

����� INCRUSTAR Word.Picture.6 ���������

A GENETIC ALGORITHM FOR LOAD BALANCING IN PARALLEL QUERY EVALUATION FOR

DEDUCTIVE RELATIONAL DATABASES

E. Alba, J. F. Aldana, J. M. Troya

Dpto. Lenguajes y Ciencias de la Computaci—n. Universidad de M‡laga.

Plaza El Ejido s/n. 29013 M‡laga. (Spain)

{alba, aldana, troya}@tecma1.ctima.uma.es

ICANNGA'95

�

	INDEX

		×	Introduction to the Problem.

		×	The Genetic Algorithm.

		×	Analysis of Results.

		×	Conclusions.

		×	Future Work.

�Introduction to the Problem

DATALOG

¥ Datalog is a set oriented declarative (logic) query language for deductive databases that avoids all the undesirable Prolog features.

¥ A Datalog query can be evaluated by means of a dataflow parallel computation. The Datalog program is described by a network of parallel processes. The relations of the extensional database send tuples across the channels. Every process receives one or two streams of tuples (unary or binary operations) and generates one stream of new tuples. The streams of tuples make several incremental loops on this network of processes until a special set of tuples called the Incremental Relations becomes empty (fixed point iteration).

Kind of Algebraic Processes

SELECT	: 	(Unary) Selects tuples (rows) from one relation.

PROJECT : 	(Unary) Projects columns from one relation.

UNION	: 	(Binary) Makes the proper union of two tuples.

JOIN		: 	(Binary) Joins two tuples attending to the value of one or 			several columns. Implemented as a K hashed subjoin 			operations for efficiency purposes.

DIFF.	:	(Binary) Difference operation between two relations.

¥ The parallel query is a network of such communicating processes. They all work incrementally on their input(s) to compute their outputs.

�THE COST MODEL

¥ We have implemented the cost model in a computer program because we need to evaluate quantitative values for several parameters like the communication load for every dataflow channel and the CPU processing times for every process in the network.

LOAD UNIT:				Cost of the generation of one tuple.

COMMUNICATION UNIT:	103 times the cost of generating a tuple.

OPERATION

JOIN(Rnxp,Smxq)

PROJECT(Rnxm)

SELECT(Rnxm)

UNION(Rn1xm,Sn2xm)

DIFFER.(Rn1xm,Sn2xm)�

COST OF EVALUAT.

k*((n/k)*m/k)) +

cost_of

(

	UNION(

	T(nxm/(k2))x(p+q),

	Q(nxm/(k2))x(p+q))

) * (k-1)

n*1

n*1

n1+n2+	n1*log2(n1)+

		n2*log2(n2)

cost_of

(

 UNION(Rn1xm,Sn2xm)

)�

OUTPUT REL. SIZE

c*(n*m) x (p+q)

n x r		where r²m

(t*n) x m

n1+d*n2 x m

n4-(1-d)*n3 x m

where n3 is min(n1,n2)

and	 n4 is max(n1,n2)��

PARAMETER

d

k

r

t

c

na

be

�

MEANING

Percentage of non-duplicates

Number of hashing groups

Mean number of projected attributes

Percentage of an AND restriction

Percentage of restriction in a join

Number of attr. involved in the 	condition of the composition

Parameter for the non-duplicates funct.�

DEFAULT VALUE

0.9

3

0.01

0.0001=0.0001*na

1

1.1��

Intensional DataBase, Datalog Equations and Graph of Processes

IDB:

		p(X,Y) 	:- r(Z,Y) & X=a.

		p(X,Y) 	:- s(X,Z1) & t(Z1,A,B,Z2) & r(Z2,Y).

		q(X,Y) 	:- p(X,b) & X=Y.

		q(X,Y) 	:- p(X,Z) & s(Z,Y).

		t(X,Y,Z,T) 	:- r(X,Z1) & s(Z1,Y) & q(X,Z) & p(Z,T).

		u(X,Y) 	:- r(B,Z) & s(A,Z) & q(Y,Z) & p(B,X).

