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Abstract. We present a first attempt in applying a genetic algorithm for 
checking the correctness of communication protocols (expressed as a pair of 
communicating FSMs). The GA measures the fitness of a given string by 
making use of a protocol simulator. Every string in the population is a trace of 
the execution of the protocol. The simulator evaluates the trace by running it, 
provoking changes and messages exchanges in the states of every FSM. The 
fitness of a string (trace) is high if the string detects a deadlock or if useless 
states or transitions are encountered. We are interested in testing the suitness of 
the GA search in such a domain. We have tested this genetic validation on a 
hand-made protocol and on the Transmission Control Protocol (TCP). 

1 Introduction 
 The validation of a newly developed protocol is a major issue in the field of 
communication protocols. The existing work in this field always begins with a first 
phase of unambiguous specification of the protocol with a formal technique: Finite 
State Machines (FSMs), Petri Nets or specification languages as DRL[4], LOTOS[7] 
or STELLE[8] in order to facilitate the second phase, namely validation. Since the 
space of all possible system states is very large, recent works are shifting to the 
application of heuristics as an alternative to exhaustive or other existing search 
procedures. The applications of GAs [3][5] on different domains [1][2] are growing. 
In this work we want to study how a GA (GAVOR v3.0) can validate protocols.  

 In order to reach this goal we must define the genotype representation for 
any partial solution and the kind of fitness computations for characterising it. The 
magnitude of the search for a medium sized protocol is very high. When a 
communicating entity resides in a given state of its FSM, the set of possible states the 
other entity could reside, the contents of its (remote) messages queue and the local 
messages queue conform a very large search space. We are not evolving FSMs as in 
[6], but instead we are validating the protocol they represent. 

 In the design of truly working protocols (videoconferencing, multimedia, 
etc.) it is very important the validation of the protocol, that is, the formal warranty 
that the protocol does not hang up in deadlock, no messages between the PPEs are 
ignored or lost, and that all the devised states and transitions of the FSMs are useful. 
We want to complain with all these goals with the exception of  lost messages (for the 
moment). It is very frequent that the protocol can be modelled as a FSM that is 
executed by the client and the server nodes. Stated in a more formal way, the 
communicating Peer Protocol Entities (PPEs) residing in a given level of the 
hierarchy of layers being developed are exchanging messages. This exchange is 
driven by the user actions or by the actual FSM state and input message. Of course 
every PPE can be in a different state of its underlying FSM. Fig. 1 depicts the whole  
scenario. 
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Fig. 1. Architecture of a sample communication protocol (EXP protocol) with 2 FSMs 
representing both the client and the server ends. Positive values represent input messages and 
negative values are output  messages. 

 Fig. 1 shows the two PPEs each one executing its own FSM. In the most 
simple situation every transition is an input (positive) or output (negative) 
reception/transmission of a message. Messages of the same type share the same 
absolute value. In the rest of the paper we first state the meaning of the genotype and 
how crossover works. We then present the details of  our measurement of the fitness 
and finally we expose the results and some considerations on the future work. 

2 Genotype and Crossover 
 The first stage we face is to devise a chromosomal representation of a 
solution to our validation problem. Since we are interested in detecting deadlock, 
non-visited states and non-fired transitions, we define the strings in the population as 
encoding a trace of the execution of the system. This means that we will have to 
manage variable-length strings in the same population. Every gene in the 
chromosome (string position) is coded as a byte (values ranging from 0 to 255). If a 
gene has value x then the x-th firable transition of the actual state in the FSM will be 
fired. In this way the chromosome represents a sequence of system transitions. 

 Two problems arise from this gene interpretation. The former is concerned 
with its numeric value, because if a gene indicates, for example, that 56-th transition 
must fire, and the actual state has only 2 or 3 firable transitions (or even  0!) some 
mapping from the string to the actual value is needed. We make a kind of fixed 
remapping [3] by means of which we take (x mod ft) as the transition to fire, 
where x is the string value and ft is the number of firable transitions for the present 
state in the FSM ( Fig. 2a). 

