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Abstract

We present in this work a wide spectrum of results on analyzing the behavior of parallel
heuristics (both pure and hybrid) for solving optimization problems. We focus on several evo-
lutionary algorithms as well as on simulated annealing. Our goal is to offer a first study on the
possible changes in the search mechanics that the algorithms suffer when shifting from a LAN
network to a WAN environment. We will address six optimization tasks of considerable com-
plexity. The results show that, despite their expected slower execution time, the WAN versions
of our algorithms consistently solve the problems. We report also some interesting results in
which WAN algorithms outperform LAN ones. Those results are further extended to analyze
the behavior of the heuristics in WAN with a larger number of processors and different
connectivities.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Solving complex problems means designing new algorithms that improve in some
manner the computational effort and the execution time for an acceptable solution.
Analyzing and designing parallel algorithms is a healthy activity since it pursuits
some of the most promising objectives in optimization, namely reducing the
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wall-clock time, allowing cooperation of different algorithms (hybridization), and
even modifying the search pattern to yield new methods.

In this work, we study the way in which several parallel algorithms change their
behavior when executed in a LAN with respect to their execution in a WAN. Due to
the growing park of available computers in the Internet, our aim is to study the new
scenario of WAN computing, in contrast to the traditional LAN analysis.

The MALLBA project [1] is an effort of research in this direction. In the
MALLBA project we intend to design and analyze exact, heuristic and hybrid tech-
niques in sequential, LAN and WAN environments. MALLBA source code and lat-
est achievements are used in this work.

The contributions of this paper are manifold. First, we test the efficiency of some
algorithms developed in the MALLBA project, since the achievements mentioned in
the last paragraph represent an ambitious goal that must be validated in practice.
Second, we want to put aside the expected and actual outcomes of computing in
LAN and WAN. Third, we are interested in showing really useful results, and this
is why we check the algorithms on six quite different problems, accounting for epis-
tasis and multimodality, both in continuous and discrete optimization. Our claims
and conclusions are somewhat expected and surprising at the same time, since we
do validate in practice some theoretical thoughts on the induced WAN overhead,
but, at the same time, we report competitive performance in WAN in some cases.

The organization of the paper is as follows. Next section (Section 2) introduces
the MALLBA project. Section 3 discusses the search models considered in our study.
Section 4 presents the details on the problems being solved. We then turn in Section 5
to comparatively analyze the algorithms in different LAN/WAN scenarios. Finally,
we provide in Section 6 some concluding remarks, and point out the future work we
envision after our conclusions.

2. The MALLBA project

The MALLBA ! research project is aimed at developing a library of algorithms
for optimization that can deal with parallelism in a user-friendly and, at the same
time, efficient manner. Its three target environments are sequential, LAN and
WAN computer platforms. All the algorithms described in the next section are
implemented as software skeletons (similar to the concept of software pattern [2])
with a common internal and public interface. This permits fast prototyping and
transparent access to parallel platforms.

MALLBA skeletons distinguish between the concrete problem to be solved and
the solver technique. Skeletons are generic templates to be instantiated by the user
with the features of the problem. All the knowledge related to the solver method
(e.g., parallel considerations) and its interactions with the problem are implemented
by the skeleton and offered to the user. Skeletons are implemented by a set of

' The MALLBA library is publicly available at http:/neo.lcc.uma.es/mallba/easy-mallba/index.html.
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required and provided C++ classes that represent an abstraction of the entities
participating in the solver method:

e Provided classes: They implement internal aspects of the skeleton in a problem-
independent way. The most important provided classes are Solver (the algo-
rithm) and SetUpParams (setup parameters).

o Required classes: They specify information related to the problem. Each skeleton
includes the Problem and Solution required classes that encapsulate the prob-
lem-dependent entities needed by the solver method. Depending on the skeleton
other classes may be required.

Therefore, the user of a MALLBA skeleton only needs to implement the partic-
ular features related to the problem. This speeds considerably the creation of new
algorithms with a minimum effort, especially if they are built up as combinations
of existing skeletons (hybrids).

For example, in Fig. 1 we show the design for a simulated annealing (SA). In that
design, we define a set of new classes that are specifically included for the SA method
(Move hierarchy). These new classes allow the user to generate new solutions from
the current one in order to search in its neighborhood.

