see in the next subsection, this

convergence speed was correlated with a diversity drop.

In the case of P-PEAKS (Fig. 7c), we can clearly dis-

tinguish between the better performing Ethane G and ssGA

ring, and the worse Ethane S and SA ring. However, it is

hard to distinguish between Ethane G and ssGA ring, while

both of them are showing a good convergence curve. The

analysis of the diversity will help us for the distinction of

their behavior.

For MAXSAT (Fig. 7d), we can see how both Ethane

versions were able to outperform the ssGA ring. The SA

ring was not competitive, so the table is not showing its

complete convergence curve. We can notice a difference in

the behavior of Ethane G and Ethane S; in Ethane G, the

best fitness grows constantly in a manner similar to ssGA

ring. However, Ethane S was stuck in a local optimum

during most of the search time, showing a behavior more

similar to the SA ring.

7.2 Analysis of the population entropy

In Fig. 8 we present the evolution of the mean population

entropy along the search. We are going to analyze these

figures and compare them with the aforementioned evolu-

tion of the fitness.

Comparing the Figs. 7a and 8a, we can see how for SSP,

although Ethane G and S converged faster than ssGA ring,

they were able to maintain a higher diversity within its pop-

ulation during the search. The balance between exploration

and exploitation was better in our proposal, achieving a fast

convergency while maintaining the population diversity.

For MMDP, if we look at Fig. 8b, we can see that,

again, Ethane G and S maintained a higher diversity during

the whole search. Comparing with Fig. 7b, we can see how

the fitness curve has a maintained grow rate for Ethane.

However, for the ssGA ring, the curve is stuck during the

whole search while the diversity drops.

In the case of P-PEAKS, looking at the convergence

curve does not provide us with much information but, if we

compare Figs. 7c and 8c we realize that, while the evolu-

tion of the best fitness is very similar between Ethane G

and the ssGA ring, our proposal was able to maintain a

higher diversity, as well as Ethane S does. Thus, Ethane G

obtained again the best balance between exploitation and

exploration.

For the MAXSAT problem, the results are similar to the

rest of the benchmark problems. In Fig. 8d we can see how

both Ethane versions were able to maintain a highest

diversity within the population. In this case the ssGA ring

was also able to maintain a good diversity during the search.

As a summary, we can say that Ethane G and S have

shown a better balance between exploitation and explora-

tion than the reference ssGA ring in all the benchmark

problems, as their fitness curve has grown faster than the

reference in the majority of the cases maintaining a higher

diversity in all the problems.

8 Conclusions and future work

In this paper we have presented a new heterogeneous

parallel search algorithm based on the structure of ethane.

We have also shaped a general model for designing het-

erogeneous algorithms depending on the underlying het-

erogeneous platform, inspired in the structures of the

hydrocarbons present in nature.

We have performed a set of tests in order to assess the

performance of our proposal, and compared it with two

well-known state-of-the-art models, both ssGA and SA

unidirectional ring, and two well-known panmictic algo-

rithms: SA and ssGA. Our tests have shown that our pro-

posal can perform better in terms of time and numerical

effort than the reference models, and Ethane is even able to

find the solutions in a more robust/stable manner. Also the

speedup of the proposed models is competitive with that of

the reference models, obtaining quite good values even

with the huge differences between the performance of the

computers of the heterogeneous platform.

We also analyzed the exploitation/exploration balance

analyzing the relationship between the fitness evolution

speed and the population diversity. We have shown that

Ethane can perform a search in a fastest way than the

reference models do while maintaining a higher diversity

within the population, exposing a better balance between

exploitation and exploration.

As future work we propose to extend and deeply analyze

the HydroCM model, as well as to assess its performance

with different configurations and real-life applications. Our

goal is to offer a general model for gracefully matching

computers of different powers to run different algorithms

to efficiently solve the same problem, in a way that an

heterogeneous platform does not constitute a problem but,

on the contrary, could be used as a target platform for

specialized new parallel algorithms.

Acknowledgments Authors acknowledge funds from the Spanish

Ministry MICINN and FEDER under contracts TIN2011-28194

(roadME) and TIN2008-06491-C04-01 (M* http://mstar.lcc.uma.es)

and CICE, Junta de Andalucı́a, under contract P07-TIC-03044 (DI-

RICOM http://diricom.lcc.uma.es).

