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Capitulo 1

LENGUAJES
PREDICATIVOS

“Creo que puedo aclarar la relacion de mi “Begriffsschrift” [escritura
de los conceptos] con el lenguaje natural compardndola con la que
tienen el microscopio y el ojo. El ojo es superior al microscopio por
su versatilidad y el rango de sus posibles usos...Pero tan pronto
como la Ciencia reclama mayor agudeza de resolucion, el ojo resulta
insuficiente.”

(Frege, “Begriffsschrift”, 1878)

Los lenguajes de la logica de predicados proporcionan elementos simbdlicos
para expresar ciertos elementos internos de las proposiciones que resultan nece-
sarios para tratar la validez de multitud de razonamientos del lenguaje natural.
Por ejemplo, consideremos el argumento siguiente: Todos los herbivoros rumian.
Bobo es un herbivoro. Luego, Bobo rumia. Si lo simbolizamos con los medios de
los lenguajes del ¢p tendremos:

thr
bh
br

O bien transformdndolo en una implicacién: thr A bh — br. En este caso, no
tenemos un argumento valido de acuerdo con la semantica de los lenguajes del
cp. Esto muestra la necesidad de contar con lenguajes formales mas complejos,
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que den cuenta de ciertos elementos de las proposiciones que inciden en la validez
y que se escapan a los lenguajes del cp.

Para nuestro nuevo analisis, destacaremos los elementos internos de lo que
antes era una proposicién atémica: los “términos” (que denotan individuos) como
Bobo (en este caso, un nombre) y los “predicados” (expresiones que resultan de
abstraer las propiedades y relaciones de los individuos) como ser herbivoro y ser
rumiante. De esta forma, Bobo rumia serd por ejemplo rumia(bobo). En cuanto
a Bobo es un herbivoro seria herbivoro(bobo).

Pero aun asi no contamos con los medios adecuados para simbolizar enun-
ciados en los que aparecen referencias a individuos genéricos mediante palabras
como todos, alguno, etc. Para ello es necesario emplear ademds “variables”, que
denotan estos individuos genéricos, y “cuantificadores”, que simbolizan los con-
ceptos de todos y alguno.

Analicemos, por ejemplo, la frase Todos los herbivoros rumian. La podemos
reformular como (esto lo justificaremos mas adelante) para todo X, si X es un
herbivoro, entonces X rumia; donde X es una “variable individual” (o simple-
mente una “variable”), cuyo cometido es senalar el lugar del argumento de los
predicados ser herbivoro y ser rumiante (es decir, tenemos las formas X es un
herbivoro y X rumia) y representa elementos arbitrariamente elegidos del do-
minio. El cuantificador para todo X (cuantificador universal) se representa VX.
La expresiéon X es un herbivoro se representa por herbivoro(X) y X rumia por
rumia(X). En simbolos: YX(herbivoro(X) — rumia(X)).

Pongamos otro ejemplo: El cuadrado de algin nimero impar no es divisible
por 3. Entendemos la frase anterior asi: para algin nimero X, X es impar y no
es el caso que el cuadrado de X sea divisible por 3. Tenemos las expresiones el
cuadrado de X, que expresa una funcién, y las expresiones X es impar y X es
divisible por Y (Y es otra variable); esta dltima expresién origina X es divisible
por & en la proposicién citada, donde el lugar de Y lo ocupa la constante &
(un nombre especifico de un objeto). Ademds tenemos un cuantificador como
para algin X, que lo simbolizamos mediante 3X. Ahora, podemos representar o
simbolizar la frase anterior mediante IX(impar(X) A —divisible(cuadrado(X), 3)).

En resumen, para el andlisis interno de las proposiciones necesitamos nuevos
simbolos para destacar ciertos elementos. Usaremos simbolos de

= constante: para denotar objetos del dominio de modo especifico.
= wariable: para denotar objetos del dominio de manera arbitraria.

= cuantificacion (o cuantificadores): para referirnos a todos o a algunos de
los elementos del dominio
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= predicado: para representar propiedades o relaciones entre los objetos del
dominio.

= funcion: para denotar generadores de objetos del dominio a partir de uno
o varios objetos del dominio.

Los lenguajes que trataremos se denominan lenguajes de la l6gica de primer or-
den o lenguages del cdlculo de primer orden o, simplemente, lenguajes de primer
orden. Nuestro cometido serd ofrecer métodos para simbolizar argumentos co-
mo el ofrecido y deducir o probar su validez. Conviene observar que la logica de
primer orden cuantifica sélo sobre individuos, pero podemos cuantificar igual-
mente sobre predicados de individuos (ldgica de segundo orden), por ejemplo,
algunos romanos del fin del Imperio todavia conservaban todas las propiedades
virtuosas de sus antepasados. Podemos cuantificar igualmente sobre predicados
de predicados de individuos (Idgica de tercer orden) y asi sucesivamente. Se lla-
ma légica de orden superior a la 16gica que comprende estas légicas que no son
la de primer orden; todas ellas quedan fuera del alcance de este libro.

La légica de primer orden, tal como la concebimos actualmente, es relativa-
mente reciente; se suele citar a G. Frege (1848-1925) como su auténtico fundador.

Existen numerosisimos libros que tratan la materia aqui expuesta. Recomen-
damos al lector, por ejemplo, [20], [8], [9], [15], [32] ¥ [35] (en castellano); y de
las obras en inglés citaremos [3], [40], [25], [14], [33] ¥ [12].

1.1. SINTAXIS.

Definicién 1.1 Un lenguaje del CP se genera por la siguiente gramdtica:
1. Un conjunto de simbolos terminales (el alfabeto), entre los que tenemos

= Jos simbolos 16gicos: =, A, V, =, <>, V, 3

= un conjunto infinito numerable de simbolos de variable, denotado
Var.

= un conjunto de simbolos
Y =Cony U Funs U Preds,

llamado signatura del lenguaje, donde Cony, es un conjunto numera-
ble (posiblemente vacio) de simbolos de constante; Funy es un con-
Junto numerable (posiblemente vacio) de simbolos de funcién y Predy,
es un conjunto numerable (no vacio) de simbolos de predicado.
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()

= simbolos auxiliares: (7, “)”,

Asi pues, el alfabeto del lenguaje es:

As =X U{~, AV, =, ,Y,3,(,),, } U Var

2. Un conjunto de simbolos no terminales, compuesto por

= un simbolo inicial: S

s Jos simbolos: Variable, Atomo,Predicado, Termino, ListaTerminos y
Constante.

3. Las producciones de la tabla 1.1.

S = -5

S = (SAS)

S = (SvS)

S = (S—59)

S = (S« S)

S = VVariable S

S = AV ariable S

S = Atomo

Atomo = Predicado | Predicado(ListaT erminos)
Termino = Funtor(ListaT erminos)

Termino = Variable | Constante
ListaTerminos = Termino | Termino, ListaT erminos
Variable = cadena € Var

Constante = cadena € Cony,

Funtor = cadena € Funsy,

Predicado = cadena € Predy,

Cuadro 1.1: Sintaxis del CP

La gramadtica anterior no estd completa, pues falta explicitar cudles son los
terminales correspondientes a Var, Cony, Funy y Preds. En lo que sigue, su-
pondremos que Cony, Funy y Preds, son conjuntos de cadenas alfanuméricas
minusculas, definidas como en el ¢p, determinados en concreto para cada lengua-
je. Por el contrario, Var serd siempre el mismo, y estard formado por el conjunto
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de todas las cadenas alfanuméricas mayusculas, entendiendo por “cadena alfa-
numérica mayuscula” una cadena de letras, cifras y/o guiones que comienza
por una mayuscula (ndtese que este conjunto es infinito numerable y decidible.)
Este es aproximadamente el convenio del lenguaje de programacién PROLOG.
Sin embargo, en textos de Légica es frecuente emplear conjuntos disjuntos de
simbolos para los diferentes elementos sintacticos, en particular letras mayuiscu-
las para los predicados, y diferentes letras minusculas para constantes, variables
y funtores.

Si Atomo se analiza en Predicado(ListaT erminos) se dice que los términos
que aparecen en ListaTerminos son los argumentos de Predicado, y andlo-
gamente para los funtores. Debemos sefialar que, segun la gramética anterior,
cada aparicién de un mismo simbolo de predicado o funcién puede tener distinto
numero de argumentos. Normalmente no se supone esto, sino que cada predica-
do o funtor va asociado a un numero a, llamado aridad, que denota el nimero
de sus argumentos. Podemos hablar asi de predicados o funtores monddicos o
monarios (a = 1) y poliddicos (a > 1), y dentro de estos dltimos de predicados
diddicos o binarios, triddicos, etc.

Tal como se ha definido, lo nico que varia de un lenguaje a otro es la sig-
natura ¥ (simbolos de constante, funcién y predicado). Dada la dependencia de
¥ para cada lenguaje de primer orden, llamaremos C'P(X) al lenguaje genera-
do por la gramética anterior y que tiene a los elementos de ¥ como conjunto
distinguido de simbolos terminales. Adviértase que los términos de un lenguaje
CP(X) son las constantes de ¥ y las variables, asi como los generados por los
simbolos de variable y los simbolos de constante y funcién de X. Anotaremos
simplemente C'P cuando no deseemos especificar el conjunto X, entendiendo
asi que se trata de un conjunto arbitrariamente elegido. Los elementos de es-
tos lenguajes se denominan férmulas de primer orden. Al escribir las férmulas
tenemos las mismas convenciones sobre los paréntesis que en el cp.

Como letras metalingiiisticas nuevas emplearemos las siguientes letras cur-
sivas (con o sin subindices):

Gy ..y € para referirnos a constantes;

foiiy 0 para indicar funciones;

p,qr para indicar predicados;

s, t, u para referirnos a términos cualesquiera;
u,...,Z para indicar variables.

Similarmente a lo que hacemos con las conectivas, se puede abreviar la referencia
a los cuantificadores, ahora y en lo sucesivo, mediante €X, siendo € € {V,3}.
Todo esto nos permitird escribir esquemas de férmulas del C'P.
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Ejemplo 1.1 Supongamos las siguientes frases en lenguaje natural: Juan y Pe-
dro son altos. Existe al menos un sueco. Todos los suecos comen salmon y hablan
sueco. Juan no come salmdon. Vamos a simbolizarlas en un lenguaje CP:

Emplearemos las constantes
juan Juan
pedro Pedro
y los predicados

alto ser alto (monario)

sueco ser sueco (monario)
come-s comer salmdn (monario)
habla-s  hablar sueco (monario)

con lo que tendremos

Juan y Pedro son altos:

alto(juan) A alto(pedro)

Existe al menos un sueco:

IXsueco(X)

Todos los suecos comen salmon y hablan sueco:

VX (sueco(X) — come-s(X) A habla-s(X))

Juan no come salmon:

—come-s(juan) <
Dado el vocabulario definido anteriormente para los lenguajes de primer orden,
podemos establecer alternativamente la definicién de “término” y de “férmula

del CP(X)” como hacemos seguidamente. Definamos el conjunto de términos
del CP(X) como el menor conjunto de cadenas sobre As; que cumple:

1. Un elemento de Cony o un elemento de Var es un término del CP(X).

2. Si f € Funy, siendo f n-ario, y t1,...,t, son términos del C'P(X), enton-
ces f(t1,...,t,) es un término del CP(X).

Definicién 1.2 FEl grado de un término t es el nimero de apariciones de simbo-
los de funcion en t.

