
www.elsevier.com/locate/parco

Parallel Computing 30 (2004) 611–628
Parallel LAN/WAN heuristics for optimization

E. Alba *, G. Luque, J.M. Troya

Departamento de Lenguajes y Ciencias de la Computaci�on, E.T.S. Ingenier�ıa Inform�atica,
Campus de Teatinos (3.2.12), 29071 M�alaga, Spain

Received 10 November 2003; accepted 15 December 2003

Available online 18 May 2004

Abstract

We present in this work a wide spectrum of results on analyzing the behavior of parallel

heuristics (both pure and hybrid) for solving optimization problems. We focus on several evo-

lutionary algorithms as well as on simulated annealing. Our goal is to offer a first study on the

possible changes in the search mechanics that the algorithms suffer when shifting from a LAN

network to a WAN environment. We will address six optimization tasks of considerable com-

plexity. The results show that, despite their expected slower execution time, the WAN versions

of our algorithms consistently solve the problems. We report also some interesting results in

which WAN algorithms outperform LAN ones. Those results are further extended to analyze

the behavior of the heuristics in WAN with a larger number of processors and different

connectivities.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Solving complex problems means designing new algorithms that improve in some

manner the computational effort and the execution time for an acceptable solution.

Analyzing and designing parallel algorithms is a healthy activity since it pursuits

some of the most promising objectives in optimization, namely reducing the
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wall-clock time, allowing cooperation of different algorithms (hybridization), and

even modifying the search pattern to yield new methods.

In this work, we study the way in which several parallel algorithms change their

behavior when executed in a LAN with respect to their execution in a WAN. Due to

the growing park of available computers in the Internet, our aim is to study the new
scenario of WAN computing, in contrast to the traditional LAN analysis.

The MALLBA project [1] is an effort of research in this direction. In the

MALLBA project we intend to design and analyze exact, heuristic and hybrid tech-

niques in sequential, LAN and WAN environments. MALLBA source code and lat-

est achievements are used in this work.

The contributions of this paper are manifold. First, we test the efficiency of some

algorithms developed in the MALLBA project, since the achievements mentioned in

the last paragraph represent an ambitious goal that must be validated in practice.
Second, we want to put aside the expected and actual outcomes of computing in

LAN and WAN. Third, we are interested in showing really useful results, and this

is why we check the algorithms on six quite different problems, accounting for epis-

tasis and multimodality, both in continuous and discrete optimization. Our claims

and conclusions are somewhat expected and surprising at the same time, since we

do validate in practice some theoretical thoughts on the induced WAN overhead,

but, at the same time, we report competitive performance in WAN in some cases.

The organization of the paper is as follows. Next section (Section 2) introduces
the MALLBA project. Section 3 discusses the search models considered in our study.

Section 4 presents the details on the problems being solved. We then turn in Section 5

to comparatively analyze the algorithms in different LAN/WAN scenarios. Finally,

we provide in Section 6 some concluding remarks, and point out the future work we

envision after our conclusions.
2. The MALLBA project

The MALLBA 1 research project is aimed at developing a library of algorithms

for optimization that can deal with parallelism in a user-friendly and, at the same

time, efficient manner. Its three target environments are sequential, LAN and

WAN computer platforms. All the algorithms described in the next section are

implemented as software skeletons (similar to the concept of software pattern [2])

with a common internal and public interface. This permits fast prototyping and

transparent access to parallel platforms.
MALLBA skeletons distinguish between the concrete problem to be solved and

the solver technique. Skeletons are generic templates to be instantiated by the user

with the features of the problem. All the knowledge related to the solver method

(e.g., parallel considerations) and its interactions with the problem are implemented

by the skeleton and offered to the user. Skeletons are implemented by a set of
1 The MALLBA library is publicly available at http://neo.lcc.uma.es/mallba/easy-mallba/index.html.

http://neo.lcc.uma.es/mallba/easy-mallba/index.html
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required and provided C++ classes that represent an abstraction of the entities

participating in the solver method:

• Provided classes: They implement internal aspects of the skeleton in a problem-

independent way. The most important provided classes are Solver (the algo-
rithm) and SetUpParams (setup parameters).

• Required classes: They specify information related to the problem. Each skeleton

includes the Problem and Solution required classes that encapsulate the prob-

lem-dependent entities needed by the solver method. Depending on the skeleton

other classes may be required.