J. Domı́nguez, E. Alba

123

http://mstar.lcc.uma.es
http://diricom.lcc.uma.es


References

Aarts EHL, Verhoeven MGA (1997) Genetic local search for the

traveling salesman problem. Handbook of evolutionary compu-

tation. Institute of Physics Publishing and Oxford University

Press, Bristol, pp G9.5:1–7

Alba E (2002) Parallel evolutionary algorithms can achieve super-

lineal performance. Inf Process Lett 82:7–13

Alba E (2005a) Metaheuristics and parallelism. Parallel metaheuris-

tics: a new class of algorithms. Wiley, New York, pp 79–103

Alba E (2005b) Parallel heterogeneous metaheuristics. Parallel meta-

heuristics: a new class of algorithms. Wiley, New York, pp 395–422

Alba E, Dorronsoro B (2008) The state of the art in cellular

evolutionary algorithms. Cellular genetic algorithms. Springer,

New York, pp 21–34

Alba E, Troya JM (2001) Analyzing synchronous and asynchronous

parallel distributed genetic algorithms. Futur Gener Comput Syst

17:451–465

Alba E, Nebro AJ, Troya JM (2002) Heterogeneous computing and

parallel genetic algorithms. J Parallel Distrib Comput 62:1362–

1385

Alba E, Luna F, Nebro AJ, Troya JM (2004) Parallel heterogeneous

genetic algorithms for continuous optimization. Parallel Comput

30(5–6):699–719

Branke J, Kamper A, Schmeck H (2004) Distribution of evolutionary

algorithms in heterogeneous networks. In: Lecture notes in

computer science, vol 3102. Springer, Heidelberg, pp 923–934

Cheeseman P, Kanefsky B, Taylor WM (1991) Where the really hard

problems are. In: Proceedings of the international joint confer-

ences on artificial intelligence IJCAI-91, Sydney, pp 331–337

Chen H, Flann NS (1994) Parallel simulated annealing and genetic

algorithms: a space of hybrid methods. In: Third conference on

parallel problem solving from nature, Jerusalem, pp 428–436

Crainic TG, Toulouse M (2003) Parallel strategies for meta-heuristics.

Handbook of metaheuristics. Kluwer, Norwell, pp 474–513

De Falco I, Del Balio R, Tarantino E, Vaccaro R (1994) Improving

search by incorporating evolution principles in parallel tabu

search. In: International conference on machine learning, New

Brunswick, pp 823–828

De Jong K, Potter M, Spears W (1997) Using problem generators to

explore the effects of epistasis. In: Proceedings of the seventh

international conference on genetic algorithms, San Francisco,

pp 338–345

Domı́nguez J, Alba E (2011) Ethane: a heterogeneous parallel search

algorithm for heterogeneous platforms. DECIE’11, doi:arXiv:

1105.5900v2

Fleurant C, Ferland JA (1996) Genetic and hybrid algorithms for

graph coloring. Ann Oper Res 63:437–461

Folino G, Pizzuti C, Spezzano G, Vanneschi L, Tomassini M (2003)

Diversity analysis in cellular and multipopulation genetic

programming. IEEE Congr Evol Comput (1):305–311

Garey MR, Johnson DS (1990) Computers and intractability; a guide

to the theory of NP-completeness. W. H. Freeman, New York

Goldberg DE, Deb K, Horn J (1992) Massively multimodality, deception

and genetic algorithms. Parallel Probl Solving Nat 2:37–46

Hoos HH, Sttzle T (2000) SATLIB: an online resource for research on

SAT. In: Gent IP, Maaren Hv, Walsh T (eds) SAT 2000. IOS

Press, Amsterdam, pp 283–292

Jelasity M (1997) A wave analysis of the subset sum problem. In:

Proceedings of the seventh international conference on genetic

algorithms, San Francisco, pp 89–96

Lozano M, Herrera F, Krasnogor N, Molina D (2004) real-coded

memetic algorithms with crossover hill-climbing. Evol Comput

12(3):273–302

Mahfoud SW, Goldberg DE (1995) Parallel recombinative simulated

annealing: a genetic algorithm. Parallel Comput 21:1–28

Martin OC, Otto SW, Felten EW (1992) Large-step markov chains for

the TSP: incorporating local search heuristics. Oper Res Lett 11:

219–224

Salto C, Alba E (2012) Designing heterogeneous distributed GAs by

efficient self-adapting the migration period. Appl Intell 36:800–

808

Salto C, Alba E, Luna F (2011) Using landscape measures for the

online tuning of heterogeneous distributed GAs. In: Proceedings

of the GECCO’11, Dublin, pp 691–694

Syswerda G (1991) A study of reproduction in generational and

steady-state genetic algorithms. Foundations of genetic algo-

rithms. Morgan Kauffman, San Mateo, pp 94–101

Talbi E-G (2002) A taxonomy of hybrid metaheuristics. J Heuristics

8(5):541–564

Talbi E-G, Muntean T, Samarandache I (1994) Hybridation des

algorithmes génétiques aveq la recherche tabou. In: Evolution

Artificielle (EA94), Toulouse

Voigt H-M, Born J, Santibanez-Koref I (1990) Modeling and

simulation of distributed evolutionary search processes for

function optimization. In: PPPSN. Lecture notes in computer

science, vol 496. Springer, Heidelberg, pp 373–380

Yao X (1995) A new simulated annealing algorithm. Int J Comput

Math 56:161–168

Dealing with hardware heterogeneity

123

http://dx.doi.org/arXiv:1105.5900v2
http://dx.doi.org/arXiv:1105.5900v2

	Dealing with hardware heterogeneity: a new parallel search model
	Abstract
	Introduction
	Decentralized, heterogeneous and hybrid parallel metaheuristics
	Parallel EA models
	Parallel LSM models
	Achieving the heterogeneity
	Classifying hybrid metaheuristics

	Description of the model
	Ethane
	An overview of HydroCM

	Performance measures and speedup
	Problems, parameters, and platform
	Benchmark problems
	Parameters of the algorithms and platform

	Tests and analysis
	Numerical effort
	Total run time
	Speedup

	Analysis of the diversity
	Evolution of the fitness
	Analysis of the population entropy

	Conclusions and future work
	Acknowledgments
	References