Alternativamente, podemos definir el grado de un término ¢, denotado gr(t),
como sigue:
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= gr(t) =0, si t es una constante o una variable
w gr(t) =gr(t1) + ...+ gr(t,) + 1, si t es de la forma f(¢,...,t,)

Las siguientes expresiones son términos de un lenguaje CP:

X, ana, suc(cero), f(g(a, X)), g(f(a), f(X)).
y sus grados respectivos son 0, 0, 1, 2, 3.

En cuanto al conjunto de férmulas del CP(X), estard constituido por el
menor conjunto de cadenas sobre Ay, que cumple:

1. Una férmula atémica o dtomo del CP(X) es una férmula del CP(X),
constituida por un predicado m-ario p € Preds seguido de n términos
t1,...,tn del CP(X), ie., p(t1,...,tn)-

2. Si A es una férmula del CP(X), entonces = A es una férmula del CP(X).

3. Si Ay B son férmulas del CP(X), entonces (A op B) es una férmula del
CP(X), donde op € {A,V,—, < }.

4. Si X € Vary A es una férmula del CP(X), entonces €X A es una férmula
del CP(X), donde € € {V,3}.

El grado de una férmula consiste en el nimero de operadores ldgicos (conecti-
vas y cuantificadores) que intervienen en ella. Una definicién recursiva de este
concepto es la siguiente:

Definicién 1.3 Denotemos el grado de una férmula A mediante gr(A). Enton-
ces definimos:

1. gr(A) =0, si A es un dtomo

2. gr(=A) =1+ gr(A4)

3. gr(AopB) =1+ gr(A) + gr(B)
4. gr(€XA) =1+gr(4)

Por ejemplo, las siguientes expresiones son férmulas de un lenguaje CP:

p(a)

quiere(X, f(g(a)))

VX(rosa(X) — huelebien(X))
(VXY p(X,Y) — 3Z q(f(a, Z)))
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y sus grados son 0, 0, 2, 4.

Las definiciones de @[A/B]", ¢[A/B]* y ¢[A/B] dadas en la seccién 1.2.1
tienen que extenderse atendiendo a nuevos casos. Hemos de anadir:

— -si @ es VX1, ¢[A/B]* es VX (¢1)[A/B]*

— si @ es AX @y, p[A/B]* es 3X (p1)[A/B]*

o[A/B]T vy p[A/B] se definen de modo

Cada término o férmula de un lenguaje CP(X) s6lo puede construirse de
una determinada manera. Esto nos lo dice el siguiente principio, que se deduce
inmediatamente de todo lo anterior:

Proposicién 1.1 (Principio de unicidad de estructura para términos y férmu-
las).

s Cada término cae exactamente dentro de una de las siguientes formas:

es una constante;
es una variable;
es de la forma f(t1,...,tn), para cierto f € Funy, (de aridad n) y
donde ty,...,t, son términos univocamente determinados.
= Cada formula cae exactamente dentro de una de las siguientes formas:

1. p(t1,...,tn), para cierto p € Preds, (de aridad n) y donde t1,...,t,
estan univocamente determinados ;
—A, estando A univocamente determinada;

A op B, para cierta conectiva binaria op, estando A y B univoca-
mente determinadas;

4. C€XA, para cierto cuantificador €X y cierta variable X estando A
univocamente determinada.

Para realizar pruebas acerca de propiedades de términos o férmulas podemos
usar los siguientes principios de induccién, que también se deducen directamente
de lo anterior:

Proposicién 1.2 (Principios de induccién estructural). Sea CP(X) un lenguaje
de primer orden y sea P una propiedad cualquiera.
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s Todos los términos del CP(X) tienen la propiedad P con tal de que se
cumpla:
1. Toda constante o variable tiene la propiedad P.
2. Si los términos ty1,...,t, tienen la propiedad P y f € Funy es de

aridad n, entonces f(t1,...,t,) tiene la propiedad P.

» Todas las formulas del CP(X) tienen la propiedad P con tal de que se
cumpla:
1. Todos los dtomos tienen la propiedad P.
Si A tiene la propiedad P, entonces —A tiene la propiedad P.

Si A y B tienen la propiedad P, entonces A op B tiene la propiedad
P.

4. Si A tiene la propiedad P y X € Var, entonces €X A tiene la propie-
dad P.

Proposicién 1.3 (Induccién sobre el grado). Sea C'P(X) un lenguagje de primer
orden y sea P una propiedad cualquiera.

» Todos los términos del CP(X) tienen la propiedad P con tal de que se
cumpla:
1.  Toda constante o variable tiene la propiedad P.
2. Si todo término de grado menor que f(t1,...,t,) tiene la propiedad

P, entonces f(t1,-..,t,) tiene la propiedad P.

s Todas las férmulas de CP(X) tienen la propiedad P con tal de que se
cumpla:
1. Todos los atomos tienen la propiedad P.

2. Si todas las férmulas de grado menor que A tienen la propiedad P,
entonces —A tiene la propiedad P.

3. Sitodas las formulas de grado menor que A op B tienen la propiedad
P, entonces A op B tiene la propiedad P.

4. Si todas las férmulas de menor grado que €X A tienen la propiedad
P, entonces €X A tiene la propiedad P.
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Por otro lado, las nociones de “subférmula” y “subférmula propia” son las mis-
mas que las definidas en la seccién 1.2.1. Sin embargo, ahora tenemos que con-
siderar nuevas expresiones de la forma €X . En estos casos, las subférmulas
propias son ¢ y las subférmulas propias de . Las subférmulas incluyen ademéds
la férmula considerada en cada caso. Si damos una definicién de tipo recursivo
de “subférmula” y “subférmula propia” como la que dimos entonces, hemos de
anadir dos nuevos casos: cuando ¢ es VX A o X A. Asf pues, si Sub(p) denota
el conjunto de subférmulas de ¢ y Subp(p) denota el conjunto de subférmulas
propias de ¢, tenemos:

» Subp(CXA) = {A} U Subp(A)
n Sub(€XA) = {CXA}U Subp(€XA)

Por ejemplo, sea ¢ la férmula VX(p(X,a) — IYq(f(Y)). Las subférmulas propias
de ¢ son: p(X,a) — 3IYq(f(Y)), p(X,a), AYa(f(Y)) y q(f(Y)). Las subférmulas
de ¢ son todas las anteriores y la propia ¢.

Andlogamente a los conceptos de “subférmula” y “subférmula propia” po-
demos definir “subtérmino” y “subtérmino propio”.

Definicién 1.4 El conjunto Subterp(t) de subtérminos propios de t es el dado
por las siguientes reglas:

1. Subterp(t) = @, sit es una constante o una variable.

2. Subterp(t) = {t1,...,tn} U Subterp(t1) U ... U Subterp(ty,), si t es de la
forma f(t1,...,tn).

El conjunto Subter(t) de subtéminos de t es Subter(t) = {t} U Subterp(t).

Por ejemplo, sea el término f(a,g(X),f(g(Y),b,Z)). El conjunto de todos los
subtérminos de dicho término estd compuesto por él mismo y sus subtérminos
propios, que son: a, X, Y, b, Z, g(X), g(¥), f(g(Y), b, Z).

En ocasiones nos interesa destacar los simbolos que aparecen en un conjunto
determinado de férmulas o en una férmula dada. Mediante Var(T'), Fun(T),
Con(T) y Pred(T) denotaremos, respectivamente, al conjunto de los simbolos
de variable, funcién, constante y predicado que intervienen en las férmulas de
I'. Similarmente se entiende Var(yp), etc.

Definicién 1.5 Un término de base es aquel que no tiene apariciones de va-
riables, es decir, estd formado unicamente por constantes y funtores, o sélo por
constantes. Un dtomo de base es aquel que no tiene apariciones de variables.
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Definicién 1.6 FEl universo de Herbrand U de un conjunto de formulas T', de-
notado Ur, es el conjunto de términos de base que se gemera como sigue:

1. Si Conp # @, entonces Ur es menor conjunto de los términos cerrados
del lenguagje generado por la signatura de T'.

2. En caso contrario, elijamos de manera arbitraria una constante especial cgr
llamada constante de Herbrand y Ur es el menor conjunto de los términos
de base de un lenguaje que tiene como signatura {cy} U Funr U Predr.

Dicho de otra forma, Ut es el menor conjunto de términos generado a partir de
Con(T) y Fun(T) que cumple lo siguiente:

i) si Con(I') # @, entonces Con(I') C Ur; en caso contrario, a € Ur (a es la
constante de Herbrand);

ii) si fes un simbolo de funcién n-ario de Fun(T'), y t1,...,t, € Ur, entonces
flt1,...,ty) € Up.

Definicién 1.7 La base de Herbrand de una teoria T, denotada Br, es el
conjunto de dtomos de base de la forma p(ti,...,t,), donde p € Pred(T) y
ti,...,tn € Ur.

Ejemplo 1.2 Sea el conjunto de férmulas I'; =

{bueno(pepe),
VX (bueno(X) — —malo(X)),

amigo(pepe, juan),
VXYY (bueno(X) A bueno(Y) — amigo(X,Y))}

I'; es una teoria. El universo de Herbrand de esta teoria es el conjunto finito
Ui = {pepe, juan}
Sea ahora la teoria
I’y = {natural(cero), VX(natural(X) — natural(suc(X)))}
El universo de Herbrand es el conjunto infinito
Us = {cero, suc(cero), suc(suc(cero)), ... }.
Sea ahora la teoria
Ty = {YX(b(X) = m(f(X)) A m(g(X)))}
El universo de Herbrand es el conjunto infinito

Us = {a, f(a), g(a), f(f(a)), f(g(a)), &(f(a)). &(&(a)), ---}. <
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En el resto de esta seccién tratraremos de las relaciones existentes entre variables
y cuantificadores dentro de una férmula.

Definicién 1.8 Sea una férmula de la forma €X A. Se dice que X es la variable
del cuantificador y que A estd en el ambito del cuantificador.

Definicién 1.9 Sea ¢ una formula cualquiera del CP. Una aparicion de una
variable X en ¢ es ligada cuando ocurre en una subformula de ¢ de la forma
CX A (en otras palabras, cuando es la variable de un cuantificador que aparezca
en @ o estd en el dmbito de un cuantificador que aparezca en ¢ cuya variable
sea X ); en caso contrario, se dice que es una aparicién libre. Una variable X
estd ligada en ¢ cuando tiene al menos una aparicion ligada en ¢ y estd libre
en ¢ cuando tiene al menos una aparicion libre en ¢. Una formula es cerrada
cuando no tiene variables libres; en caso contrario es abierta.