Therefore, the user of a MALLBA skeleton only needs to implement the partic-

ular features related to the problem. This speeds considerably the creation of new
algorithms with a minimum effort, especially if they are built up as combinations

of existing skeletons (hybrids).

For example, in Fig. 1 we show the design for a simulated annealing (SA). In that

design, we define a set of new classes that are specifically included for the SA method

(Move hierarchy). These new classes allow the user to generate new solutions from

the current one in order to search in its neighborhood.

The infrastructure used in the MALLBA project is made of communication net-

works and clusters of computers located at the spanish universities of M�alaga, La
Laguna and UPC in Barcelona. These nodes are interconnected by a chain of Fast

Ethernet and ATM circuits.
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Fig. 1. UML Diagram describing the design of the SA Method.
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3. Algorithms

In this paper we deal with several evolutionary algorithms, in particular with ge-

netic algorithms (GAs), a CHC algorithm, and an evolution strategy (ES). Local

search methods are also considered in this work, like simulated annealing (SA)
(see a detailed description of these techniques in [3]). All methods have been parall-

elized for LAN and WAN platforms. Finally, we will also include some hybrid algo-

rithms in our LAN/WAN study.

Let us now proceed to explain the optimization techniques considered here.

3.1. Evolutionary algorithms

Evolutionary algorithms (EAs) are stochastic search methods that have been suc-
cessfully applied in many real applications of high complexity. An EA is an iterative

technique that applies stochastic operators on a pool of individuals (the population)

in order to improve the average fitness ð�fi < �fiþ1Þ. Every individual in the population
is the encoded version of a tentative solution. Initially, this population is randomly

generated. An evaluation function associates a fitness value to every individual indi-

cating its suitability to the problem. We have implemented three separate parallel

distributed EAs, whose component subalgorithm is a GA, an ES or a CHC.

GAs are a very popular class of EAs. Traditionally, GAs are associated to the use of
a binary representation, but nowadays other types of representations can be found. A

GA usually applies a recombination operator on two tentative solutions, plus a muta-

tion operator that randomly modifies the individual contents to promote diversity.

A CHC [4] is a non-canonical GA which combines a conservative selection strat-

egy (that always preserves the best individuals found so far) with a highly disruptive

recombination (HUX), that produces offsprings that are maximally different from

their two parents. The traditional thought of preferring a recombination operator

with low disrupting properties may not hold when such a conservative selection
strategy is used. On the contrary, certain highly disruptive crossover operator pro-

vides more effective search in many problems, which represents the core idea behind

the CHC search method. This algorithm introduces a bias against mating individuals

who are too similar (incest prevention). Mutation is not performed; instead, a restart

process reintroduces diversity whenever convergence is detected.

The last EA that we consider is an ES. This algorithm is suited for continuous

optimization, usually with an elitist selection and a specific mutation (crossover is

used rarely). In ES, the individual is composed of the objective float variables plus
some other parameters guiding the search. Thus, an ES facilitates a kind of self-adap-

tion by evolving the problem variables as well as the strategy parameters at the same

time. Hence, the parameterization of an ES is highly customizable.

3.2. Simulated annealing

The simulated annealing algorithm (SA) was first proposed in 1983. SA is a sto-

chastic search technique that can be seen as a hill-climber with an internal mecha-
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nism to escape from local optima. In SA, the solution s0 is accepted as the new cur-

rent solution if d6 0 holds, where d ¼ f ðs0Þ � f ðsÞ. To allow escaping from a local

optimum, moves that increase the energy function are accepted with a decreasing

probability expð�d=T Þ if d > 0, where T is a parameter called the ‘‘temperature’’.

The decreasing values of T are controlled by a cooling schedule, which specifies the
temperature values at each stage of the algorithm, what represents an important

decision for its application. Here, we are using a proportional method for updating

the temperature ðTk ¼ a � Tk�1Þ. The a factor indicates the decrease speed of the

temperature.

3.3. Hybrid algorithms

In its broadest sense, hybridization [5] refers to the inclusion of problem-depen-
dent knowledge in a general search algorithm in one of two ways:

• Strong hybrids: problem-knowledge is included as specific non-conventional prob-

lem-dependent representations and/or operators.

• Weak hybrids: several algorithms are combined in some manner to yield the new

hybrid algorithm.