Datalog Equations:

		P(X,Y) 	Ê PX,Y (R(Z,Y) x [a](X))

		P(X,Y) 	Ê PX,Y (S(X,Z1) � INCRUSTAR Word.Picture.6 ��� PZ1,Y (T(Z1,A,B,Z2) � INCRUSTAR Word.Picture.6 ��� R(Z2,Y)))

		Q(X,Y) 	Ê sX=Y (PX (sZ=b P(X,Z)) x PY P(Y,W))

		Q(X,Y) 	Ê PX,Y (P(X,Z) � INCRUSTAR Word.Picture.6 ��� S(Z,Y))

		T(X,Y,Z,T) 	Ê PX,Y,Z,T (R(X,Z1) � INCRUSTAR Word.Picture.6 ��� (S(Z1,Y) � INCRUSTAR Word.Picture.6 ��� (Q(X,Z) � INCRUSTAR Word.Picture.6 ��� P(Z,T))))

		U(X,Y) 	Ê PX,Y (R(B,Z) � INCRUSTAR Word.Picture.6 ��� (S(A,Z) � INCRUSTAR Word.Picture.6 ��� (Q(Y,Z) � INCRUSTAR Word.Picture.6 ��� P(B,X))))

� INCRUSTAR Word.Picture.6 ���

�The Genetic Algorithm

WHY

¥ The relationships among the processes are complex.

¥ The solution space is quite large and with multiple optima.

¥ The GA does not need to know nothing about the problem being solved.

¥ Research interest.

HOW

¥ The computational model is run over the network of processes in order to get the cost of every process and the amount of communication among the processes in the network.

¥ Then the GA is fed with this information and tries to make a fair processes-to-processors assignment that minimizes the communication cost.

¥ The genotype will encode the assignment.

¥ The fitness function will use the values computed by the cost model.

¥ For the assignment we are supposed to have a physical LAN with a unidirectional ring topology.

¥ The experiments will take place on this topology with a varying number of processors and with different values for the joins hashing factor (K).

� INCRUSTAR Word.Picture.6 ���

�

GENOTYPE

¥ Every string is divided into GENNUMBER genes encoded as GENLENGTH binary digits. Every gene in the string is the binary representation of the number of a processor in which to place the associated process.

GENNUMBER=Network_Processes_Number + Number_of_Joins*(K-1)

¥ The JOINs are the bottleneck of the network. The implementation uses K internal subprocesses of type join in order to compute a real join. These processes can be also allocated individually onto the ring of processors.

¥ The process associated with any gene (encoded processor) is known because of the position of the gene in the string: the value of the i-th gene in the string is the processor in which to place the process number i. Of course, the processes have been numbered.

P0�P1�P2����PN-1��1 0�0 1�1 1�....................���0 0��

String encoding the mapping for an assignment of processes to processors. This example supposes 4 processors (2 bits needed for encoding this number) and PN processes.

¥ The expression from the genotype to the phenotype is a simple binary-to-decimal decoding.

�

FITNESS

FITNESS = MEPV - PAYOFF

¥ where the MEPV is a constant selected as the maximum estimated payoff value. Thus while maximizing the fitness value in the GA we are actually minimizing the payoff function.

PAYOFF = Cw * Comm + Uw * Unb

¥ Cw and Uw are two values for weighting the relative importance of the communication and unbalancing factors, i.e., the cost of making a wrong communication path of the dataflow channels and the cost of having an unfair assignment of the processes to processors.

¥ The total cost is optimized when both weights are 1.0.

�

			Comm = · distance(Ppia,Ppjb) * c(Pi,Pj)

					VChannel i--->j

	distance(Ppia,Ppjb) = 	if Pa<Pb 		then Pb-Pa

						otherwise		Processors_Number-(Pa-Pb)

	c(Pi,Pj) is the accumulated cost of communicating the tuples that process i sent to process j in the simulation of the Datalog network made before the GA runs.

	where Ppia stands for the process number i (i: 0..E_Processes_Number) that is contained in the processor number a: 0..Processors_Number-1.