Nétese que, segtin la definicién anterior, una misma variable puede estar libre
y ligada en una férmula. Ademds, si una variable no esta ligada en ¢, entonces
o bien todas sus apariciones en ¢ son libres o simplemente no aparece en @; y
si no estd libre en ¢, entonces o bien todas sus apariciones en ¢ son ligadas o
bien no aparece en .
Ejemplo 1.3 En la férmula

1 = VXYY (bueno(X) A bueno(Y) — amigo(X,Y))
todas las variables estan ligadas. El &mbito de VX es

VY (bueno(X) A bueno(Y) — amigo(X,Y))
y el &mbito de VY es

(bueno(X) A bueno(Y) — amigo(X,Y))
En la férmula

p2 = VY (bueno(X) A bueno(Y) — amigo(X,Y))
las apariciones de X son libres y las de Y son ligadas. Por tanto, X estd libre e

Y estd ligada.
En la férmula

w3 = VXYY (bueno(X) A bueno(Y)) — amigo(X,Y)
hay una aparicién ligada de X y otra libre, y lo mismo para Y. Por tanto, X e Y

estan libres y ligadas.
En la férmula

4 = VX p(X,Y) = 3Y p(Y,Y) Aa(Z)
la variable X estd ligada. La primera aparicién de Y es libre y el resto, ligadas.
La unica aparicién de Z es libre. «
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Ejercicio 1.1 Dar definiciones recursivas de variable libre y variable ligada en
una férmula. <

Convendremos en estipular una prioridad cuantificacional entre cuantificado-
res cuando una aparicién de una variable X esté en el dmbito de dos o més
cuantificadores que tienen dicha variable. Estipulamos a este respecto que dicha
aparicién esta ligada solamente por el cuantificador més cercano a la misma.
Por ejemplo, sea la férmula VX(p(X) — IXq(X,Y)). El cuantificador VX no liga
la X de q(X, Y), aunque cae bajo su dmbito, pues también cae bajo el &mbito
de 3X, que es més cercano a ella.

Definicién 1.10 Un cuantificador, VX o 31X, se dice vacuo si la variable X
no cae bajo su ambito. Asi pues, si X no estd libre en o, entonces VX (31X ) es
vacuo en VX (X ).

Por ejemplo, dos casos en los que hay cuantificaciéon vacua son
a) VX3IX q(X,Y));
b) VX3Y p(X,a)

En a), el cuantificador VX es vacuo; en b), Y es vacuo.

Ejercicio 1.2 Determinar en las siguientes férmulas qué cuantificadores son
vacuos, qué apariciones de cada variable son libres y qué apariciones son ligadas:
YX(p(X,Y) = 3Y p(X,s(s(Y))))
p(X,Y) = (VX p(X,Y) — IX p(X,s(s(X))))
YX3IX-p(X,Y) = 3Y p(X,s(s(X)))
<

Ejercicio 1.3 Calcular el universo y la base de Herbrand de las siguientes
teorias:

1.2. SEMANTICA.

Mediante la semdntica interpretamos las férmulas de un lenguaje formal,
definiendo la manera en que dichas férmulas pueden recibir los valores de verdad
“verdadero” y “falso”.
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En el caso del cp, dichos valores eran asignados directamente —por medio de
una interpretacidn— a ciertas férmulas (las proposiciones atémicas), y las reglas
semanticas determinaban en funcién de ellos cuales eran los valores para las
restantes férmulas (proposiciones compuestas).

En el caso del CP, la cosa es mas complicada, pues la interpretacién no asig-
na valores directamente a los dtomos, sino a los elementos que los constituyen
(términos y predicados). Por otra parte, la presencia de variables y cuantifica-
dores complica en cierto modo la situacién. Todo ello lo explicamos en la seccién
1.2.1. A continuacién, en la seccién 1.2.2 demostraremos con todo rigor, en be-
neficio del lector desconfiado, algunos resultados triviales acerca de los valores
de verdad as{ definidos (el lector menos desconfiado puede omitir las farragosas
demostraciones). En la seccién 1.2.3 adaptamos los conceptos de consecuencia
légica y argumento valido a los lenguajes del CP. En la seccién 1.2.4 introdu-
cimos un tipo especial de interpretaciones que emplearemos en relacién con las
técnicas de demostracién automadtica (las interpretaciones de Herbrand) y en la
seccién 1.2.5 presentamos un cuadro de férmulas validas notables cuyo dominio
es esencial para todos los desarrollos posteriores.

1.2.1. NOCIONES ELEMENTALES.

Para interpretar las formulas de los lenguajes del CP, lo primero que debe-
mos considerar es un dominio de objetos al que referirnos y que recorrerdn los
cuantificadores. Hemos de especificar, ademds, cémo interpretar las constantes
y demés términos de base —serdn elementos del dominio— y cémo interpretar los
predicados —seran subconjuntos del dominio o de alguna potencia del dominio.
Todo ello es lo que constituye una interpretacién. Formalmente:

Definicién 1.11 Una interpretacién de un lenguaje CP(X) es un par ordena-
doJ = (D, §), donde D es un conjunto no vacio, denominado dominio de la
interpretacion, y § es una funcion (denominada funcién de interpretacién) de-
finida en el conjunto de simbolos de constante, funcion y predicado de ¥ tal que
§ asocia:

= un elemento de D con cada constante ¢ € Cony, i.e., §(c) € D.

s una funcidn de D en D™ con cada funtor n-ario f € Funs, i.e. F(f) :
D™ = D.

= una relacion n-aria entre elementos de D con cada predicado n-ario p €
Predy, i.e., F(p) C D™ (si el predicado p es unario, F(p) C D).
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Cuando hablamos de “interpretacién” referida a un lenguaje de primer orden
es acostumbrado denominarla “interpretacién de primer orden”.

En realidad, para interpretar una férmula ¢ (o conjunto de férmulas I') sélo
nos interesan los simbolos que intervienen en ¢ (o I'). Si damos una interpreta-
cién centrandonos unicamente en dichos simbolos, lo que estamos interpretando
es el lenguaje CP(X), donde ¥ = Con(p) U Fun(yp) U Pred(p) en el caso de la
férmula ¢, o bien donde ¥ = Con(I')UFun(T')UPred(T), en el caso del conjunto
I'. Podemos especificar la dependencia de los lenguajes anteriores respecto de ¢
y I’ anotando, respectivamente, CP(X,) y CP(Xr). Por tanto, y andlogamente
a lo que haciamos en la seccién 1.2.2, cuando hablemos expresamente de la in-
terpretacion de una formula (o de un conjunto de férmulas) en particular, nos
limitaremos a especificar valores sélo para los simbolos que intervienen en dicha
férmula (o conjunto).

Ejemplo 1.4 Sea la teoria I'; del ejemplo 1.2.

Con(T) = {pepe,juan};

Fun(T') = @;

Pred(I") = {bueno, malo, amigo}.

Consideremos el dominio D; como el conjunto de los autores de libros de légica.
Definamos una interpretacién J; de I'y:

J1(pepe) = Melvin Fitting (un elemento de Dy );

J1(juan) = Aristételes (un elemento de Dy);

J1(bueno) = los autores que nacieron antes de 1950 (un subconjunto de Dy );

J1(malo) = los autores que nacieron después de 1960 (un subconjunto de
Dy);

J1(amigo) = las parejas de autores que han escrito un libro en colaboracién
(un subconjunto de D?).

Sea ahora la teorfa I'; del mismo ejemplo. Con(T") = {cero}; Fun(I') = {suc};
Pred(T") = {natural}. Consideremos el dominio D, = N. Definamos una inter-
pretacién Jy de T's:

Jz(cero) =1

Js(suc) = Az.z + 1 (una funcién de N en N);

Jo(natural) = N.

Sea ahora la teorfa I's del mismo ejemplo. Con(T") = @; Fun(I') = {f,g};
Pred(T) = {b,m}. Consideremos el dominio D3 dado por todos los nimeros
reales en [0, 1]. Vamos a definir una interpretacién J3 de I's:

J3(f) = Av.w + @ (una funcién de D3 en D3);
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J3(g) = Az.5 (una funcién de D3 en D3).
J3(b) =10,3,0,7] (un subconjunto de Dj);

J3(m) = [0,15,0,85] (un subconjunto de Ds);
N

El ejemplo anterior muestra claramente que una interpretacion, en el sentido
ahora definido, no tiene por qué coincidir con la interpretaciéon “usual” que
damos a los términos andlogos en el lenguaje natural. Por ejemplo, hemos esta-
blecido que J»(cero) = 1.

Pasemos ahora a considerar las variables. Serd también necesario atribuirles
objetos del dominio. Ello lo realiza una funcién adicional, denominada asigna-
cion:

Definicién 1.12 Sea un lenguaje CP(X). Una asignacién a sobre una inter-

pretacién J es una funcion de Var en el dominio D de J. Asi pues, para toda
variable X € Var se tiene a(X) € D.

Con ello ya podemos dar valores a todos los términos del lenguaje, sean o no
sean de base:

Definicién 1.13 Dada una interpretacion 3 = (D, §) del CP(X) y una asig-
nacion a sobre J, definamos una funcién 3, del conjunto de términos del CP(X)
en D como sigque:

1. Para toda variable X € Var: 3,(X) = a(X).
2. Para toda constante ¢ € Cons: J4(c) = F(c).

3. Para todo simbolo de funcion n-ario f € Funy y términos ty,...,t, del

CP(X): Ja(f(tr,---5tn)) = F()(Taltr)s - -, Ja(tn))-

Cuando ¢ sea un término sin variables libres (un término de base) anotaremos
simplemente J(t), pues su valor no depende de la asignacién a. Igualmente,
anotaremos J(f) e J(p) en vez de F(f) y §(p) respectivamente.

Ejemplo 1.5 Vamos a continuar el ejemplo anterior 1.4, definiendo asignacio-
nes para las variables X e Y:
a1 (X) = George Boole; a;(Y) = Bertrand Russell.

Anadiendo a; a J; hemos definido los valores de todos los términos del lenguaje
CP(Xr,). Por ejemplo,

J14, (pepe) = Melvin Fitting; J14, (X) = George Boole.
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Si hay funtores, la cosa es algo mds interesante. Consideremos la asignacién
dada por

az1 (X) = 3.
Ahora tendremos
J2a,, (suc(cero)) = Ta(suc(cero)) = 2; Taq,, (suc(X)) = 4.
Por supuesto, es posible dar diversas asignaciones sobre una misma interpreta-
cién:
aze(X) = 7.
Y ahora serd como antes
J2a,, (suc(cero)) = Ja(suc(cero)) = 2
pero

Joa,, (suc(X)) = 8.
q

Definicién 1.14 Dada una asignacion a sobre una interpretacion J, a[X/d] es
la asignacion sobre J que coincide con a en el valor dado a todas las variables
excepto, a lo sumo, en el valor dado a la variable X, que en el caso de a[X/d]
esd.