In this work we have implemented two hybrid algorithms, namely GASA and
CHCES. The first of them (GASA) is made of a genetic algorithm and a simulated

annealing; also, this scheme has been used to combine a CHC and an ES. The ratio-

nale for this selection of algorithms is that, while the GA/CHC locates ‘‘good’’ re-

gions of the search space (exploration), the SA/ES allows for exploitation in the

best regions found by its partner.

We deal with two main subclasses of weak hybrids in this work:

• A first hybrid (GASA1/CHCES1) where a GA/CHC algorithm uses the other
algorithm (SA/ES) as an evolutionary operator; the local search algorithm is ap-

plied in the main loop after the traditional recombination and mutation opera-

tors. See an example for GASA1 in Fig. 2 (left).

• The second hybrid schema executes a GA/CHC until the algorithm completely

finishes. Then the hybrid selects some individuals from the final population and

executes a SA/ES algorithm over them. We have implemented two variants whose

only difference is the selection method. Concretely, we analyze a first version

(GASA2/CHCES2) that uses a tournament selection (model 2.1 of Fig. 2 (right)),
and another version (GASA3/CHCES3) that uses a random choice of individuals

(model 2.2 of Fig. 2 (right)).

3.4. Parallel heuristics

Since we want to conduct our research in LAN and WAN platforms it seems nat-

ural to explore the behavior of parallel heuristics. A parallel EA (PEA) is an algo-

rithm having multiple component EAs, regardless of their population structure.
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Each component (usually a traditional (single population) EA) subalgorithm in-

cludes an additional phase of communication with a set of subalgorithms [6].

Different parallel algorithms differ in the characteristics of their elementary heu-
ristics and in the communication details. In this work, we have chosen a distributed

EA (dEA) because of its popularity and because it can be easily implemented in clus-

ters of machines. In distributed EAs there exists a small number of islands perform-

ing separate EAs, and periodically exchanging individuals after a number of isolated

steps (migration frequency).

The migration policy must define the island topology, when migration occurs,

which individuals are being exchanged, the synchronization among the subpopula-

tions, and the kind of integration of exchanged individuals within the target sub-
populations. Concretely, we use a static ring topology, select random migrants,

and include them asynchronously in the target populations only if they are better

than the local worst-existing solutions.

For the parallel SA (PSA) there also exist multiple asynchronous component SAs.

Each component SA periodically exchanges the best solution found (cooperation

phase) with its neighbor SA in the ring.
4. Problems

In this section, we discuss the optimization tasks that will be used to test our par-

allel heuristics. We made a benchmark of six optimization tasks, considering a com-

plex instance for each one. We have selected problems both from discrete and

continuous domains of research. Our representatives for continuous optimization

are the Rastrigin function (RAS) and the frequency modulation sounds problem

(FMS). For testing the algorithms in combinatorial optimization we consider the
minimum tardy task problem (MTTP), the error correcting code design problem

(ECC), the maximum cut problem (MaxCut), and the vehicle routing problem

(VRP). For the VRP we include two instances.

The first two problems were chosen because their continuous nature makes them

adequate for testing the ES algorithm. The first problem is of moderate difficulty.
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The second one is a highly complex multimodal problem having strong epistasis. The

rest of problems represent a broad spectrum of challenging intractable tasks in the

areas of scheduling, coding theory, graph theory and transportation. Almost all of

them have a direct real world use.

4.1. The Rastrigin function (RAS)

The generalized Rastrigin function (Eq. (1)) is a problem with a large search space

and a very large number of local optima [7]. This function is a non-epistatic function
representing a typical test for EAs. For the experiments, we have used a problem in-

stance of 20 variables (optimum at fRASðx�Þ ¼ 0).
fRASð~xÞ ¼ 10 � nþ
Xn

i¼1
x2i � 10 � cosð2 � p � xiÞ; xi 2 ½�5:12;þ5:12� ð1Þ
4.2. The frequency modulation sounds problem (FMS)