The infrastructure used in the MALLBA project is made of communication net-
works and clusters of computers located at the spanish universities of Malaga, La
Laguna and UPC in Barcelona. These nodes are interconnected by a chain of Fast
Ethernet and ATM circuits.

Move
SetUpParams User_Statistics
5 |_Problem | Default_Move Statistics
X|_Solution <<abstract>> State_Vble
Solver

% NetStream D_ ‘

Stopﬂtiondition <>

)H Stop_Condition_1 | | Solver_Lan Solver_Wan Solver_Seq State_Center
[
|

X Required Classes

Fig. 1. UML Diagram describing the design of the SA Method.
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3. Algorithms

In this paper we deal with several evolutionary algorithms, in particular with ge-
netic algorithms (GAs), a CHC algorithm, and an evolution strategy (ES). Local
search methods are also considered in this work, like simulated annealing (SA)
(see a detailed description of these techniques in [3]). All methods have been parall-
elized for LAN and WAN platforms. Finally, we will also include some hybrid algo-
rithms in our LAN/WAN study.

Let us now proceed to explain the optimization techniques considered here.

3.1. Evolutionary algorithms

Evolutionary algorithms (EAs) are stochastic search methods that have been suc-
cessfully applied in many real applications of high complexity. An EA is an iterative
technique that applies stochastic operators on a pool of individuals (the population)
in order to improve the average fitness (f; < f;,1). Every individual in the population
is the encoded version of a tentative solution. Initially, this population is randomly
generated. An evaluation function associates a fitness value to every individual indi-
cating its suitability to the problem. We have implemented three separate parallel
distributed EAs, whose component subalgorithm is a GA, an ES or a CHC.

GAs are a very popular class of EAs. Traditionally, GAs are associated to the use of
a binary representation, but nowadays other types of representations can be found. A
GA usually applies a recombination operator on two tentative solutions, plus a muta-
tion operator that randomly modifies the individual contents to promote diversity.

A CHC [4] is a non-canonical GA which combines a conservative selection strat-
egy (that always preserves the best individuals found so far) with a highly disruptive
recombination (HUX), that produces offsprings that are maximally different from
their two parents. The traditional thought of preferring a recombination operator
with low disrupting properties may not hold when such a conservative selection
strategy is used. On the contrary, certain highly disruptive crossover operator pro-
vides more effective search in many problems, which represents the core idea behind
the CHC search method. This algorithm introduces a bias against mating individuals
who are too similar (incest prevention). Mutation is not performed; instead, a restart
process reintroduces diversity whenever convergence is detected.

The last EA that we consider is an ES. This algorithm is suited for continuous
optimization, usually with an elitist selection and a specific mutation (crossover is
used rarely). In ES, the individual is composed of the objective float variables plus
some other parameters guiding the search. Thus, an ES facilitates a kind of self-adap-
tion by evolving the problem variables as well as the strategy parameters at the same
time. Hence, the parameterization of an ES is highly customizable.

3.2. Simulated annealing

The simulated annealing algorithm (SA) was first proposed in 1983. SA is a sto-
chastic search technique that can be seen as a hill-climber with an internal mecha-
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nism to escape from local optima. In SA, the solution s is accepted as the new cur-
rent solution if 6 <0 holds, where § = f(s') — f(s). To allow escaping from a local
optimum, moves that increase the energy function are accepted with a decreasing
probability exp(—d/T) if § > 0, where T is a parameter called the “temperature”.
The decreasing values of T are controlled by a cooling schedule, which specifies the
temperature values at each stage of the algorithm, what represents an important
decision for its application. Here, we are using a proportional method for updating
the temperature (7, = o - T;_;). The « factor indicates the decrease speed of the
temperature.

3.3. Hybrid algorithms

In its broadest sense, hybridization [5] refers to the inclusion of problem-depen-
dent knowledge in a general search algorithm in one of two ways:

o Strong hybrids: problem-knowledge is included as specific non-conventional prob-
lem-dependent representations and/or operators.

o Weak hybrids: several algorithms are combined in some manner to yield the new
hybrid algorithm.

In this work we have implemented two hybrid algorithms, namely GASA and
CHCES. The first of them (GASA) is made of a genetic algorithm and a simulated
annealing; also, this scheme has been used to combine a CHC and an ES. The ratio-
nale for this selection of algorithms is that, while the GA/CHC locates “good” re-
gions of the search space (exploration), the SA/ES allows for exploitation in the
best regions found by its partner.