Es decir:
» a[X/d|(X) = d.
» a[X/d](Y) = a(Y), para toda variable Y distinta de X.

Anotaremos a[X;/d;][X2/ds] en lugar de (a[X;/d1])[X2/d2], expresién que de-
nota la asignacién que es como a[X1/d;] en todo excepto en que a la variable X,
le asigna d»; por lo tanto, es como a en todo excepto en que a X le asigna d; y
a X le asigna d>. Igualmente podemos entender, generalizando, la asignacién

La siguiente proposicién, tras su aterradora notacién, esconde una verdad
bastante trivial acerca de las asignaciones.

Proposicién 1.4 Sea J una interpretacion cuyo dominio es D y sea a una
asignacion cualquiera sobre 3. Para cualesquiera d,d € D tenemos:

1. Para cualquier variable X : a[X/d|[X/d'] = a[X/d]
2. Si X es una variable distinta de Y: a[X/d][Y/d'] = a[Y/d'][X/d]
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DEMOSTRACION: Caso 1). Probaremos que
a[X/d][X/d](Y) = a[X/d|(Y)

para toda variable Y.
-Si Y es X, entonces, haciendo uso de la definicién 1.14, tenemos que

a[X/d|[X/d|(Y) = a[Y/d|[Y/d'|(Y) = d' = a[Y/d'|(Y) = a[X/d'|(Y)
- SiY es distinta de X, por la misma definicién, sucesivamente tenemos:
a[X/d|[X/d|(Y) = a[X/d](Y) = a(Y) = a[X/d][(Y)
La prueba del caso 2) queda como ejercicio. <

Al igual que en el caso proposicional, pretendemos definir la verdad de una
formula ¢ en relacién con una interpretacién J. Si ¢ es un atomo de base
p(t1,...,tn), parece claro que ha de ser verdadero si y sélo si la interpreta-
cién JI(t1),...,I(t,) de los argumentos t1, ..., ¢, pertenece a la interpretacién
J(p) del predicado p. A partir de aquf las tablas de verdad de las conectivas
booleanas permiten dar valores de verdad a las férmulas compuestas.

Sin embargo, la presencia de variables complica la cuestion, pues el significa-
do de las expresiones donde éstas aparecen no queda definido solamente por J,
sino que también hay que considerar una asignacién a. El camino que se sigue
es el siguiente:

—previamente se define el concepto de satisfaccion, relativo a una interpre-
tacién J y a una asignacion a;

—cuando una férmula ¢ se satisface siempre para J, independientemente de
la a elegida, entonces se dice que ¢ es verdadera en J.

Desarrollemos esto con mas detalle.

Definicién 1.15 (Satisfacién de una férmula del CP). Sean una interpretacion
J y una asignacion a sobre J. Mediante la expresion J E4 ¢ expresamos que J
satisface ¢ con a. En caso contrario, anotaremos J ¥, ¢. La definicion de
satisfacion procede recursivamente como sigue:

w JE.p(t1, ..., tn) siy sdlo si (Ta(t1),...,Ta(tn)) € I(p)
m JF, 0A siy sdlo si TE, A

m JE, AANB siysolosiJE, AeJkFE, B

m JF, AVB siysolosiTE, AoJE, B
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m JE, A—> B siysolosiTE, AoJE, B

sm JE, A B siysolosiobienIE, AeJE, BobienJIE, AeJFE, B
» JF. VXA siy solo si para todod € D: 3 Fyx/q A

» JFq3XA siy sdlo si para algin d € D: J Fqx/q A

Definicién 1.16 Una formula ¢ es satisfacible si para alguna interpretacion J
hay al menos una asignacion a sobre J tal que J satisface ¢ con a. Es insatis-
facible si para toda interpretacion J y toda asignacion a sobre J se cumple que
J no satisface ¢ con a. Un conjunto de férmulas (o teoria) T' es satisfacible si
para alguna interpretacion J hay al menos una asignacion a sobre J tal que J
satisface toda formula de T' con a. Es insatisfacible si para toda interpretacion
J y toda asignacion a sobre J existe al menos una formula ¢ € ' tal que J no
satisface o con a.

Diremos simplemente que a satisface ¢ (0 I') o que p (o ') se satisface con a
o que es satisfecha por a cuando no quepa duda de qué interpretacién estamos
hablando. En ocasiones diremos también que J satisface ¢ (0 T') o bien que ¢
(o T') es satisfacible en (por) J, sin hacer mencién de ninguna asignacién. Esto
quiere decir que hay al menos una asignacién sobre J que satisface ¢ (o T').

Como quedd apuntado, el concepto de satisfaccién es la base de la nocién de
verdad, 1o que se muestra en la siguiente definicién.

Definicién 1.17 Diremos que una férmula ¢ es verdadera en una interpreta-
cion J (en simbolos: T E ) si para toda asignacion a sobre J se cumple que J
satis-face @ con a. Diremos que ¢ es falsa en una interpretacidn J (en simbolos:
JE¥ @) si para toda asignacion a sobre J se cumple que J no satisface ¢ con a.

Definicién 1.18 Un modelo de ¢ es una interpretacion J en la que ¢ es ver-
dadera. Un modelo de una teoria ' es una interpretacion en la cual todas las
formulas de T' son verdaderas.

Ejemplo 1.6 Continuemos los ejemplos anteriores 1.4 y 1.5. Consideremos I'y,
jl y ap.
Empecemos con una férmula con variables libres, por ejemplo:
malo(X)

Ya que Jiq4, (X) = George Boole, que no nacié después de 1960, es claro que
J14, (X) ¢ J1(malo) y la férmula NO se satisface, asi que no es verdadera. Sin
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embargo, es posible dar otra asignacién a;» que la satisface (por ejemplo, a;2(X)
= Ojeda); por tanto, la férmula tampoco es falsa.
Veamos si se satisface:
bueno(pepe)
Para cualquier asignacién a tenemos J1,(pepe) = Melvin Fitting, que naci6 antes
de 1950, luego J14, (pepe) € J1(bueno); por tanto, SI se satisface y, ademas, es
verdadera.
Veamos si se satisface
amigo(pepe, juan)
para cualquier asignacién a tenemos Ji4(juan) = Aristételes, que nunca escri-
bié un libro conjunto con Fitting, luego (J14, (pepe), J1q, (juan)) ¢ J;(amigo);
por tanto, NO se satisface y, ademds, es falsa.
Veamos si se satisface
VX(bueno(X) — —malo(X))
Hay que comprobar lo que ocurre con todas las posibles asignaciones a la varia-
ble X. Pero, sea cual sea a(X), si se satisface bueno(X) es que a(X) € J; (bueno),
es decir, a(X) nacié antes de 1950, luego a(X) no nacié después de 1960, lue-
go a(X) ¢ J;(malo), luego se satisface —malo(X); por tanto, SI se satisface y,
ademads, es verdadera.
Veamos si se satisface
VXYY (bueno(X) A bueno(Y) — amigo(X,Y))
Sea la misma asignacién a;. Tenemos que a;(X) € J;(bueno), luego bueno(X) se
satisface; también tenemos que a1 (Y) € I; (bueno), luego bueno(Y) se satisface y
por tanto se satisface bueno(X) A bueno(Y). Sin embargo, ya que Boole y Russell
no escribieron ningun libro en colaboracién, (a;1(X),a1(Y)) ¢ J1(amigo), luego
amigo(X, Y) no se satisface, luego la férmula bueno(X) Abueno(Y) — amigo(X,Y)
no se satisface en esta asignacién; por tanto, la férmula en cuestion NO se
satisface y, ademas, es falsa.

La interpretacién J; no es pues un modelo de T'y, ya que las férmulas
amigo(pepe, juan)
VXYY (bueno(X) A bueno(Y) — amigo(X,Y))
no son verdaderas en J;.

Notese que la satisfaccién de una férmula sin variables libres no depende de
las asignaciones realizadas a las variables (y que, por tanto, es o verdadera o
falsa). Probaremos este hecho mas adelante. «

22



CAPITULO 1. LENGUAJES PREDICATIVOS

Ejercicio 1.4 Estudiar si las férmulas de las teorias I's y I's de los ejemplos
1.4 y 1.5 se satisfacen por las interpretaciones y asignaciones alli indicadas. <

Ejemplo 1.7 En el ejemplo 1.6 hemos visto que la interpretacién J; no hacia
verdaderas todas las férmulas de T’y y, por tanto, que no era un modelo. Vamos
definir una nueva interpretaciéon I;; para I'y de la siguiente forma:

Dy, ={0,1}

J11(pepe) = 0;

J11(uan) = 1;
J11(bueno) = {0};
Jll(malo) = {1},

J11(amigo) = {(0,0), (0,1), (1,1)}.
El lector puede comprobar que cualquier asignacién sobre Jy; satisface todas
las férmulas de ['y; por tanto, J11 es un modelo de 'y y 'y es satisfacible. «

En los ejemplos desarrollados hasta ahora, hemos considerado algunos dominios
infinitos (por ejemplo, N) y otros finitos (por ejemplo, {0, 1}). Se suele hablar
de la “cardinalidad” de las interpretaciones en clara referencia al cardinal del
dominio; asi que en ocasiones se dice que una férmula o conjunto de férmulas
es satisfacible (insatisfacible) sobre un dominio de cierta cardinalidad. En este
mismo sentido se habla de “modelos finitos” o “infinitos” de una férmula o de
una teoria, segin que el modelo en cuestién posea o no un nimero finito de
elementos en el dominio.

Ejemplo 1.8 Sea la teoria p(X), —p(X). La teorfa es obviamente insatisfacible,
ya que sean cuales sean J y a, si J,(X) € J(p) entonces p(X) se satisface, pero
—p(X) no; y si J4)(X ¢ TI(p) entonces —p(X) se satisface, pero p(X) no. Sin
embargo, cada uno de los axiomas propios por separado si es satisfacible. Por
ejemplo, si D = {0,1}, J(p) = {0} y a1(X) = 0, T Eq4, p(X); y, por otra parte, si
a2(X) =1, T Eq, —p(X).

Por tanto, una cosa es que todos los axiomas propios de una teoria sean
satisfacibles y otra cosa es que lo sea la teoria. Esto ultimo requiere —como
asi indica la definicién— que la misma asignacién satisfaga simultdneamente a
todas las férmulas de la teoria. <

Por ultimo, tras los conceptos de satisfaccién y verdad, alcanzamos el de vali-
dez, como exponemos seguidamente. En lo que sigue fijaremos un lenguaje de
primer orden CP(Y), donde ¥ es una signatura cualquiera. Le denotaremos
simplemente C'P.
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Definicién 1.19 Una formula ¢ es véalida si toda interpretacion es un modelo
de ¢ (en simbolos: F ). Es invalida en caso contrario (en simbolos: ¥ ). Una
teoria T es valida si toda interpretacion es un modelo suyo. Es invalida en caso
contrario.