		Unb=·abs[1-(Processor_Loadi/Mean_Processor_Load)]

			V Processori

	where Processor_Loadi is the sum of the cost of all the processes assigned to processor i, and Mean_Processor_Load is the mean load for the computed assignment.

	The term Unb expresses the cost of making an unbalanced allocation. Only when all the processors have the same computational load does this term decays to zero.

¥ The Comm and Unb operands are normalized to make a proper analysis of the results. Besides the normalization a penalty function is used in the GA for ensuring that the whole pool of processors is being used in the solution string.

�

CHARACTERIZATION OF THE GA

	Genotype:				Binary

	Scheme of Evolution:		Steady State (not generational)

	Size of the population:		From 300 to 1000 individuals

	Number of Recombinations:	104

	Selection:				Fitness Proportional

	Replacement:			The worst of a random sample set of strings

	Crossover:				Pc=1.0 for Single and Double Point Crossover

	Mutation:				Pm<0.1 by Bit Inversion

	Stop Criteria:			After done the given number of recombinations

�Analysis of Results

¥ We have made tests on the cost of the whole system taking account of the communication and balancing of the processes. We have changed the number of processors (2,4,8,16,32) and for every value we have tried different values for K of 1/2, 1 and 2 times the number of processors.

¥ We suppose the underlying ring of processors as being the physical network.

� INCRUSTAR "MSGraph" "Word Object8" * mergeformat ���� INCRUSTAR "MSGraph" "Word Object10" * mergeformat ���

� INCRUSTAR "MSGraph" "Word Object11" * mergeformat ���

� INCRUSTAR "MSGraph" "Word Object12" * mergeformat ���� INCRUSTAR "MSGraph" "Word Object1" * mergeformat ���

¥ Better balancing as K becomes larger. Negligible overhead in communication.

¥ For 2 processors is better not to split. The savings of the balancing are smaller than the comm. overhead provoked in the ring. Anyway the balancing is fair.

¥ The values of the unbalancing and communication factors selected complementary.

TAKING ACCOUNT OF UNBALANCING IS VERY IMPORTANT

� INCRUSTAR "MSGraph" "Word Object1" * mergeformat ���

FORGETTING THE COMMUNICATION TERM IS BAD

� INCRUSTAR "MSGraph" "Word Object3" * mergeformat ���

THE UNBALANCING TERM IS MORE IMPORTANT THAN THE COMMUNICATION FACTOR (numerically smaller values)

� INCRUSTAR "MSGraph" "Word Object5" * mergeformat ���

Conclusions

¥ We have constructed a GA and applied it to a parallel task allocation problem.

¥ The steady state approach is well suited for this purpose. By tuning the population size and the probability of applying mutation we have avoided local optima. The GA has solved the problem in a good manner where other techniques could have required a deeper management of the model.

¥ We have designed an elaborated fitness function that eases the work of the GA. It takes account for the fairness of the balancing made in the load of processors and for the minimization of the communication overhead.

¥ The splitting of the join processes in subprocesses decrements the overall cost in terms of processor load and communication. The communication overhead of separating processes among the processors is highly compensated by the saving met by the better load balancing the GA can achieve. The communication values must be magnified (factor Cw) due to their smaller numerical values if compared with the computational cost.

¥ In the tests we have tried a single point crossover versus a double point crossover and concluded that the last one is the best. The balancing achieved by a single point crossover operator is notably worse than the balancing got when using two points crossover. This has been observed in other domains as neural network design when using genetic algorithms.

¥ For real time application the GA can be used for a network of about 8 processors. If a larger number of processors is wanted the GA becomes too slow. A solution can be to use a RISC architecture that (we have tested for genetic neural design) improves notably the speed of execution of the GA.

�

Future Work

¥ Comparison with a really distributed implementation of the query evaluation in order to test the accuracy of the results worked out by the GA.

¥ Incorporation of some techniques to speed the GA. Simulated Annealing or a problem specific technique are thought to work. The technique could be inserted in the GA evolution as a genetic operation with an associated probability of application.

¥ Deeper study of the importance of the factors present in the fitness function for larger Datalog queries.