We deal with two main subclasses of weak hybrids in this work:

e A first hybrid (GASA1/CHCES1) where a GA/CHC algorithm uses the other
algorithm (SA/ES) as an evolutionary operator; the local search algorithm is ap-
plied in the main loop after the traditional recombination and mutation opera-
tors. See an example for GASALI in Fig. 2 (left).

e The second hybrid schema executes a GA/CHC until the algorithm completely
finishes. Then the hybrid selects some individuals from the final population and
executes a SA/ES algorithm over them. We have implemented two variants whose
only difference is the selection method. Concretely, we analyze a first version
(GASA2/CHCES?2) that uses a tournament selection (model 2.1 of Fig. 2 (right)),
and another version (GASA3/CHCES3) that uses a random choice of individuals
(model 2.2 of Fig. 2 (right)).

3.4. Parallel heuristics
Since we want to conduct our research in LAN and WAN platforms it seems nat-

ural to explore the behavior of parallel heuristics. A parallel EA (PEA) is an algo-
rithm having multiple component EAs, regardless of their population structure.
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Fig. 2. Models of hybridization: (left) model of hybridization 1 (GASAIl) and (right) two variants of
model of hybridization 2 (CHCES2/3).

Each component (usually a traditional (single population) EA) subalgorithm in-
cludes an additional phase of communication with a set of subalgorithms [6].

Different parallel algorithms differ in the characteristics of their elementary heu-
ristics and in the communication details. In this work, we have chosen a distributed
EA (dEA) because of its popularity and because it can be easily implemented in clus-
ters of machines. In distributed EAs there exists a small number of islands perform-
ing separate EAs, and periodically exchanging individuals after a number of isolated
steps (migration frequency).

The migration policy must define the island topology, when migration occurs,
which individuals are being exchanged, the synchronization among the subpopula-
tions, and the kind of integration of exchanged individuals within the target sub-
populations. Concretely, we use a static ring topology, select random migrants,
and include them asynchronously in the target populations only if they are better
than the local worst-existing solutions.

For the parallel SA (PSA) there also exist multiple asynchronous component SAs.
Each component SA periodically exchanges the best solution found (cooperation
phase) with its neighbor SA in the ring.

4. Problems

In this section, we discuss the optimization tasks that will be used to test our par-
allel heuristics. We made a benchmark of six optimization tasks, considering a com-
plex instance for each one. We have selected problems both from discrete and
continuous domains of research. Our representatives for continuous optimization
are the Rastrigin function (RAS) and the frequency modulation sounds problem
(FMS). For testing the algorithms in combinatorial optimization we consider the
minimum tardy task problem (MTTP), the error correcting code design problem
(ECC), the maximum cut problem (MaxCut), and the vehicle routing problem
(VRP). For the VRP we include two instances.

The first two problems were chosen because their continuous nature makes them
adequate for testing the ES algorithm. The first problem is of moderate difficulty.
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The second one is a highly complex multimodal problem having strong epistasis. The
rest of problems represent a broad spectrum of challenging intractable tasks in the
areas of scheduling, coding theory, graph theory and transportation. Almost all of
them have a direct real world use.

4.1. The Rastrigin function (RAS)

The generalized Rastrigin function (Eq. (1)) is a problem with a large search space
and a very large number of local optima [7]. This function is a non-epistatic function
representing a typical test for EAs. For the experiments, we have used a problem in-
stance of 20 variables (optimum at fras(x*) = 0).

fras(®) =10-n+ Y x> —10-cos(2-m-x;), x € [-5.12,+5.12] (1)

i=1
4.2. The frequency modulation sounds problem (FMS)

The frequency modulation sounds problem [8] (or FMS) has been proposed as a
hard real task consisting in adjusting a general model y(¢) to a basic sound function
(). The goal is to minimize the sum of square errors given by Eq. (2).