 The later problem with this encoding is related to the number of processes. 
At present we consider only two communicating processes in the system, thus we 
should need two different traces. One possible solution could have been to use 
diploid genomes and a dominance operator like in [5]. But we have decided to utilise 
the same haploid string as representing the two traces, because the two FSMs will be 
in general in different states and will have different sets of firable transitions. In this 



way the same gene of the string defines the next state for every FSM (Fig. 2b). This is 
thought to be a better choice for the representation in terms of the BBs hypothesis. 

 Some final considerations must be made about what we call a firable 
transition. For any given present state in one FSM, a transition is firable if it consists 
in sending an output message to the other process or if it consists in receiving a given 
message and its associated messages queue contains this type of message. When a 
process sends a message, the simulator stores it in the queue of the other process.  
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Fig. 2. Genotype representation for genetic validation. (2a) Every gene is a positive integer. 
We take the mod value with respect to the number of firable transitions. The transitions with 
the * symbol are active. So if the current gene in the string is an even number then transition 0 
will fire and if it is an odd number transition 3 will fire. In (2b) the interpretation of a string is 
showed. The pointer moves from left to right firing different transitions in the two FSMs. 

 If we want to validate more complicated protocols then we need also to 
devise a more elaborated conception of a transition. We need, in every transition, an 
input and output parts. The FSM proceeds from a state to another one only if the 
input message specified in the transition is also present in its messages queue. When 
the transition fires the message in the output part is sent to the other process. In order 
to model user commands or messages from an upper layer of the protocol family, we 
define an event to be a special input message that can be always considered firable. 

   v2.0      v3.0 
2 //Nr. of processes 
process 0: 
8 //Nr. of transits. 
0 1 -1 
1 2 -2 
1 3 +3 
2 4 -4 
3 2 -1 
4 5 -5 
5 3 -5 
5 0 +3 
//ist-ost-iomsg 

 
process 1: 
9 
0 1 +1 
1 2 +2 
1 3 -3 
2 4 +4 
3 2 +1 
3 4 +2 
3 5 +4 
4 5 +5 
5 0 -3 

 2 //Nr. of processes 
process 0: 
8 //Nr. of transits. 
0 1 ^0 -1 
1 2 ^0 -2 
1 3 +3 -0 
2 4 ^0 -4 
3 2 ^0 -1 
4 5 ^0 -5 
5 3 ^0 -5 
5 0 +3 -0 
//ist-ost-imsg-omsg 

 
process 1: 
9 
0 1 +1 -0 
1 2 +2 -0 
1 3 ^0 -3 
2 4 +4 -0 
3 2 +1 -0 
3 4 +2 -0 
3 5 +4 -0 
4 5 +5 -0 
5 0 ^0 -3 

Fig. 3. Two versions of files representing the FSMs in the fig. 1. The files contain the number 
of processes, the number of transitions per process and the transitions themselves. Every line is 
composed of the actual state, the next state and the transition (v2.0 in/out as a single message 
and v3.0 in-out as two separate messages). The first version (v2.0, left) considers transitions as 
input or output exchanges of messages. The later version (v3.0, right) introduces the event ^0 
as the input part of an output transition. For input transitions we output a NULL (-0) message. 



 We have developed a version of GAVOR for every kind of transition. In the 
above figure two input protocol files with the FSMs of Fig. 1 are showed. The two 
files represent the same sample protocol but in different versions of our GAVOR 
package. You can see that transitions with only output messages (always firable) in 
version 2 are encoded in version 3 with NULL input events (also always firable). 
With our coding we have tried double point crossover (DPX) because of its easy 
application to this domain and its widely recognised benefits. In the crossover 
implementation we encourage the creation of new traces. 

3 Fitness Computations 
 For the computation of fitness values we need a complete simulator of the 
protocol being validated. For every trace (string) we run the simulator module and 
add a D_FITNESS quantity if a deadlock is encountered. For every non-visited state 
and every non-fired transition (it is not the same) we add the values NV_FITNESS 
and NF_FITNESS respectively. 

 With this evaluation scheme we need a value for D_FITNESS much larger 
than the other two values, because a deadlock detection is far more important than a 
useless state or transition.. One straightforward drawback is that if several enough 
states and transitions are not visited/fired by the trace the computed fitness can be 
larger than for traces that detect deadlock. This situation can be avoided if we choose 
D_FITNESS>>NV_FITNESS>NF_FITNESS. The GA maximises this fitness. 