The frequency modulation sounds problem [8] (or FMS) has been proposed as a

hard real task consisting in adjusting a general model yðtÞ to a basic sound function
y0ðtÞ. The goal is to minimize the sum of square errors given by Eq. (2).
fFMSð~xÞ ¼
X100

i¼0
ðyðtÞ � y0ðtÞÞ2 ð2Þ
The problem is to evolve six parameters~x ¼ ða1;w1; a2;w2; a3;w3Þ in order yðtÞ to
fit the target y0ðtÞ. The evolved and target models have the expressions shown in Eqs.
(3) and (4).
yðtÞ ¼ a1 � sinðw1 � t � h þ a2 � sinðw2 � t � h þ a3 � sinðw3 � t � hÞÞÞ ð3Þ

y0ðtÞ ¼ 1:0 � sinð5:0 � t � h � 1:5 � sinð4:8 � t � h þ 2:0 � sinð4:9 � t � hÞÞÞ ð4Þ

h ¼ 2p=100 ai;wi 2 ½�6:4;þ6:35�

The resulting problem is a highly complex multimodal function having strong

epistasis with minimum value fFMSðx�Þ ¼ 0. For the experiments, we consider as an

optimum any solution with fitness value below 0.12.
4.3. The maximum cut problem (MaxCut)

The maximum cut problem [9] (MaxCut) consists in partitioning the set of vertices
of a weighted graph into two disjoint subsets, such that the sum of the weights of

edges with one endpoint in each subset is maximized. Thus, if G ¼ ðV ;EÞ, denotes
a weighted graph where V is the set of nodes and E the set of edges, then the

maximum cut problem consists in partitioning V into two disjoint sets V0 and V1 such
that the sum of weights of edges from E that have one endpoint in V0 and the other in
V1 is maximized. The function to be maximized is



618 E. Alba et al. / Parallel Computing 30 (2004) 611–628
fMaxCut ¼
X

i2V0

X

j2V1

wij ð5Þ
where wij is the weight of edge ði; jÞ. For the experiments reported here, we use a
scalable problem instance [9] with a graph of size n ¼ 100, ‘‘cut100’’ (optimum at

fMaxCutðx�Þ ¼ 1077).

4.4. The minimum tardy task problem (MTTP)

The minimum tardy task problem is a task-scheduling problem [9]. Each task i
from the set of tasks T ¼ 1; 2; . . . ; n has an associated length li, the time it takes
for its execution, a deadline di before which the task must be scheduled and its exe-
cution completed, and a weight wi. The weight is a penalty indicating the importance

that a task remains unscheduled. Scheduling the tasks of a subset S of T consists in
finding the starting time of each task in S, such that at most one task at a time is
performed, and such that each task finishes before its deadline.

The optimal solution is a feasible schedule S with the minimum tardy task weight,

which is the sum of weights of incompleted tasks (Eq. (6)).
fMTTP ¼
X

i2T�S

wi ð6Þ
A feasible solution must satisfy that no task is scheduled before the completion of

an earlier scheduled one and that all the tasks are completed within its deadline.

For our experiments, we use a scalable problem instance [9] of size 100 tasks,

‘‘mttp100’’ (optimum at fMTTPðx�Þ ¼ 200).

4.5. The error correcting code design problem (ECC)

The error correcting code design problem [10] (ECC) consists in assigning code-

words to an alphabet that minimizes the length of transmitted messages, and that

provides maximal correction of single uncorrelated bit errors when the messages

are transmitted over noisy channels. This problem can be formally represented by

a three-tuple ðn;M ; dÞ, where n is the length of each codeword, M is the number
of codewords and d is the minimum Hamming distance between any pair of code-

words. The function to be maximized is
fECCðCÞ ¼
1

PM
i¼1

PM
j¼1;i6¼j d

�2
ij

ð7Þ
where dij represents the Hamming distance between codewords i and j.
In this study, we consider a problem instance, where n ¼ 12 and M ¼ 24. The

optimum is achieved at fitness of fECCðx�Þ ¼ 0:0674.

4.6. The vehicle routing problem (VRP)

The vehicle routing problem [11] (VRP) consists in determining minimum cost

routes for a fleet of vehicles originating and terminating in a depot. The fleet of vehi-
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cles gives service to a set of customers with a known set of constrains. All customers

must be assigned to vehicles such that each customer is serviced exactly once, taking

account for the limited capacity of each vehicle (Fig. 3).

The goal is to minimize the sum of route costs given by
fVRPð~xÞ ¼
XK�1

k¼0
aðWkð~xÞÞ ð8Þ

Wkð~xÞ ¼
XN

i¼0

XN

j¼0
cij � xijk ð9Þ
In these equations, xijk is a binary variable that is 1 if route k has an arc between
nodes i and j, cij is the cost to go from node i to node j, a is the function that

calculates the route cost depending on Wk, N is the number of clients (0 is the depot),
and K is the number of routes.

A feasible solution must satisfy that all clients must be visited (exactly once),

routes begin and finish in depot and have no cycles, and routes cannot exceed the

vehicle capacity.