100
Sems(®) = > (0(1) = 30(0))? (2)
=0
The problem is to evolve six parameters X = (ay, wi, as, wa, as, w3) in order y(¢) to
fit the target y(¢). The evolved and target models have the expressions shown in Egs.
(3) and (4).

y(t)=a,-sin(wy - t-0+ay-sin(wy-t-0+as-sin(w; - t-0))) (3)
() =1.0-sin(5.0-¢-0—1.5-sin(4.8-7-0+2.0-sin(4.9-¢-0))) 4)

0 =2m/100 a;,w,; € [~6.4,+6.35]

The resulting problem is a highly complex multimodal function having strong
epistasis with minimum value frys(x*) = 0. For the experiments, we consider as an
optimum any solution with fitness value below 0.12.

4.3. The maximum cut problem (MaxCut)

The maximum cut problem [9] (MaxCut) consists in partitioning the set of vertices
of a weighted graph into two disjoint subsets, such that the sum of the weights of
edges with one endpoint in each subset is maximized. Thus, if G = (V, E), denotes
a weighted graph where V' is the set of nodes and E the set of edges, then the
maximum cut problem consists in partitioning ¥ into two disjoint sets }; and 7] such
that the sum of weights of edges from E that have one endpoint in ¥ and the other in
71 1s maximized. The function to be maximized is
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fMaxCut = Z Zwij (5)

i€ly jen

where w;; is the weight of edge (7, ). For the experiments reported here, we use a
scalable problem instance [9] with a graph of size n = 100, “cut100” (optimum at

fMaxCul(x*) = 1077)
4.4. The minimum tardy task problem (MTTP)

The minimum tardy task problem is a task-scheduling problem [9]. Each task i
from the set of tasks 7'=1,2,...,n has an associated length /;, the time it takes
for its execution, a deadline d; before which the task must be scheduled and its exe-
cution completed, and a weight w;. The weight is a penalty indicating the importance
that a task remains unscheduled. Scheduling the tasks of a subset S of T consists in
finding the starting time of each task in S, such that at most one task at a time is
performed, and such that each task finishes before its deadline.

The optimal solution is a feasible schedule S with the minimum tardy task weight,
which is the sum of weights of incompleted tasks (Eq. (6)).

JSurre = Z Wi (6)
icT—S

A feasible solution must satisfy that no task is scheduled before the completion of
an earlier scheduled one and that all the tasks are completed within its deadline.

For our experiments, we use a scalable problem instance [9] of size 100 tasks,
“mttpl00” (optimum at fyrre(x*) = 200).

4.5. The error correcting code design problem (ECC)

The error correcting code design problem [10] (ECC) consists in assigning code-
words to an alphabet that minimizes the length of transmitted messages, and that
provides maximal correction of single uncorrelated bit errors when the messages
are transmitted over noisy channels. This problem can be formally represented by
a three-tuple (n,M,d), where n is the length of each codeword, M is the number
of codewords and d is the minimum Hamming distance between any pair of code-
words. The function to be maximized is

1
Jeee(C) = =~
Doimt 2jmtity d;?
where d; represents the Hamming distance between codewords i and ;.
In this study, we consider a problem instance, where n = 12 and M = 24. The
optimum is achieved at fitness of frcc(x*) = 0.0674.

(7)

4.6. The vehicle routing problem (VRP)

The vehicle routing problem [11] (VRP) consists in determining minimum cost
routes for a fleet of vehicles originating and terminating in a depot. The fleet of vehi-



E. Alba et al. | Parallel Computing 30 (2004) 611-628 619

O Depot
@® Client

—» Route

Fig. 3. Example of the vehicle routing problem.

cles gives service to a set of customers with a known set of constrains. All customers
must be assigned to vehicles such that each customer is serviced exactly once, taking
account for the limited capacity of each vehicle (Fig. 3).

The goal is to minimize the sum of route costs given by

fure@) = Yo (3) ®)
Wk(f) = Z Cij * Xijk (9)
i=0 j=0

In these equations, x;; is a binary variable that is 1 if route k£ has an arc between
nodes i and j, ¢;; is the cost to go from node i to node j, o is the function that
calculates the route cost depending on W, N is the number of clients (0 is the depot),
and K is the number of routes.

A feasible solution must satisfy that all clients must be visited (exactly once),
routes begin and finish in depot and have no cycles, and routes cannot exceed the
vehicle capacity.