 
Fitness = D_FITNESS*deadlock_present + NV_FITNESS*number_nv_states + NF_FITNESS*number_nf_transitions 

 

 We have tried another kind of fitness computation consisting in penalising 
bad strings (the inverse of the above function but removing first the deadlock term). 
The results have been bad (we need a refinement) and are not reported here. 

 We also need to impose lower and upper limits to the initial length of the 
traces created for the initial population, since a too short trace will fail in representing 
a good tour over the FSM states and transitions while a very long trace will spent a 
great deal of computational resources unnecessarily. At runtime we promote (the 
crossover operator does it) traces of short length but do not impose limits on length. 
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Fig. 4. Interaction between the GA and the Simulator. The GA terminates execution when a 
user given number of steps has been reached. The best string stands for the maximum number 
of protocol violations. If the best final fitness is 0 then the GA has validated the protocol. 



4 Analysis of Results 
 In this section we study the efficacy and efficiency of the devised GA for the 
validation of two different protocols. The first protocol is the example protocol (EXP) 
depicted in Fig. 1 and the second one is the well-known TCP from the TCP/IP 
protocol family. We will perturb the original protocol by introducing deadlocks and 
by disabling some states and transitions in order to study the efficacy of the GA in 
detecting such specification errors. The EXP considers two different FSMs while the 
TCP protocol has a unique FSM that is run at both ends. Also the complexity of the 
TCP protocol is considerably greater, thus we only will use the EXP for a detailed 
study. TCP will be used for testing the bounds of the applicability in GA validation. 

4.1 The EXP Protocol 

 Despite the small number of states (6+6 in total) in the EXP protocol it 
presents the main characteristics of a general protocol, with the added interest of 
using two different finite state machines (for the client and server ends). 

Validating The Correct EXP Protocol. 

 First we want to validate the correct version of this protocol (GA parameters 
shown in the Table 1). Although the protocol is correct at a first glance (for a human) 
the GA validator had some troubles with respect to the initial length of the traces. 
With a value of  between 20 and 100 for the initial length of strings we have always 
got some non-fired transitions and 1 or 2 non-visited states (typically the state 2 of 
FSM1). Fig. 5 shows the results for different ranges of length. 

Table 1.- Basic Parameters for the tests with GAVOR v3.0 
 Selection:  Roulette Wheel and Random Parents 
 Replacement: Steady-State 
 Crossover:  Double Point with Pc=1.0 
 Mutation:  Random Transition with Pm=0.1 
 PopSize:  50 individuals 
 Nrecombin.:  100 
 Seeds:  {3, 7, 11, 17, 19, 23, 34, 57, 93, 137} 

 D_FITNESS=10 NV_FITNESS=2   NF_FITNESS=1 
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Fig. 5. Influence of the initial string length on the 
suitness of the validation. The EXP protocol is 
correct but low string lengths make some states 
and transitions to appear as useless. Only 
700..1000 validates. 

Fig. 6. All the initial string lengths above 100 
allow to validate the EXP protocol (this is the 
correct result since we are validating a correct 
protocol) when a population of 100 individuals is 
used. 



 Since we suspected that length from 700 to 1000 was a somewhat excessive 
value for this relatively small protocol  we enlarged the population size up to use 100 
individuals and then we got a perfect validation for any initial string length greater 
than 100 (Fig. 6). Only the traces with lengths between 20 and 100 failed in 
recognising that the protocol was correct albeit the significance of their final error 
values is minor (two non-fired transitions and one non-visited state). 
Disturbing the Correct EXP Protocol. 
 In these tests we want to show that GAVOR performs different levels of 
validation. First we have changed in FSM0 the transition from the states 1 to 2 by 
removing the -2 output message and by adding a +2 input message (Fig. 7). In all the 
10 runs GAVOR found that this transition was now non-firable. But also it concluded 
that the transitions 1-2 and 3-4 from the FSM1 had also became non-firable because 
our disruption in FSM0 had eliminated all the sources of the -2 messages and 
therefore any transition with a +2 condition was non-firable. This means a fitness of 3 
(1+1+1). 
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Fig. 7. Useless Transition: FSM0[1-2:-2 +2]. GAVOR v3.0 found it. 