De esta forma, la teoria I'y del ejemplo 1.2 no es légicamente vélida, pues hemos
visto que tiene una interpretaciéon J; que no es un modelo.

Definicién 1.20 El conjunto de férmulas {¢| E ¢} se denomina teoria del C'P.
Una teoria légica propia T es un conjunto de formulas que contiene a la teoria
del CP.

Ejercicio 1.5 Sea la teoria T' con axiomas propios
{vX(p(X) vV a(X)),
—r(a) — —q(b),
IXIY (r(X) As(X,Y))}

Se pide dar modelos de T sobre los siguientes dominios:

—el conjunto N de los nimeros naturales.

—el conjunto R de los nimeros reales.

—el conjunto {Sécrates, Platén, Aristételes, Wittgenstein}.
q

Ejercicio 1.6 Sean las teorias logicas Ty, T> definidas por los axiomas propios
Ty: {VX(p(X) V p(f(X))), IY=p(Y)}.
To:{ VX(p(X) V p(f(X))), 3Y p(Y)}.

y el conjunto D formado por todos los ciudadanos esparioles. Se pide:

—Dar un modelo de T} con dominio D.
—Dar un modelo de T5 con dominio D.
—;Es T1 U T insatisfacible? «

1.2.2. TEOREMAS SEMANTICOS FUNDAMENTALES.

En esta seccién expondremos una serie de teoremas bésicos de la seméntica
de los lenguajes de primer orden que nos seran de

Proposicién 1.5 (Teorema de coincidencia para términos). Sea un término
cualquiera t y sean a, a* asignaciones sobre una interpretacion J que coinciden
en todas las variables que ocurran en t. Entonces:

Ja(t) = Ja- (1)
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DEMOSTRACION: Por induccién sobre la estructura de t. En primer lugar, es
obvio que la proposicién se cumple cuando ¢ es una constante o una variable
/caso base). Supongamos que t es de la forma f(t1,...,t,) y que el teorema se
cumple para los términos t1,...,t, (supuesto de induccién). En ese caso:

Ja(t) = Ta(f(t1,...,tn))

= J(f)Taltr),...,Ta(tn)) (por la def. 1.13(3))
= 3@t Je(£))  (por el sup. ind)
= Ju(f(t1,..-,tn)) (por la 1.13(3))
= T (t)

Con esto damos por terminada la prueba. «

La siguiente proposiciéon muestra que en la satisfaccién de una férmula los valores
relevantes de las asignaciones son los de las variables libres.

Proposicién 1.6 (Teorema de coincidencia para férmulas). Sean a, a* asigna-
ciones sobre una interpretacion J que coinciden en todas las variables libres que
aparezcan en una férmula dada . Entonces:

JFE. o siysolo siTE @

DEMOSTRACION: Por induccién sobre el grado de ¢. Como ejemplo, trataremos
el caso cuando ¢ es VX A. Como supuesto de induccién, asumimos que el teorema
vale para cualquier férmula ¢’ tal que gr(p’) < gr(p) . Tenemos entonces que
probar que J F, VXA siysolosiJ Fg« VXA. Pero J Fy VXA siy sélo si
para todo d € D: J Fqx/q) A; y ello ocurre si y sélo si para todo d € D :
J Fa+1x/a) A, por el supuesto de induccién, pues es claro que a[X/d] coincide
con a*[X/d] en las variables libres, ya que a y a* coinciden. Pero esta dltima
condicién es precisamente que J Fq« VXA, q. e. d. «

Como hemos mencionado, no se cumple en general que una férmula que no
sea verdadera (falsa) en una interpretacién, sea entonces falsa (verdadera) en la
misma. Por ejemplo, p(X) no es ni verdadera ni falsa en una interpretacién J con
dominio D = {0, 1} y tal que J(p) = {0}, sino que es meramente satisfacible.
Pero en el caso de una férmula cerrada ¢, ya que no hay variables libres en ¢, es
obvio que todas las asignaciones sobre una interpretaciéon J coinciden en todas
las variables libres que aparecen en ¢. Asi que la anterior proposicién 1.6 nos
permite enunciar los siguientes resultados:

Proposicién 1.7 Sea ¢ una formula cerrada e J cualquier interpretacion. En-
tonces existe alguna asignacion sobre J que satisface a @ si y solo si toda asig-
nacion sobre J satisface a .
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Proposicion 1.8 En cualquier interpretacion J, toda formula cerrada es o ver-
dadera o falsa.

Sean ty, t> términos cualesquiera y X una variable cualquiera. La expresion
t1[X/ts] indica el término obtenido sustituyendo en t; cada aparicién de la
variable X por to.

Definicién 1.21 (Sustitucidn en términos) Para términos cualesquiera del CP
t1, ta y cualquier variable X se tiene lo siguiente:

-Si t1 es una constante c, entonces t1[X/ts] es c.
-Si t1 es una variable X, entonces t1[X /ta] es ta.
-Si t1 es una variable Y e Y es distinta de X, entonces t1[X/t2] es Y.
=Sit1 es f(u1,...,uy), entonces t1[X/ta] es f(ui[X/ta], ..., un[X/t2]).

Por ejemplo, sean t; = f(g(Y, a), Z) y to = f(a, ¢). Entonces:
alY/t] = f(g(Y,a), Z)[Y/ts]
fg(Y,a)[Y/t2], Z[Y /ta])
fg(Y[Y/tz],alY/t2]), Z[Y/t2])
= f(g(f(a,c),a),2).

La expresién ¢[X/t] indica la férmula resultante al sustituir X por ¢ en la
férmula . Pero esta sustitucién estd sometida a restricciones, como veremos
seguidamente. La idea es que la sustitucién respete el estatus de apariciones
libres y ligadas de las variables. Para ello, en primer lugar, sélo sustituiremos
las apariciones libres de X. En segundo lugar, si ¢ contiene alguna variable Y
que quedara ligada por un determinado cuantificador como consecuencia de la
sustitucién, entonces procedemos a reescribir previamente en ¢ las apariciones
de Y que se hallen en el ambito de dicho cuantificador. Por ejemplo, sean:

¢ =VY(EX p(X) = a(a,X,Y)) y t = f(Y);
entonces p[X/t] = VZ(IX p(X) — q(a,f(Y), Z)).

Hemos sustituido la tercera aparicién de X (las otras dos estdn ligadas);
pero el término sustituyente f(Y) nos obliga a reescribir previamente todas las
apariciones de Y que se hallan en el &mbito de VY. Para ello, reemplazamos Y en
esos lugares por una variable que no aparezca en la férmula (hemos utilizado Z)
con objeto de respetar su estructura primitiva, y luego sustituimos X por f(Y).
Damos seguidamente una definicién de tipo recursivo de esta operacién:

Definicién 1.22 (Sustitucion en férmulas)

1. Sigp esp(ty,...,tn), entonces p[X/t] es p(t1[X/t],..., ta[X/t]).
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2. Sip es nA, entonces p[X/t] es =(A)[X/t](anotaremos ~A[X/t]).

3. Siy es A op B, entonces o[X/t] es (A)[X/t] op (B)[X/t],
donde op € {A,V,—, <} (anotaremos A[X/t] op B[X/{]).

4. Sip es VY A, entonces tenemos lo siguiente:

w 5i X no estd libre en ¢, entonces p[X/t] es ¢;

w 5i X estd libre en v eY no aparece ent, entonces p[X/t] es VY (A)[X /1]
(anotaremos VY A[X/t]);

w si X estd libre en p eY aparece en t, entonces p[X/t] es
VZ((A)Y/Z))[X/1],
donde Z es una variable que no aparece en ¢ ni en t (anotaremos
VZAY/Z][X/t]).

5. Siyp es Y A, entonces p[X/t] se define de modo similar a 4).

Noétese que hemos usado paréntesis para delimitar el alcance de la operacién de
sustitucién, algo que ya hemos hecho en algin otro caso. Este uso se halla a un
nivel diferente (concretamente en el metalenguaje) del nivel al que corresponde
el uso de paréntesis en las formulas y no hay que confundir ambos. Este doble
uso se extiende a otros simbolos igualmente, como ocurre en el capitulo siguiente
con la igualdad (=).

Ejercicio 1.7 Dada la férmula ¢ = VX3Y p(X,f(Y),Z) v 3IZ q(X,Y, Z)), cons-
truir las formulas siguientes:

p[X/f(a)]

p[X/f(2)]

¢lY/g(2)]

plZ/g(a,X)]
<

Supongamos que sustituimos una variable por un término en el lenguaje; en el
plano seméntico, esto corresponde al hecho de utilizar una nueva asignacién que
asigne a la variable sustituida el objeto que la asignacién original le atribuye al
término sustituyente. Por ejemplo, si sustituimos X por julia en se-maquilla(X),
tenemos se-maquilla(julia); pero en la seméntica esta sustitucién trae consigo que
debamos asignar a la variable X precisamente el objeto que se asigna al nombre
julia. Esta operacién se justifica mediante el siguiente par de proposiciones:
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Proposicién 1.9 (Teorema de sustitucion para términos). Para términos cua-
lesquiera t1, to, cualquier variable X y para toda asignacion a sobre una inter-
pretacion dada J, se cumple:

Ja(t1[X/t2]) = Tapxyez) (t)
donde t5 = TJ4(t2).

DEMOSTRACION: Por induccién sobre el grado de ;. Se propone como ejercicio.
q

Proposicién 1.10 (Teorema de sustitucion para férmulas) Para cualquier térmi-
no t, cualquier variable X, toda formula ¢ y toda asignacion a sobre una inter-
pretacion dada J se cumple:

JFa p[X/t]  siysdlosi TFEqxe e

donde t* = TJ,(t).

DEMOSTRACION: Por induccién sobre el el grado de ¢. Como ejemplo, veamos
el caso cuando ¢ es VY A, teniendo en cuenta que la proposicién se cumple para
cualquier férmula ' de menor grado que el de ¢ (supuesto de induccién). Ahora,
atendiendo al item 4 de la definicién 1.22, tenemos que considerar tres subcasos
de @[ X/1]:

i) X no estd libre en ¢. Entonces ¢[X/t] = ¢. Por la proposicién 1.6, J F, ¢
siy s6lo si J Fqax/q) ¢, ya que a y a[X/d] coinciden en toda variable libre
en .

ii) X estd libre en ¢ e Y no aparece en t. Entonces p[X/t] es VY A[X/t].
Damos un razonamiento paso a paso: en cada renglén escribimos una
proposiciéon equivalente a la anterior, asi como su justificacion.