For the experiments, we use the two first instances of the classical benchmark
after Christofides [12]. We consider as an optimum any solution with f;* < 800 for
the first instance, and f; < 1200 for the second one. We must notice that the two in-
stances of VRP are very difficult to solve without including specific operations. See a
complete and detailed on-line description of VRP variants at http: //neo. lc-
c.uma. es/radi-aeb/WebVRP/index. html.

5. Analysis of the results

In this section we describe and discuss the results after running the algorithms
over the whole test suite. We will proceed in three phases. First, we analyze the
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behavior of a parallel GA in LAN and WAN environments. In this phase check the
performance of a parallel GA to solve combinatorial optimization problems (Max-
Cut, MTTP, ECC and VRP). Later, we include a second phase of study that ad-
dresses the continuous optimization domain. In this second phase we analyze a
parallel evolution strategy on our two continuous problems (RAS and FMS). The
final third phase has the goal of validating the achieved conclusions, but this time
by considering hybrid parallel algorithms (CHCES variants on RAS and GASA
variants on MaxCut). We applied these phases in two cases; first, we compare the
algorithms in LAN and WAN environments, and later, we use these stages to study
the behavior of the heuristics in two different WAN platforms.

The algorithm parameters used in the experiments are described in Table 1. Table
2 shows the hardware and software configuration. All the tests perform 30 indepen-
dent runs. We report average values of successful executions, i.e., executions that
reach the target fitness. We show values for the average best solution fitness found
(avg opt), average number of evaluations to get an optimal solution (#evals), average
time (time, in seconds), the percentage of hits (hits), i.e., the relative number of runs
finding an optimal solution, and the statistical #-test confidence value for evaluations
and times (p-value).

We have organized this section into two subsections. In the first one we analyze
the changes in the search mechanics that the algorithms suffer when shifting from

Table 1
Parameters of algorithms
Problem Popsize P, P, Others
MaxCut, VRP (GA) 100 0.8 0.01 -
MTTP, ECC (GA) 200 0.8 0.02 -
RAS, FMS (ES) 100 0.3 0.80 -
MaxCut (GASA) 100 0.8 0.01 SA operator applied
with prob 0.1,
MarkovChainLen = 10,
100 iterations
RAS (CHCES) 100 0.8 - 35% population restart,
(1+10)-ES operator
(prob 0.01)
Table 2
Hardware and software configuration of the WAN
MA-cluster LL-cluster BA-cluster
Processor PIII, 500 MHz  AMD Duron, 800 Mhz AMD K6-2, 450 Mhz
Main Memory (MB) 128 256 256
Hard Disc (GB) 4 18 4
Linux Kernel 2.4.19-4 2.2.19 2.4.19
g++ version 32 2.95.4 2.95.4
MPICH version 1.2.2.3 1.2.2.3 1.2.2.3
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a LAN network to a canonical WAN environment, while in the second one we study
the behavior of the heuristics in two different combined LAN/WAN platforms (as an
extension to the work available at [13]).

5.1. LAN and WAN analysis

In this section we perform a comparative analysis of the behavior of the canonical
LAN and WAN versions of every algorithm. For the WAN experiments, we use one
machine from each MALLBA site (three in total) as it is shown in Fig. 4. For the
LAN tests, these three machines belong to the MA-cluster.

In Table 3 we include the results of applying a parallel GA on the four combina-
torial problems of our benchmark. If we compare LAN and WAN executions of the
parallel GA we can detect a clear trend of the WAN execution to spend more time in
finding a solution for the three first problems with respect to the LAN times.

An interesting detail is that the parallel GA seems to increase the number of hits
when executed in WAN for MTTP and ECC, although, as expected, the wall-clock
time for these problems and for MaxCut is higher in WAN due to the communica-
tions overhead. Numerically speaking, this means that the WAN environment re-
tards the migrations, and this effect is somewhat perceptible in some problems. In
fact, WAN reduces the number of evaluations for three out of five instances, but

LL-cluster

e
@%K@

MA -cluster BA-cluster
Fig. 4. WAN configuration.