 The second kind of disruption we have introduced in the original EXP is to 
change in FSM0 the transition 1-2 from -2 to +2 and also the transition 2-4 from -4 to 
+4 (Fig. 8). These changes are known to introduce a deadlock in the system. We want 
GAVOR to discover this deadlock. The runs perform very consistently in computing 
traces of fitness 29 (11 non-fired transitions plus 4 non-visited states plus deadlock 
fitness  11*1 +2*4+10=29). We have tried initial lengths of 2..10, 5..10, 10..20 and  
20..100 with 10 and with 50 individuals in the population and for every one of the 10 
different seeds. The most usual trace do not visit the states 4 and 5 in any of the 
FSMs. In fact this is true because it is impossible to visit them! 
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Fig. 8. Deadlock: FSM0[1-2:-2 +2 and 2-4:-4 +4]. GAVOR v3.0 detected this deadlock. 



 In these runs we have also detected an interesting side-effect of the 
implementation in that when the actual state in the first FSM has two firable 
transitions, (O and I messages), it always fires the one with the output message. This 
is because we always simulate FSM0 first and then FSM1. With a random selection of 
the first FSM to simulate for every transition fire, this problem has been removed. 
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Fig. 9. Livelock: FSM1[1-3:-3 -5 and 5-0:-3 -5]. GAVOR v3.0 detected this condition. 

 The last disruption we have tried consists in changing in the original EXP 
protocol the FSM1 by making transitions 1-3 and 5-0 to send a -5 message instead of 
a -3 message thus removing any source in FSM1 of the message type 3 (Fig. 9). Our 
validator quickly (always below 50 steps) found that the transitions 1-3 and 5-0 of 
FSM0 are now non-firable because they wait a +3 message input that never arrives. 

 Also the validator found a non-intuitive scenario that reveals that transitions 
3-2 and 3-4 in FSM1 cannot be fired. This is because FSM0 is always looping in its 
internal cycle 2-4-5-3-2-4-5-3-2... and FSM1 (except for the first time in that it visits 
0-1-2-4-5-0) is always making the same (its only permissible) loop: 0-1-3-5-0-1-3... 
consuming the -1 message from FSM0 in the 0-1 and not in its 3-2 transition.  

 This kind of hidden synchronisation can make some transitions useless. In 
our example, FSM1 receives messages of type 1 but they are never consumed in the 
3-2 transition, but always in the 0-1 transition. Known or not, this scenario provokes 
a sort of livelock in that there exists at least one possible infinite execution that makes 
transition 3-2 non-firable although messages of type 1 are being received. Livelocks 
are typically undesired factors in any parallel system and GAVOR can detect them. 

4.2 Validating The TCP 

 In this section we want to validate the Transmission Control Protocol. This is 
a broadly extended protocol that performs the functions of the transport layer (after 
the OSI terminology) and that is present in a very large number of LANs and in the 
Internet. In the tests first we try to validate the correct protocol and then we study the 
GA efficacy in detecting abnormal conditions introduced in the correct protocol. 

 In this protocol the same state machine defines the behaviour of both 
communication ends. This is a difference with respect to the EXP protocol. Another 
difference is its complexity (much higher than for EXP). Also here we have, besides 
the I/O normal transitions, a new kind of event transition, used for modelling the 
interactions with the user. For example the user can open a communication path (^2) 
or close the communication (^3) or a time-out can expire (^12) -see Fig. 10-. 



Validating The Correct TCP. 