For the experiments, we use the two first instances of the classical benchmark

after Christofides [12]. We consider as an optimum any solution with f �
1 < 800 for

the first instance, and f �
2 < 1200 for the second one. We must notice that the two in-

stances of VRP are very difficult to solve without including specific operations. See a
complete and detailed on-line description of VRP variants at http://neo.lc-

c.uma.es/radi-aeb/WebVRP/index.html.
5. Analysis of the results

In this section we describe and discuss the results after running the algorithms

over the whole test suite. We will proceed in three phases. First, we analyze the

http://neo.lcc.uma.es/radi-aeb/WebVRP/index.html
http://neo.lcc.uma.es/radi-aeb/WebVRP/index.html
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behavior of a parallel GA in LAN and WAN environments. In this phase check the

performance of a parallel GA to solve combinatorial optimization problems (Max-

Cut, MTTP, ECC and VRP). Later, we include a second phase of study that ad-

dresses the continuous optimization domain. In this second phase we analyze a

parallel evolution strategy on our two continuous problems (RAS and FMS). The
final third phase has the goal of validating the achieved conclusions, but this time

by considering hybrid parallel algorithms (CHCES variants on RAS and GASA

variants on MaxCut). We applied these phases in two cases; first, we compare the

algorithms in LAN and WAN environments, and later, we use these stages to study

the behavior of the heuristics in two different WAN platforms.

The algorithm parameters used in the experiments are described in Table 1. Table

2 shows the hardware and software configuration. All the tests perform 30 indepen-

dent runs. We report average values of successful executions, i.e., executions that
reach the target fitness. We show values for the average best solution fitness found

(avg opt), average number of evaluations to get an optimal solution (#evals), average

time (time, in seconds), the percentage of hits (hits), i.e., the relative number of runs

finding an optimal solution, and the statistical t-test confidence value for evaluations
and times (p-value).

We have organized this section into two subsections. In the first one we analyze

the changes in the search mechanics that the algorithms suffer when shifting from
Table 1

Parameters of algorithms

Problem Popsize Pc Pm Others

MaxCut, VRP (GA) 100 0.8 0.01 –

MTTP, ECC (GA) 200 0.8 0.02 –

RAS, FMS (ES) 100 0.3 0.80 –

MaxCut (GASA) 100 0.8 0.01 SA operator applied

with prob 0.1,

MarkovChainLen¼ 10,
100 iterations

RAS (CHCES) 100 0.8 – 35% population restart,

(1 + 10)-ES operator

(prob 0.01)

Table 2

Hardware and software configuration of the WAN

MA-cluster LL-cluster BA-cluster

Processor PIII, 500 MHz AMD Duron, 800 Mhz AMD K6-2, 450 Mhz

Main Memory (MB) 128 256 256

Hard Disc (GB) 4 18 4

Linux Kernel 2.4.19-4 2.2.19 2.4.19

g++ version 3.2 2.95.4 2.95.4

MPICH version 1.2.2.3 1.2.2.3 1.2.2.3
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a LAN network to a canonical WAN environment, while in the second one we study

the behavior of the heuristics in two different combined LAN/WAN platforms (as an

extension to the work available at [13]).
5.1. LAN and WAN analysis

In this section we perform a comparative analysis of the behavior of the canonical

LAN andWAN versions of every algorithm. For the WAN experiments, we use one

machine from each MALLBA site (three in total) as it is shown in Fig. 4. For the

LAN tests, these three machines belong to the MA-cluster.

In Table 3 we include the results of applying a parallel GA on the four combina-

torial problems of our benchmark. If we compare LAN andWAN executions of the

parallel GA we can detect a clear trend of theWAN execution to spend more time in
finding a solution for the three first problems with respect to the LAN times.

An interesting detail is that the parallel GA seems to increase the number of hits

when executed in WAN for MTTP and ECC, although, as expected, the wall-clock

time for these problems and for MaxCut is higher in WAN due to the communica-

tions overhead. Numerically speaking, this means that the WAN environment re-

tards the migrations, and this effect is somewhat perceptible in some problems. In

fact, WAN reduces the number of evaluations for three out of five instances, but
Fig. 4. WAN configuration.

Table 3

Average results for a parallel GA

LAN WAN p-value

Avg.

opt.

#Evals Time Hits

(%)

Avg.

opt.