- JFa p[X/1]
- JE. VY A[X/t] (supuesto que estamos tratando)
- para todo d € D: J Fqpy/q A[X/t]  (definicién de satisfaccién)

paratodod € D: J ':a[Y/d][X/t*] A

(por el supuesto de induccién, ya que en A[X/t] hay un cuantificador
menos que en ¢, siendo t* = Jyry/q(t). Ademds, por la proposi-
cién 1.5, t* = Ty q)(t) = Ja(t), pues Y no aparece en t)
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para todod € D: J ':a[X/t*][Y/d] A

(por la proposicion 1.4(2), pues X es distinta de Y, asi que a[ X /t*][Y/d]
= alY/d|[X/t])

J Farxye) VYA (por la definicién de satisfaccion)
J ':u[X/t*] ®.8

iii) X estd libre en ¢ e Y aparece en t. Entonces ¢[X/t] es VZA[Y/Z][X /1],
donde Z no aparece en ¢ ni en t. Exponemos el razonamiento como en el
caso anterior:

3 Eq pIX/H]

JEVZAY/Z|[X]t]

para todo d € D: J Fyrz/q AlY/Z][X /1]
para todo d € D: J Eyiz/ax/t+) AlY/Z]

(por el supuesto de induccién, siendo t* = J(z/4)(t). Ademds, por la
proposicién 1.5, t* = Jq1z/4)(t) = Ja(t), pues Z no aparece en t)
para todo d € D: J Fqix/¢+11z/q) AlY/Z]

(por la proposicién 1.4(2), pues X es distinta de Z)

para todo d € D: J Fox/e+)1z/d)[v/z+) A

(por el supuesto de induccién aplicado a A[Y/Z] ! siendo Z* =
alX/t*][Z/d](Z))

para todo d € D: I Fuix/e+)z/qv/q) A (pues a[X/t*][Z/d](Z) = d)
para todo d € D: J Fqx/p)v/aq A

(por la proposicién 1.6, ya que Z no aparece en A)

J Eaxye,1 VY (por la definicién de satisfaccién)

JEq [X/t*]e, q.e.d.

Proposicién 1.11 (Cambio alfabético de variables ligadas). Si Y no estd en
@, entonces:

1. EVXp e VY (p[X/Y])

IEs de notar que el mecanismo de sustitucién preserva el grado de una férmula. Por ello,
Ay A[Y/Z], por ejemplo, tienen el mismo grado y la hipétesis de induccién puede aplicarse
indistintamente a cualquiera de ellas.
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2. EdXep <+ Y (p[X/Y])

La anterior proposicién nos permite, por ejemplo, pasar de VX3Y p(X,Y) a
VZ3Y p(Z,Y) y reciprocamente. Gracias al teorema anterior y al teorema de
reemplazo —que expondremos mas adelante— se justifica que podamos rees-
cribir o renombrar cualquier variable ligada en una férmula. Asi,

VX (p(X) = 3Y a(X,f(Y)))
puede reescribirse, por ejemplo, equivalentemente como
VX (p(X) =3Zq(X, f(Z)))

Ejercicio 1.8 Probar que si la variable X no estd libre en ¢, entonces VX ¢,
X ¢ y ¢ son férmulas l6gicamente equivalentes. <

Sean ty,...,t, términos cualesquiera y Xi,..., X, variables cualesquiera dis-
tintas entre si. Dado un término ¢, la expresién t[X/ti,..., X, /t,] denota la
sustitucidn simultdnea en t de las variables X1,..., X, por los términos (no
necesariamente distintos entre sf) ¢1,...,t, respectivamente. De modo similar,
dada una férmula ¢, la expresién ¢[X;/t1,...,X,/t,] denota la sustitucién
simultdnea en ¢ de las apariciones de las variables Xi,..., X, por t1,...,t,
respectivamente. Esta sustitucion soporta restricciones similares al mecanismo
de sustitucién definido anteriormente. Por otro lado, téngase presente que no se
trata de una sustitucién iterada, es decir, de (... ((¢[X1 /t1])[X2/t2]) - . )[Xn/tn]-
Por ejemplo, sea la férmula

VX p(X) = 3Z q(X, Z,Y)

y sustituyamos en ella iteradamente X por Y e Y por f(Z). Tenemos primera-
mente

VX p(X) = 3Z q(Y, Z,Y)

tras sustituir X por Y; ahora, en esta férmula se procede a sustituir Y por f(Z),
lo que da lugar a

VX p(X) = 3U q(f(2),U,(2))

reescribiendo la variable Z. En cambio, la férmula resultante de sustituir a la
vez las variables citadas por los términos correspondientes es

VX p(X) — U q(Y, U,f(2)).
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Definiremos inductivamente la sustitucién simultdnea, tanto para términos
como para férmulas:

Definicién 1.23 (Sustitucién simultdinea en términos). Sea un término t del
CP. Definamos t[X1/t1,..., X, [t,] recursivamente como sigue:

1. Sit esc, entonces t[X1/t1,...,Xpn/tn] =c.

2. Sites X; para algin i (1 <i<n), entonces t[X1/t1,...,Xn/tn] = t;.

3. SitesY, donde Y es una variable distinta de toda X; (1 < i < n),
entonces t[X1/t1, ..., Xn/ty] =Y.

4. Sites f(uy,...,u,), entonces
t[Xl/tl,. ey Xn/tn] :f(ul[Xl/tl,...,Xn/tn],..., Un[Xl/tl,. ey Xn/tn])

Definicién 1.24 (Sustitucion simultdnea en férmulas). Sea una férmula ¢ del
CP. Definamos p[X1/t1,..., Xp/ty] recursivamente como sigue:
1. Sigpesp(ty, ..., ty), entonces
Ol X1 /[ty ., Xn/ftn] esp(t1[ X1 /te,. .o, Xn/ftal, oo tal X1 /t1, .oy Xn/ta])-
2. Siy es A, entonces o[ X1 /t1,..., Xn/tn] es 2(A[X1/t1,..., Xn/tn]).

3. Siy es A op B, entonces
QD[Xl/tl;' cey Xn/tn] es (A[Xl/tl" t Xn/tn]) op (B[Xl/tl" cey Xn/tn])’
donde op € {\,V,—, < }.

4. Sip es VXA, entonces:

w 5i X ¢ {Xy,...,Xn} y X no aparece en ningin t; (1 <i < n) tal
que X; esté libre en @, entonces
(p[Xl/tl,. .y Xn/tn] es \V/X(A[Xl/tl, .y Xn/tn])

w51 X € {Xy, ..., X0} y X no aparece en ningin t; (1 <i <n) tal
que X; esté libre en , entonces p[X1/t1,..., Xpn/tn] es
VXA[Xl/tl, .y, Xi—l/ti—l; Xi+1/ti+17- .y, Xn/tn]

w5t X € {X1, ..., X0} y X aparece en algin t; (1 <i < n) tal que
X, estd libre en ¢, entonces
Ol X1 /[ty .., Xp/fty] es VY ((AX/Y))[ X1 /t1, ..., Xn/tnl]),
donde Y es una variable que no aparece en @ ni en ty, ..., ty.
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5. Sip es XA, entonces o[X1/t1,...,Xn/tn] se define de modo similar al
item 4.

Ejemplo 1.9 Consideremos las siguientes sustituciones:

Si p es VXVY3Z p(X,Y, Z,U), entonces ¢[X/a, Z/Y, U/X] es
YWWY3Z p(V,Y, Z,X).

Si ¢ es VX p(X,Y, Z), entonces ¢[X/Y, Y/X, Z/Y]es YU p(U, X,Y).

Si ¢ es VY3Z p(X,Y,Z,U), entonces ¢[X/a, Y/Z, Z/X, U/Z] es
VY3V p(a,vY,V,Z) <

Proposicién 1.12 (Teorema de sustitucion simultdnea para términos). Sean
t, t1,..., tn, términos cualesquiera y Xy, ..., X, variables cualesquiera distintas
entre si. Sea, ademds, a cualquier asignacion sobre una interpretacion dada J.
Entonces se cumple que

ja(t[Xl/tla ) Xn/tn]) =T (t)
donde a* es a[X1/Tq(t1)] - .. [Xn/Ta(tn)]-

Proposicién 1.13 (Teorema de sustitucion simultdnea para férmulas). Sean
ty, ..., ty términos cualesquiera, X1, ..., X, variables cualesquiera distintas
entre sty ¢ cualquier formula. Sea, ademds, a cualquier asignacién sobre una
interpretacion dada J. Se cumple:

TJEq o[ X1 /t1,..., Xn/tn] siysdlosi TEq p
donde a* es a[X1/Tq(t1)]. .. [Xn/Ta(tn)].
Ejercicio 1.9 Demostrar las proposiciones 1.12 y 1.13. «

La siguiente proposicion indica que la satisfacibilidad de un conjunto de férmulas
de un lenguaje dado implica la satisfacibilidad de cualquier subconjunto suyo
de un lenguaje restringido.

Proposicién 1.14 Sean CP(X) y CP(X*) dos lenguajes de primer orden tales
que ¥ C X* y sean T’ y T* tales que T' es un conjunto de formulas del CP(Y),
T* es un conjunto de férmulas del CP(X*) y T' C T'*. Se cumple que si T* es
satisfacible, T' es igualmente satisfacible.
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DEMOSTRACION: Sean CP(X), CP(X*), T y I'* tal y como se ha indicado. Si I'*
es satisfacible, entonces para al menos una interpretacién J del CP(X*) hay una
asignacién a sobre J tal que a satisface a todas las férmulas de T'*. Pero, dado
que I' C T'*, resulta que J interpreta todos los simbolos de constante, funcién y
predicado que intervienen en I'. Por tanto, si consideramos la restriccién de J al
lenguaje C'P(X), tenemos una asignacién sobre una interpretacién del CP(X)
que satisface a cualquier férmula de I". Luego I es satisfacible, q.e.d. «

En alguna ocasién, emplearemos la expresién ¢(X) cuando estemos interesa-
dos en destacar las apariciones libres de la variable X en la férmula ¢, aunque
admitiremos la posibilidad de que no haya ninguna, asi como tampoco se impi-
de que pueda tener, ademds, apariciones libres de otras variables. La expresién
©(X1,...,Xy) es una generalizacion de la notacién anterior. Con ella destaca-
mos simplemente que ¢ tiene -posiblemente- apariciones libres de X3, ..., X,
sin pronunciarnos sobre otras variables. Cuando no haya dudas por el contexto,
dado ¢(X), la expresién o(t) denotard la sustitucién de las apariciones libres
de X en ¢ por t. Esta notacién es una abreviatura de ¢[X/t]; por tanto, con
sus mismas restricciones. Similarmente, ¢(t1, ..., t,) expresa que hemos susti-
tuido en ¢(Xi, ..., X,,) las apariciones libres (si las hay) de X3, ..., X,, por
t1, ..., t, respectivamente. Nétese que una férmula como VX A(X) tiene todas
las apariciones de X ligadas.