Table 3
Average results for a parallel GA
LAN WAN p-value
Avg. #Evals Time Hits Avg. #Evals Time Hits Eval  Time
opt. (%) opt. (%)
MaxCut 1031 23580 49.1 17 1014 14369 89.1 10 0.91 8.13¢-9
MTTP 201 40002 52 97 200 32546 25.7 100 0.09 3.7e-10
ECC 0.0642 18279 9.1 7 0.0657 26041 2384 10 0.43 1.1e-14

VRP | 696.15 12843 78.9 100 690.693 7168 68.5 100 0.92 4.78e-4
VRP 2 1080.67 5873 391.1 100 1077.83 8104  358.7 100 0.73 4.99¢-6
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the #-tests (0.05 significance level) reveal that the differences in the numerical effort is
not significant. The conclusion is then that LAN and WAN are similar in terms of
effort, for all the problems in the benchmark. Since larger isolation is not always
appropriate for an arbitrary problem, we could think about a poorer WAN numer-
ical results for other problems, as it effectively happens for the MaxCut problem, be-
cause its percentage of hits decays from 17% in LAN to a smaller 10% in WAN.
Clearly, the large isolation times induced by the WAN in our asynchronous parallel
GA is beneficial for some problems and harmful for others.

However, in the case of VRP, although LAN and WAN work out numerically
similar results, the WAN execution times are smaller for the two instances. We did
got statistical significance for these results, what effectively makes us to claim that
the WAN execution is faster than the LAN one in this problem. This is a very
promising result; it can be explained because of the considerably larger grain of
the VRP problem with respect to the other ones, and it is due to the longer actual
isolation provided by the WAN for the parallel GA islands, which results advanta-
geous for VRP. These two reasons (larger grain and large isolation) change the
search pattern followed by the parallel GA from LAN with respect to WAN, with
an improved time in this last platform.

We now proceed to the second phase (continuous optimization) in which we ana-
lyze the behavior of a ring of parallel evolution strategies running in parallel to solve
RAS and FMS. The results are shown in Table 4. We can see that the conclusions we
made for the parallel GA also hold in the case of the parallel ES. This agreement can
be noticed in that the execution times of the WAN version of parallel ES are higher
than the LAN ones. Again, like with the parallel GA, the final fitness (avg opt col-
umn) are approximately the same for LAN and WAN. Besides, we show that the
numerical effort is almost the same in the LAN and WAN cases, what is an indicator
of correct implementation, and validates our claim of similarity in their numerical
LAN/WAN behavior.

Finally, in the third phase, we want to check our findings in a new arena, i.e., on
hybrid parallel algorithms. In Table 5 we include the results for RAS (three upper
rows) and MaxCut (three lower rows). We selected them as representatives of the
class of continuous and combinatorial problems. This is why we use the CHCES hy-
brid for RAS and the GASA hybrid for MaxCut. After these results, we can state
that the precedent conclusions we got for pure algorithms (parallel GA and parallel
ES) hold also for hybrid techniques. It seems that all the algorithms present a higher
time when running in WAN and need a statistically similar number of iterations to

Table 4
Average best results for a parallel ES Algorithm
LAN WAN p-value
Avg. #Evals Time Hits Avg. #Evals Time Hits Eval Time
opt. (%) opt. (%)
RAS 0 10763 5.7 97 0 11546  67.5 93 0.171  2.20e-16

FMS  0.099 10904 4.7 100 0.093 11372 13.0 100 0.450  3.26e-5
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Table 5
Average best results of all experimental runs performed by the hybrid algorithms
LAN WAN p-value
Avg. #Evals Time Hits Avg. #Evals Time Hits Eval Time
opt. (%) opt. (%)
CHCESI1 0 13048 3.7 100 0 13681 10.0 100 0.09  8.62e-6
CHCES2 0 8093 34 100 0 8593 7.2 100 0.85  3.97e-5
CHCES3 0 8182 3.4 100 0 9635 7.9 100 0.13 7.9e-11
GASA1 1038 40682  89.6 17 1031 28956 298.5 10 0.53  2.97e-5
GASA2 1031 19477 45.7 7 1024 17412 123.5 8 022 0.0029
GASA3 1038 21651 438 8 1021 12162 202.9 7 0.75 0.0344

yield the optimum. The LAN behavior can be assumed then to fit the WAN environ-
ment from a numerical point of view for most problems.

We conclude this section with a summary of the results. We have shown that,
whatever the basic search method is used (GA, ES or hybrid), an execution in a
WAN environment presents an equivalent numerical result, while showing a natural
larger time to achieve a solution with respect its LAN execution. Of course, in case of
really high number of processes this could not hold; this question remains open, and
it has a wide relevance in the case of grid computing platforms, but not for a mod-
erate or low number of subalgorithms (as many researchers use in practice).