#Evals Time Hits

(%)

Eval Time

MaxCut 1031 23580 49.1 17 1014 14369 89.1 10 0.91 8.13e-9

MTTP 201 40002 5.2 97 200 32546 25.7 100 0.09 3.7e-10

ECC 0.0642 18279 9.1 7 0.0657 26041 238.4 10 0.43 1.1e-14

VRP 1 696.15 12843 78.9 100 690.693 7168 68.5 100 0.92 4.78e-4

VRP 2 1080.67 5873 391.1 100 1077.83 8104 358.7 100 0.73 4.99e-6
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the t-tests (0.05 significance level) reveal that the differences in the numerical effort is
not significant. The conclusion is then that LAN and WAN are similar in terms of

effort, for all the problems in the benchmark. Since larger isolation is not always

appropriate for an arbitrary problem, we could think about a poorer WAN numer-

ical results for other problems, as it effectively happens for the MaxCut problem, be-
cause its percentage of hits decays from 17% in LAN to a smaller 10% in WAN.

Clearly, the large isolation times induced by the WAN in our asynchronous parallel

GA is beneficial for some problems and harmful for others.

However, in the case of VRP, although LAN and WAN work out numerically

similar results, the WAN execution times are smaller for the two instances. We did

got statistical significance for these results, what effectively makes us to claim that

the WAN execution is faster than the LAN one in this problem. This is a very

promising result; it can be explained because of the considerably larger grain of
the VRP problem with respect to the other ones, and it is due to the longer actual

isolation provided by the WAN for the parallel GA islands, which results advanta-

geous for VRP. These two reasons (larger grain and large isolation) change the

search pattern followed by the parallel GA from LAN with respect to WAN, with

an improved time in this last platform.

We now proceed to the second phase (continuous optimization) in which we ana-

lyze the behavior of a ring of parallel evolution strategies running in parallel to solve

RAS and FMS. The results are shown in Table 4. We can see that the conclusions we
made for the parallel GA also hold in the case of the parallel ES. This agreement can

be noticed in that the execution times of the WAN version of parallel ES are higher

than the LAN ones. Again, like with the parallel GA, the final fitness (avg opt col-

umn) are approximately the same for LAN and WAN. Besides, we show that the

numerical effort is almost the same in the LAN andWAN cases, what is an indicator

of correct implementation, and validates our claim of similarity in their numerical

LAN/WAN behavior.

Finally, in the third phase, we want to check our findings in a new arena, i.e., on
hybrid parallel algorithms. In Table 5 we include the results for RAS (three upper

rows) and MaxCut (three lower rows). We selected them as representatives of the

class of continuous and combinatorial problems. This is why we use the CHCES hy-

brid for RAS and the GASA hybrid for MaxCut. After these results, we can state

that the precedent conclusions we got for pure algorithms (parallel GA and parallel

ES) hold also for hybrid techniques. It seems that all the algorithms present a higher

time when running in WAN and need a statistically similar number of iterations to
Table 4

Average best results for a parallel ES Algorithm

LAN WAN p-value

Avg.

opt.

#Evals Time Hits

(%)

Avg.

opt.

#Evals Time Hits

(%)

Eval Time

RAS 0 10763 5.7 97 0 11546 67.5 93 0.171 2.20e-16

FMS 0.099 10904 4.7 100 0.093 11372 13.0 100 0.450 3.26e-5



Table 5

Average best results of all experimental runs performed by the hybrid algorithms

LAN WAN p-value

Avg.

opt.

#Evals Time Hits

(%)

Avg.

opt.

#Evals Time Hits

(%)

Eval Time

CHCES1 0 13048 3.7 100 0 13681 10.0 100 0.09 8.62e-6

CHCES2 0 8093 3.4 100 0 8593 7.2 100 0.85 3.97e-5

CHCES3 0 8182 3.4 100 0 9635 7.9 100 0.13 7.9e-11

GASA1 1038 40682 89.6 17 1031 28956 298.5 10 0.53 2.97e-5

GASA2 1031 19477 45.7 7 1024 17412 123.5 8 0.22 0.0029

GASA3 1038 21651 43.8 8 1021 12162 202.9 7 0.75 0.0344
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yield the optimum. The LAN behavior can be assumed then to fit theWAN environ-

ment from a numerical point of view for most problems.