Definicién 1.25 Sea una férmula abierta p(X1,...,X,), donde Xy,..., X,

son todas las variables libres en o(X1,...,Xy). Se llama clausura universal
de p(Xy,..., X»n) a la formula cerrada VX .. VX,0(X1,...,X,). Andloga-
mente, se llama clausura existencial de p(X1,...,X,) a la férmula cerrada

E'Xl . EXnQO(Xl, . ,Xn)
Proposicién 1.15 Para cualquier férmula o(X1,...,X,) del CP se cumple:

JTEe(Xy,...,X,) siysdlosi TEVX,...,VX,p(Xy,...,X,)

DEMOSTRACION: Por la definicién de verdadero en una interpretacién y la
proposicién 1.6. «
Ejercicio 1.10 Probar las siguientes proposiciones:

1. Una férmula abierta es satisfacible en una interpretacién dada si y sélo si
su clausura existencial es satisfacible en dicha interpretacién.
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2. Una férmula abierta es verdadera en una interpretacién dada si y sélo si
su clausura universal es verdadera en dicha interpretacién.

3. Una férmula cerrada (o conjunto de férmulas cerradas) es satisfacible si y
s6lo si tiene un modelo.

1.2.3. CONSECUENCIA LOGICA.

La nocién de “consecuencia logica” para el caso proposicional se introdujo
en la seccion 1.2.2. Volvemos ahora sobre dicho concepto en el contexto de la
l6gica de primer orden y trataremos algunas de sus propiedades.

Definicién 1.26 Diremos que ¢ es consecuencia légica de ' (en simbolos: T E
) si para toda interpretacion J y toda asignacidn a sobre J se cumple: si J
satisface a T' comn a, entonces J satisface a ¢ con a.

La nocién de consecuencia légica definida aqui difiere esencialmente de la no-
cién dada para la légica de proposiciones. En el caso del ¢p deciamos que ¢ es
consecuencia légica de I si todo modelo de I' es un modelo de . Si definiéramos
asi la nocién de consecuencia logica en el caso presente, tendriamos, por ejem-
plo, algo tan indeseable como que VX p(X) es consecuencia légica de p(X). Pues,
un modelo de p(X) es una interpretacién tal que toda asignacién sobre dicha
interpretacién satisface a p(X) y, por tanto, esto haria verdadera a VX p(X) en
esa interpretacién. Sélo si nos restringimos a férmulas cerradas, podemos definir
la nocién de consecuencia légica igual que para el cp.

La validez de argumentos del C'P —al igual que ocurre en el cp— se reduce
a la nocién de consecuencia légica, pero tal y como ha sido definida aqui. Por lo
tanto, un “contraejemplo” de la validez de una argumentacién sélo requiere, en
este caso, exhibir una asignacién sobre una interpretacién dada que satisfaga a
las premisas pero no a la conclusién.

Proposicién 1.16 Vale para el CP igualmente lo probado en la proposicion
1.2.1 (sustituyendo la expresion “tautologia” por “férmula vdlida”) y también lo
que sigue:

1. TEpsiysdlosiT U{-p} es insatisfacible
2. TE-p siysolo siT U{p} es insatisfacible

3. DEpsiysdlosiFyp
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(Los metateoremas 1-3 valen también para el cp)
Ejercicio 1.11 Probar lo siguiente:

1. F ¢ siy sélo si —p es insatisfacible

2. E = siy sélo si @ es insatisfacible
SiF@ykF@— 1, entonces F ¢

Si T es satisfacible y A C T, entonces A es satisfacible.

AN

Si I es insatisfacible y I' C A, entonces A es insatisfacible.

(Los metateoremas 1-5 valen igualmente para el cp) «

Ejercicio 1.12 Consideremos de nuevo las teorias del ejemplo 1.6. Probar lo
siguiente:

[y E amigo(pepe, pepe).

[y ¥ amigo(juan, pepe).

[y ¥ natural(suc(uno)).

3 # 3X (b(g(X)) — b(f(X))). «

1.2.4. INTERPRETACIONES DE HERBRAND.

En la definicién ?? expusimos las nociones de universo y base de Herbrand.
Aprovechando estas nociones haremos hincapié en esta seccién en un tipo de
interpretacién especial basada sobre el propio lenguaje, de gran utilidad, deno-
minada “interpretacién de Herbrand”.

Definicién 1.27 Una interpretacién de Herbrand H de wuna teoria I' es una
interpretacion de I' cuyo dominio de interpretacion es el universo de Herbrand
de T, Ur, y de acuerdo con la cual:

= a cada constante ¢ € Con(T"), le corresponde en Ur ella misma: H(c) = c

» a cada simbolo de funcién n-ario f € Fun(T'), le corresponde una fun-
cion: H(f) : UP — Ur tal que H(f)(t1,...,tn) = f(t1,-..,tn), donde
(tl,...,tn) € UI@

s g cada letra de predicado n-aria p € Pred(T"), le corresponde arbitraria-
mente una relacion n-aria en Uf: H(p) C U (en particular, si p es un
predicado unario le corresponde una propiedad en Ur: H(p) C Ur)
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Las asignaciones sobre H son funciones de Var(I') en Ur. Las diferentes inter-
pretaciones de Herbrand de una teoria unicamente difieren en la asignacién a
los predicados.

Proposicién 1.17 Sea H una interpretacion de Herbrand de un conjunto T' de
formulas cerradas. Entonces se cumple:

1. H(t) =t, para todo término t.
2. Sea ¢ una formula de T, entonces:

s Sipesp(ti,... tn), entonces HE ¢ siy sdlo si (t1,...,t,) € H(p)
= Sip es—A, entonces: HE ¢ siy sélo si HE A

= Sipes ANB, entonces: HE ¢ siy solo si HF AeHFE B

s Sipes AV B, entonces: HE ¢ siy solosiHE A oHEDB

s Sipes A— B, entonces: HE ¢ si y sélosi HE A oHEB

» Sipes A B, entonces: HE ¢ siy solo si o bien HEAyHEDB
obien HEAyHEDB

= Sip es VXA, entonces: H F ¢ si y solo si para todo término t € D,
HE A[X/t]

= SipesIXA, entonces: H F ¢ siy sdlo si para algin términot € D,
HE A[X/t]

DEMOSTRACION: Se deja como ejercicio. Nétese que al tratarse de férmulas
cerradas las asignaciones son irrelevantes. <

Las interpretaciones de Herbrand ponen sobre el tapete el hecho de que la na-
turaleza de los objetos de un dominio de interpretacién es irrelevante. Lo que
verdaderamente importa son las relaciones que hay entre dichos objetos. En el
caso que nos ocupa tenemos una interpretacion de “corte sintactico”, donde los
simbolos del lenguaje se interpretan refiriéndose a expresiones del propio len-
guaje. Sin embargo, la forma de contemplar un simbolo varia segiin que se le
considere como parte del lenguaje o como su significado en la interpretacién.
Asi, en una interpretacién de esta clase, un término —en tanto que simbolo
lingiiistico— se refiere a si mismo —pero en tanto que objeto del dominio. La
restriccién que imponen, sin embargo, las interpretaciones de Herbrand, es que
usan solo términos de base, pero el hecho se puede generalizar. Este tipo de
autoreferencia del lenguaje es muy util en Légica como tendremos ocasiéon de
comprobar.
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Una forma alternativa de dar la interpretacion de Herbrand de una teoria
es la siguiente: sea {Ay, As,...,A,} la base de Herbrand de la teorfa. Una
interpretacion de Herbrand de dicha teoria se indica asi: H = {Ha,, Hayy- - -,
Ha,}, donde Hy, es A; o =A;, para i = 1,2,...,n. También podemos optar
por especificar inicamente los a&tomos de la base de Herbrand verdaderos en la
interpretacién. Tenemos asi un subconjunto de la base de Herbrand. Usaremos
un tipo u otro de representacién segin nos convenga.

Definicion 1.28 Un modelo de Herbrand de una teoria es una interpretacion
de Herbrand en la que todas las férmulas de la teoria son verdaderas. Un modelo
de Herbrand de una formula es una interpretacion de Herbrand en la que es
verdadera dicha férmula. Diremos que una férmula (teoria) es H-satisfacible si
tiene un modelo de Herbrand.

Ejemplo 1.10 Sea la teoria I'; del ejemplo 1.2. Definamos para ella una inter-
pretacion de Herbrand H;:

D =U = {pepe,juan}

Hi(pepe) = pepe

H1(juan) = juan

H1(bueno) = {pepe, juan}

Hq(malo) = {juan}

#,1 (amigo) = {(pepe, pepe), (juan, pepe)}
Alternativamente, podemos definir 71 como un subconjunto de la base de Her-
brand Br, :

{bueno(pepe), bueno(juan), malo(juan), amigo(pepe, pepe), amigo(juan, pe-
pe)}

Por otro lado, tengamos presente que la interpretacion H; no es un modelo
de Herbrand de I'y, pues

VX(bueno(X) — —malo(X))
no es verdadera en 1, ni tampoco

VXYY (bueno(X) A bueno(Y) — amigo(X,Y))
Sin embargo, la siguiente interpretacién Hs si es un modelo de Herbrand de I'y:

Ho = {bueno(pepe), amigo(pepe, juan), amigo(pepe, pepe)}. <

Ejercicio 1.13 Para cada una de las siguientes teorias, determinar el conjunto
de sus interpretaciones de Herbrand y el conjunto de sus modelos de Herbrand:

{ r(a,b), VX p(X)}
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{ p(@), ¥X(p(X) <> p(s(X)))}
{ a(a), VX(p(s(X)) « a(X))}

1.2.5. FORMULAS VALIDAS NOTABLES.

Mantenemos el concepto de instancia de sustitucién de un esquema. definido
en la seccién 1.2.1, pero considerando que las férmulas sustituyentes son férmulas
del CP. Por ejemplo:

VX p(X) V (a(Y) = VX p(X) Aq(Y))

es una instancia de sustitucién (instanciacién-C'P) de
AV (B — AAB)

sustituyendo en este esquema A por VX p(X) y B por q(Y). Dado un esquema
tautoldgico cuyas variables metalingiiisticas son Ay, As,..., A,, supongamos
que p es una instanciacién del esquema que resulta de sustituir dichos simbolos
por las férmulas By, Ba,..., B, del CP respectivamente (a dicho esquema le
denominamos entonces un esquema tautoldgico del C'P). Ahora podemos tratar
©, que es una férmula del C P, proposicionalmente. Pues lo tinico que nos interesa
para evaluar ¢ es su estructura proposicional, esto es, las conectivas booleanas
que intervienen en . Tengamos presente que para cualquier interpretacién J de
v asignacién a sobre J tenemos J F, B; o bien J ¥, B;. Hagamos una tabla de
verdad para el esquema y tendremos una tabla para ¢, entendiendo que cuando
A; recibe el valor 1 significa que J F, B;, y cuando recibe el valor 0 significa que
J K, B;. Como el esquema es tautolégico, la tabla arroja siempre el valor 1 al
final. Luego J F, ¢. Dado que a era una asignacion cualquiera sobre J, tenemos
que eso mismo vale para toda asignacién sobre J, luego J F ¢. Como J es una
interpretacién cualquiera de ¢, resulta que F ¢. Hemos probado la

Proposicion 1.18 Toda instanciacion-CP de un esquema tautoldgico es una
formula vdlida del CP.