The surprising result appears when analyzing the VRP problem, because the
WAN execution reduces the search time with respect to the LAN execution, what
seems a counter-intuitive conclusion. We explain this scenario because of the consid-
erable computation time needed by the fitness function (which makes more similar
the LAN and WAN search). Also, because of the larger isolation time induced in
practice in the WAN platform (although we set the migration frequency to be equal
in LAN and WAN) that, for this problem, represents a more efficient parameteriza-
tion. This is, of course, a unique feature of asynchronous heuristics, since migration
frequency in synchronous heuristics does not admit any numerical advantage in
the WAN; only the time would be affected in LAN/WAN studies of synchronous
heuristics.

5.2. Extensions to the previous WAN analysis

In this section we continue on our study by extending the results of the previous
section in two new scenarios. Since our previous WAN platform only included three
processors separated by the Internet to provide a canonical baseline of comparison,
one can wonder about the influence of the number of processors and their connec-
tivity. Therefore, we analyze in this section the behavior of the heuristics in two
new environments; WANI (Fig. 5a), and WAN2 (Fig. 5b). In WANI we maximize
the number of links to the Internet in our logical ring of machines (continuous neigh-
bors in separate sites), thus, every link lies in the WAN. In WAN2 we split the ring
into two parts, each one executed in a separate LAN, with only two links through the
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Fig. 5. WAN configurations used: (a) WANI configuration and (b) WAN?2 configuration.

WAN. WANI and WAN?2 use eight machines, four machines from the LL-cluster
and other four ones from the BA-cluster.

We follow the same organization that in Section 5.1. First, we analyze the behav-
ior of parallel GA; later, we study the parallel ES results, and, finally, we examine
hybrid versions.

Table 6 shows the results when using a parallel GA. A clear first conclusion that
may be drawn from this table is that the WAN2 execution is most times much more
efficient than the WANI. WAN2 minimizes the number of messages over the slowest
communication link (i.e., over the Internet) and therefore, it reduces the communi-
cation overhead provoking a smaller overall runtime.

The two platforms induce a similar number of hits, and only in ECC we have no-
ticed a significant increase in the hits rate when executed in the WAN2. Conse-
quently, this table shows that the numerical effort is quite similar in the WANI
and WAN?2 cases.

If we check these results against the initial LAN and WAN configurations, we can
observe that WANI and WANZ2 improve on the previous ones numerically (Table 3)
for MaxCut and VRP problems, since WANI and WAN2 executions obtain a better
final average fitness than in the WAN case. If we compare the execution times, we see
that the experiments of this subsection improve the runtimes (except for ECC in-
stance). This improvement is due to the increased number of processors; overall, re-
sults on heterogeneous hardware and software platforms are difficult to analyze and
compare, but we must deal with heterogeneity, since it is the intrinsic nature of the
Internet.

Table 6
Average results for a parallel GA
WANI WAN2 p-value
Avg. #Evals Time Hits Avg. #Evals Time Hits Eval Time
opt. (%) opt. (%)
MaxCut 1041 14246 37.1 17 1040 12283 21.0 17 0.14 1.52e-4
MTTP 200 32886 21.7 100 201 35326 7.1 97 0.47 4.31e-7
ECC 0.0653 26603  423.1 10 0.0659 23243 117.2 17 0.22 2.7e-10
VRP 1 662 13160 55.5 100 657 17066 32.1 100 0.16 0.246

VRP 2 1017 7166 186.3 100 1011.1 10604 1449 100 0.17 0.0243
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Now, in the second phase we analyze the results of parallel ES (Table 7). The
experiments with the parallel ES confirm the conclusions obtained in the previous
parallel GA case of this subsection. That is, WAN2 is clearly faster than WANI,
and they two obtain the same number of hits with a similar number of evaluations.
As we expected, these results reduce the execution time with respect to the WAN
times obtained in Section 5.1 for parallel ES since we have increased the number
of processors. From a numerical point of view, these executions do not present sig-
nificant differences with the previous ones. The statistical analysis shows that in gen-
eral, the WAN2 times are smaller than the WANI ones, while the differences in
numerical effort show a trend to present WANZ2 as numerically better (just a trend,
since none of the eval t-tests are positive).