We conclude this section with a summary of the results. We have shown that,

whatever the basic search method is used (GA, ES or hybrid), an execution in a

WAN environment presents an equivalent numerical result, while showing a natural

larger time to achieve a solution with respect its LAN execution. Of course, in case of

really high number of processes this could not hold; this question remains open, and

it has a wide relevance in the case of grid computing platforms, but not for a mod-
erate or low number of subalgorithms (as many researchers use in practice).

The surprising result appears when analyzing the VRP problem, because the

WAN execution reduces the search time with respect to the LAN execution, what

seems a counter-intuitive conclusion. We explain this scenario because of the consid-

erable computation time needed by the fitness function (which makes more similar

the LAN and WAN search). Also, because of the larger isolation time induced in

practice in the WAN platform (although we set the migration frequency to be equal

in LAN and WAN) that, for this problem, represents a more efficient parameteriza-
tion. This is, of course, a unique feature of asynchronous heuristics, since migration

frequency in synchronous heuristics does not admit any numerical advantage in

the WAN; only the time would be affected in LAN/WAN studies of synchronous

heuristics.

5.2. Extensions to the previous WAN analysis

In this section we continue on our study by extending the results of the previous
section in two new scenarios. Since our previous WAN platform only included three

processors separated by the Internet to provide a canonical baseline of comparison,

one can wonder about the influence of the number of processors and their connec-

tivity. Therefore, we analyze in this section the behavior of the heuristics in two

new environments; WAN1 (Fig. 5a), and WAN2 (Fig. 5b). In WAN1 we maximize

the number of links to the Internet in our logical ring of machines (continuous neigh-

bors in separate sites), thus, every link lies in the WAN. In WAN2 we split the ring

into two parts, each one executed in a separate LAN, with only two links through the



Fig. 5. WAN configurations used: (a) WAN1 configuration and (b) WAN2 configuration.
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WAN. WAN1 and WAN2 use eight machines, four machines from the LL-cluster

and other four ones from the BA-cluster.

We follow the same organization that in Section 5.1. First, we analyze the behav-

ior of parallel GA; later, we study the parallel ES results, and, finally, we examine
hybrid versions.

Table 6 shows the results when using a parallel GA. A clear first conclusion that

may be drawn from this table is that the WAN2 execution is most times much more

efficient than theWAN1.WAN2 minimizes the number of messages over the slowest

communication link (i.e., over the Internet) and therefore, it reduces the communi-

cation overhead provoking a smaller overall runtime.

The two platforms induce a similar number of hits, and only in ECC we have no-

ticed a significant increase in the hits rate when executed in the WAN2. Conse-
quently, this table shows that the numerical effort is quite similar in the WAN1

and WAN2 cases.

If we check these results against the initial LAN andWAN configurations, we can

observe thatWAN1 andWAN2 improve on the previous ones numerically (Table 3)

for MaxCut and VRP problems, sinceWAN1 andWAN2 executions obtain a better

final average fitness than in theWAN case. If we compare the execution times, we see

that the experiments of this subsection improve the runtimes (except for ECC in-

stance). This improvement is due to the increased number of processors; overall, re-
sults on heterogeneous hardware and software platforms are difficult to analyze and

compare, but we must deal with heterogeneity, since it is the intrinsic nature of the

Internet.
Table 6

Average results for a parallel GA

WAN1 WAN2 p-value

Avg.

opt.

#Evals Time Hits

(%)

Avg.

opt.

#Evals Time Hits

(%)

Eval Time

MaxCut 1041 14246 37.1 17 1040 12283 21.0 17 0.14 1.52e-4

MTTP 200 32886 21.7 100 201 35326 7.1 97 0.47 4.31e-7

ECC 0.0653 26603 423.1 10 0.0659 23243 117.2 17 0.22 2.7e-10

VRP 1 662 13160 55.5 100 657 17066 32.1 100 0.16 0.246

VRP 2 1017 7166 186.3 100 1011.1 10604 144.9 100 0.17 0.0243
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Now, in the second phase we analyze the results of parallel ES (Table 7). The

experiments with the parallel ES confirm the conclusions obtained in the previous

parallel GA case of this subsection. That is, WAN2 is clearly faster than WAN1,

and they two obtain the same number of hits with a similar number of evaluations.

As we expected, these results reduce the execution time with respect to the WAN

times obtained in Section 5.1 for parallel ES since we have increased the number

of processors. From a numerical point of view, these executions do not present sig-

nificant differences with the previous ones. The statistical analysis shows that in gen-

eral, the WAN2 times are smaller than the WAN1 ones, while the differences in

numerical effort show a trend to present WAN2 as numerically better (just a trend,

since none of the eval t-tests are positive).
Finally, in the last phase we study the results with hybrid algorithms (Table 8).