 In this section we want to validate the original TCP. Due to the magnitude of 
the search for this protocol, we consider a hit if we approach near enough to a perfect 
genetic validation (fitness 30 or so). Fig. 10 depicts the basic TCP finite state 
machine we are using. Of course a trace of fitness 0 only indicates that, at least, there 
exists a given good execution. If we do not find deadlock we are not absolutely sure 
that it does not exist, but when averaged on all the runs, if no trace finds deadlock we 
are reasonably sure it doesn't exist (if we find deadlock we only know it is invalid). 
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 MEANING OF THE STATES 

 0  CLOSED 
 1  LISTEN 
 2  SYN RECVD 
 3 ESTABLISHED 
 4 SYN SENT 
 5 CLOSE WAIT 
 6 LAST ACK 
 7 FIN WAIT-1 
 8 CLOSING 
 9 FIN WAIT-2 
 10 TIMED WAIT 

 MEANING OF THE I/O MESSAGES 

 1 passive_open 7 time-out 
 2 active_open  8 ack 
 3 close    9 fin 
 4 syn    10 syn+ack 
 5 reset    11 fin+ack 
 6 send    12 wait 

Fig. 10. Finite State Machine forTCP. Since GAVOR v3.0 doesn't allow more than 1 transition 
between a given couple of states we have considered for the transitions 0 0 only the +8/-5 
(ack/reset). The same holds for the two transitions 4 0 in that we only consider the ^3 (close).  

 The conclusions about the results are somewhat difficult because we have 
only partial statistics on the whole execution of the GA. We still need to consider the 
quantitative value for the probability of making good interpretations of the results. 
For example, if we detect a deadlock we are sure (Pr=1) that deadlock exists. If we do 
not detect deadlock, which is the probability (Pr=?) that deadlock is not really present 
in the protocol?. We are still developing a numeric interpretation. 
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-----------------------------------------------------------------------------
-*-*-VISITS TO STATES IN PROCESS #0-*-*-
ST0    ST1    ST2    ST3    ST4    ST5    ST6    ST7    ST8    ST9    ST10
29     14     5      5      18     2      1      7      5      2      7
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
-*-*-VISITS TO STATES IN PROCESS #1-*-*-
ST0    ST1    ST2    ST3    ST4    ST5    ST6    ST7    ST8    ST9    ST10
20     9      6      4      14     1      1      8      4      3      7
-----------------------------------------------------------------------------

 

Fig. 11. Genetic validation of TCP. The graphic shows the worst and mean search that strings 
perform for 500 recombinations of 100 strings with between 500 and 700 of initial length. The 
GA cannot find any deadlock or other errors (this protocol is error free). 
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Disturbing the Correct TCP. 

 We have tried to validate three 
independent and incorrect versions of the 
original TCP. First we have changed the 
event ^6 from the states 1 to 4 to a new 
+6 (never-firable) message reception. The 
second disruption consists in inducing a 
deadlock by eliminating the only output 
transition (+8) from the state 6. The last 
disruption removes the -8 messages from 
the FSMs (ack's won’t be sent). 

 For the change ^6 +6 all the 
computed traces report that transition 1-4 
is always inactive. We have used the 
parameters in Table 1 and also we have 
tried initial lengths of 100..500 and 100 
individuals instead of only 50. The 
execution is slower (10 minutes) but the 
traces worked out more accurate results. 
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5 Conclusions and Future Work 
 In this work we have attempted the validation of two communication 
protocols (EXP and TCP) by means of a genetic algorithm (GAVOR v3.0 package). 
The genotype we have used is a variable-length string (initially generated with 
bounded length) representing a trace (for the 2 FSMs) that defines the dynamic 
behaviour of the protocol. The fitness of every trace is measured by simulating the 
trace on the FSMs and by adding some reward value depending on how many non-
visited states, non-fired transitions and deadlocks are detected. 

 Our results in the genetic validation are very promising and robust. This 
approach has proved to be good in detecting useless states and transitions in the 
protocol specification that represent common errors in the designer's work. Deadlocks 
are also detected with efficiency and livelocks are (indirectly) reported. 

 The technique does need some refinements with respect to the fitness 
computation, a different remapping from genotype to phenotype and the 
parameterization of the GA. Finally, the genetic search presents some problems in 
refining the results for large protocols. We are testing several improvements on this 
approach: to count for the loss of messages, to decide on how to manage the 
messages that remain in queue when simulation ends and studying the degree of 
confidence. Also a global and continued interpretation (statistics and runtime 
decisions) of every string worked out could allow a best validation (at present we are 
trying this). 
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