Finally, in the last phase we study the results with hybrid algorithms (Table 8).
These results also confirm the conclusions obtained in previous experiments; that
is, WAN?2 is faster than WANI, and the difference in numerical effort is not signifi-
cant in any case (¢-tests are negative).

The results of this table improve the ones showed in Table 5 (Section 5.1). The
execution times of the experiments in this subsection are smaller than the canonical
LAN and WAN. In addition, in the MaxCut instance (three lower rows), these results
improve the average best fitness and the hit rates with respect to the canonical WAN
and LAN ones.

Let us now summarize the results. Here, we have checked the behavior of the par-
allel heuristics in two extended WAN scenarios using eight processors. The Fig. 6
condenses the runtime executions of all problems and scenarios. The split ring

Table 7
Average best results for a parallel ES algorithm
WANI WAN2 p-value
Avg. #Evals Time Hits Avg. #Evals Time Hits Eval Time
opt. (%) opt. (%)
RAS 0 9213 383 100 0 9407 3.1 100 0.887  2.2e-16
FMS  0.089 13772 11.6 100 0.09 10727 7.2 100 0.089  1.5¢-4
Table 8
Average best results of all experimental runs performed by the hybrid algorithms
WANI WAN2 p-value
Avg. #Evals Time Hits Avg. #Evals Time Hits Eval Time
opt. (%) opt. (%)
CHCES1 0 14587 6.2 100 0 12091 1.9 100 0.23 0.0039
CHCES2 0 10126 4.8 100 0 8520 29 100  0.12 2.2e-11
CHCES3 0 8826 4.1 100 0 9013 1.8 100 0.83 2.5e-12
GASA1 1046.5 37873 929 17 1046.6 39753 574 17 0.15 0.036
GASA2 1046.8 24066  68.6 29 1052.4 25446 244 24 0.32 3.1e-09
GASA3 1045.7 25213 76.2 24 1049 23820 364 24 0.19 6.4e-05
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Fig. 6. Runtimes of all problems and scenarios.

topology of WAN2 represents a configuration which reduce the communications
overhead and, consequently, decreases the global runtime with respect to the alter-
nated execution featured in WANI. Also, we have shown that WANI and WAN2
produce similar numerical results than a canonical WAN environment, but with
an important reduction in the runtime. The WAN2 configuration allows us to take
advantage of geographically distributed clusters without inducing important over-
heads in the runtime.

6. Concluding remarks and future work

In this work we have provided a clear seminal evidence to create a body of knowl-
edge that will lead us from our understanding of LAN parallel optimization heuris-
tics to their WAN execution. Our aim is to point out some important facts and to
explain them. We have selected a non-trivial benchmark for which a WAN execution
comes as a natural research scenario.

The conclusions of this work can be summarized attending to different criteria.
With respect to the numerical behavior, LAN and WAN results seem to be very sim-
ilar, and this similarity is readily stable. This is very interesting since this will allow us
to reduce our discussion to another criterion: wall-clock time execution. With this
goal in mind, we have found that WAN versions are consistently slower than
LAN ones, as one could expect. However, the harder the problem, the more similar
LAN and WAN algorithms become.

In the limit (i.e., in our harder instances) we have found that WAN executions
could be even more efficient than LAN ones. This is by no means a question of faster
execution, since WAN has always higher latencies and delays; it is an effect of isola-
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tion. We hypothesize that running these algorithms in WAN is somewhat similar to
running them in a LAN cluster but with higher isolation times among the subalgo-
rithm components. We confirmed this hypothesis on some of the problem instances.
For some complex problems, large isolation times promote alternating phases of
exploration and exploitation in a natural manner, which yield an algorithm of higher
efficiency, since isolation time is a well-known influent parameter in distributed par-
allel algorithms (e.g. see [14] for multipopulation GAs).

We have also extended the whole study to consider more processors and different
mappings of logical-to-physical links between neighbor algorithms. The WAN2 con-
figuration allows us to reduce the execution times in WAN environments and, at the
same time, maintains the same numerical behavior than WAN and WANI scenarios.

As a future work we plan to quantify the relationship between the isolation time
imposed by the WAN network and the isolation time in a LAN cluster, and to check
this result on additional problems and algorithms.
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