These results also confirm the conclusions obtained in previous experiments; that
is, WAN2 is faster than WAN1, and the difference in numerical effort is not signifi-

cant in any case (t-tests are negative).
The results of this table improve the ones showed in Table 5 (Section 5.1). The

execution times of the experiments in this subsection are smaller than the canonical

LAN andWAN. In addition, in the MaxCut instance (three lower rows), these results

improve the average best fitness and the hit rates with respect to the canonicalWAN

and LAN ones.

Let us now summarize the results. Here, we have checked the behavior of the par-
allel heuristics in two extended WAN scenarios using eight processors. The Fig. 6

condenses the runtime executions of all problems and scenarios. The split ring
Table 8

Average best results of all experimental runs performed by the hybrid algorithms

WAN1 WAN2 p-value

Avg.

opt.

#Evals Time Hits

(%)

Avg.

opt.

#Evals Time Hits

(%)

Eval Time

CHCES1 0 14587 6.2 100 0 12091 1.9 100 0.23 0.0039

CHCES2 0 10126 4.8 100 0 8520 2.9 100 0.12 2.2e-11

CHCES3 0 8826 4.1 100 0 9013 1.8 100 0.83 2.5e-12

GASA1 1046.5 37873 92.9 17 1046.6 39753 57.4 17 0.15 0.036

GASA2 1046.8 24066 68.6 29 1052.4 25446 24.4 24 0.32 3.1e-09

GASA3 1045.7 25213 76.2 24 1049 23820 36.4 24 0.19 6.4e-05

Table 7

Average best results for a parallel ES algorithm

WAN1 WAN2 p-value

Avg.

opt.

#Evals Time Hits

(%)

Avg.

opt.

#Evals Time Hits

(%)

Eval Time

RAS 0 9213 38.3 100 0 9407 3.1 100 0.887 2.2e-16

FMS 0.089 13772 11.6 100 0.09 10727 7.2 100 0.089 1.5e-4
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topology of WAN2 represents a configuration which reduce the communications

overhead and, consequently, decreases the global runtime with respect to the alter-

nated execution featured in WAN1. Also, we have shown that WAN1 and WAN2

produce similar numerical results than a canonical WAN environment, but with

an important reduction in the runtime. The WAN2 configuration allows us to take

advantage of geographically distributed clusters without inducing important over-

heads in the runtime.
6. Concluding remarks and future work

In this work we have provided a clear seminal evidence to create a body of knowl-

edge that will lead us from our understanding of LAN parallel optimization heuris-

tics to their WAN execution. Our aim is to point out some important facts and to

explain them. We have selected a non-trivial benchmark for which a WAN execution

comes as a natural research scenario.
The conclusions of this work can be summarized attending to different criteria.

With respect to the numerical behavior, LAN andWAN results seem to be very sim-

ilar, and this similarity is readily stable. This is very interesting since this will allow us

to reduce our discussion to another criterion: wall-clock time execution. With this

goal in mind, we have found that WAN versions are consistently slower than

LAN ones, as one could expect. However, the harder the problem, the more similar

LAN and WAN algorithms become.

In the limit (i.e., in our harder instances) we have found that WAN executions
could be even more efficient than LAN ones. This is by no means a question of faster

execution, since WAN has always higher latencies and delays; it is an effect of isola-
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tion. We hypothesize that running these algorithms in WAN is somewhat similar to

running them in a LAN cluster but with higher isolation times among the subalgo-

rithm components. We confirmed this hypothesis on some of the problem instances.

For some complex problems, large isolation times promote alternating phases of

exploration and exploitation in a natural manner, which yield an algorithm of higher
efficiency, since isolation time is a well-known influent parameter in distributed par-

allel algorithms (e.g. see [14] for multipopulation GAs).

We have also extended the whole study to consider more processors and different

mappings of logical-to-physical links between neighbor algorithms. TheWAN2 con-

figuration allows us to reduce the execution times in WAN environments and, at the

same time, maintains the same numerical behavior thanWAN andWAN1 scenarios.

As a future work we plan to quantify the relationship between the isolation time

imposed by the WAN network and the isolation time in a LAN cluster, and to check
this result on additional problems and algorithms.
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