Asi pues, todas las instanciaciones-C'P de los esquemas de férmulas del cua-
dro [.2.6 son también férmulas vilidas del CP. Las podemos denominar tauto-
logias del C'P. También es facil comprobar la siguiente

Proposicion 1.19 Toda instanciacion de los esquemas de formulas del cua-
dro 1.2 es una formula vdlida del CP.
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DEMOSTRACION: A modo de ejemplo, consideremos la validez del esquema
JX(A A B) - 3XAAJXB. Sea J una interpretacién cualquiera del C'P con
dominio D y sea a cualquier asignacién sobre J. Basta con probar que si a
satisface a IX (A A B) también satisface a 3IX A A 3X B. En efecto, supongamos
que J Fy 3X (A A B), entonces:

para algin d € D: J Fqx/q) AN B
entonces  para algin d € D: J Fqx/q A y para algin d € D: J Fyx/q B
entonces JF,dXAyJkF,3XB
entonces JF, IXAANIXB, qed. «

VXA —3IXA

VXVYA & VYVXA JX3IYV A + JYIXA

JXVY A - VY3IXA

VXA IX-A -3XA & VX-A
(VXAAVXB) < VX(AAB) 3X(AAB) - 3IXAAIXB
(VXAVVXB) > VX(AV B) (3XAV3IXB)+ 3X(AV B)

VX(A - B) » (VXA - VXB) (3XA - 3XB) - 3X(A - B)
VX(A - B) - (3XA — 3XB) (3XA —-VXB) - 3X(A - B)

Si X no libre en A:

VXA A dXA+ A

(AAVXB) < VX(ANAB) (AANIXB) « IX(AAB)
(AVVXB) < VX(AV B) (AV3IXB) « IX(AV B)
VX(A - B) & (A —=VXB) (A—3XB)+ 3X(A— B)

Si X no libre en B:
VX(A — B) < (3XA— B)

Cuadro 1.2: Algunas férmulas vélidas notables.

Ejercicio 1.14 Probar la validez del resto de los esquemas de férmulas del
cuadro 1.2. «

Por otra parte, para mostrar que un esquema no es valido sélo hay que mostrar
que al menos una instanciacién suya no lo es. Y la invalidez de cualquier férmula
se prueba mostrando un “contraejemplo”, es decir, definiendo una asignacién
(sobre alguna interpretacién) que no la satisfaga.
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Ejemplo 1.11 Mostremos la invalidez de la férmula
VX p(X,a) = VX p(X,Y)

Definamos una interpretaciéon J con dominio D = {0, 1} tal que J(a) =0 e
J(p) = {(0,0), (1, 0)}. Basta con que definamos una asignacién a sobre J tal que
a(Y) =1 (pues Y es la inica variable libre en la férmula). Es facil comprobar que
a satisface a VX p(X,a), ya que (0,0), (1,0) € I(p); sin embargo, a no satisface
a VX p(X,Y), pues —por ejemplo— (1,1) ¢ J(p). «

Ejercicio 1.15 Probar que las siguientes férmulas no son vélidas:
IX p(X) — VX p(X)
YY3IX p(X,Y) — IXVY p(X,Y)
X p(X) A IX q(X) = IX(p(X) A q(X))
VX(p(X) V q(X)) = VX p(X) V VX q(X)

(VX p(X) = VX q(X)) = VX(p(X) = q(X))
IX(p(X) = q(X)) = (IX p(X) = IX q(X))
(VX p(X) = q(X)) = VX(p(X) = (X))

(3X p(X) = q(X)) = (IX p(X) = IX q(X))

<

Aplicaremos al CP la misma definicién 1.2.14 de argumento véalido que ddbamos
para el ¢p. Consideremos de nuevo las argumentaciones del cuadro 1.2.7, por
ejemplo, la sustituciéon de equivalentes:

A& B
¢ < @[A/B]*

Probemos que es también valida en el CP. La prueba procede inductivamente
sobre el grado de ¢. Consideraremos unicamente el caso en que ¢ es de la
forma VX, teniendo en cuenta que la regla vale para cualquier férmula de
menor grado que el de ¢. Sea J una interpretacion cualquiera tal que JF A
B. Probemos que J E ¢ < ¢[A/B]*. Ahora, por el supuesto de induccidn,
se cumple que J F @1 < ¢1[A/B]*, luego J E VX (1 < ¢1[A4/B]*), por la
proposicién 1.15, de donde se sigue que J F VX p; ¢ VX ;[A/B]* (teniendo en
cuenta la validez del esquema: VX (A +» B) — (VXA <> VX B) de la tabla 1.2 y
el ejercicio 1.11(3)).

Anélogamente se da el paso de induccién en los demds casos. También es
sencillo probar la validez CP de las restantes argumentaciones del cuadro. En
resumen, tenemos la siguiente
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Proposicion 1.20 Las argumentaciones del cuadro 1.2.7 son vdilidas en el CP.
En particular, son vdlidas la resolucion y la sustitucion de equivalentes.

Ejercicio 1.16 Completar la demostracién de la proposicién 1.20. <

1.3. AXIOMATICA.

En esta secciéon ampliamos, para poder tratar lenguajes de primer orden, el
método axiomdtico expuesto en la seccién 1.2.4. En primer lugar, necesitamos
nuevos axiomas para regular el comportamiento de los cuantificadores, lo cual
realizaremos en la seccién 1.3.1. A continuacién recordamos y adaptamos los
conceptos relativos a la consistencia (seccién 1.3.2). Hecho esto, podemos pro-
ceder a demostrar la correccion (seccién 1.3.3) y completitud (seccién 1.3.4) de
la axiomética con respecto a la semdantica. Como propina damos una demos-
tracién alternativa de la completitud (seccién 1.3.5) que nos serd itil cuando
abordemos la légica modal predicativa.

1.3.1. SISTEMA DE KLEENE PARA EL CP.

Definicién 1.29 (Sistema de Kleene para el CP). Llamaremos KLC o sistema
de Kleene para el CP [26] al sistema que consta de lo siguiente:

s Todas las instanciaciones-C' P de los esquemas de aziomas de KL son
axiomas de KLC.

s Ademdas, todas las instanciaciones-CP de los siguientes esquemas son
azxiomas de KLC:

9 VXA — A[X/t], donde t es un término cualquiera del CP
10 A[X/t] — 3X A, donde t es un término cualquiera del CP

» Las reglas de inferencia del sistema son el modus ponens (MP) y las
siguientes:

e Generalizacién universal condicional (GUC):

A— B

15 VXE (X no estd libre en A)
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e Generalizacién existencial condicional (GEC):

A— B

IXAS B (X no estd libre en B)

Noétese que en el caso de que el término ¢ contenga una variable que aparece
libre en A[X/t], entonces hay un renombramiento conveniente de acuerdo con
el mecanismo de sustituciéon. Por ejemplo, una instanciacién del axioma 9 es la
férmula

YX3Y p(X,Y,Z) = U p(X, U, f(Y))

donde A es AY p(X,Y,Z) y A[X/t] es U p(X,U,f(Y)). Hemos sustituido, pues,
Z por f(Y) en 3Y p(X,Y, Z); pero ha sido necesario realizar un renombramiento
previo de todas las apariciones ligadas de Y en esta ultima férmula.

Acto seguido damos las definiciones de derivacion y demostracion en KLC
para el lenguaje C'P.

Definicién 1.30 Sea I' un conjunto cualquiera de férmulas del CP. Una de-
rivacién en KLC a partir de ' es una sucesion finita de formulas del CP,
Oly--son (n > 1), tal que cada ¢; (para 1 <i < n):

= es una azioma de KLC, o
= un elemento de T', o
= se deduce de miembros anteriores en la sucesion por MP, GUC o GEC.

Sea A una férmula cualquiera del CP. Una derivacién en KLC de ¢ a partir
de T' es una derivacion en KLC a partir de T' cuya iltima férmula es .

Definicién 1.31 Sea A una férmula cualquiera del CP. Una demostracién en
KLC es una sucesion finita de formulas del CP, ¢1,...,¢0n (n > 1), tal que
cada @; (para 1 <1 <n):

= es una axioma de KLC, o
» se deduce de miembros anteriores en la sucesion por MP, GUC o GEC.

Una demostracion en KLC de ¢ es una demostracion en KLC donde la iltima
formula de la sucesidén es p. Decimos en este caso que @ es un teorema de KLC.

Lanotacién T Fkr,c ¢ indica que “p se deriva a partir de ' en KLC” y Fkrc
 expresa que “p es un teorema de KLC”. En la préctica, salvo ambigiiedad,
prescindiremos del subindice KLC.
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Proposicion 1.21 Cualquier instanciacion de un esquema tautologico del C' P
es un teorema del sistema KLC.

DEMOSTRACION: Sea ¢ una instanciacién de un esquema tautolégico del C'P.
Tratemos las variables metalingiiisticas del esquema como simbolos proposicio-
nales, tenemos entonces una tautologia del CP. Llamémosla A. Por el teorema
de completitud para KL, A es un teorema de KL. Tomemos las férmulas del
C'P que intervienen en ¢ sustituyendo a los simbolos proposicionales de A y ha-
gamos esas mismas sustituciones a lo largo de su demostracién. El resto de los
simbolos proposicionales que aparecen en dicha demostracién se sustituyen de
manera uniforme por férmulas cualesquiera del C'P. El resultado es una demos-
tracion de ¢ en el sistema KLC, pues los axiomas empleados son instanciaciones
de la base proposicional de dicho sistema y los usos de la regla modus ponens
son usos en este mismo sistema. <

Proposicién 1.22 (Teorema de deduccidn para el sistema KLC). Sean ¢ y 9
formulas cualesquiera del CP y T' un conjunto cualquiera de formulas del CP
(eventualmente vacio). Entonces:

SiT,p k1, entonces T F p — 1)

con la condicion de que no se hayan aplicado las reglas de generalizacion con
respecto a ninguna variable que aparezca libre en .

DEMOSTRACION: La demostracién discurre como en la prueba realizada para
el ¢p, con la diferencia de que tenemos que justificar nuevos casos en el paso de
induccién, los correspondientes a la aplicacién de las reglas para los cuantifica-
dores. Supongamos, entonces, que la proposicién vale para cualquier deduccién
de menos de n pasos, siendo n > 1, y que la ultima férmula de la derivacién de
¢ a partir de T" U {¢} proviene por aplicacién de la regla GUC a una férmula
anterior en la deduccién. En ese caso 1 tiene la forma A — VX B y procede
de alguna férmula de la forma A — B, donde X no esta libre en A y tampoco
aparece libre en . Asi que tenemos I'yo H A — B. Luego ' + ¢ — (A — B),
por el supuesto de induccién. Ahora, por la proposicién anterior y teniendo en
cuenta los esquemas tautolégicos del C'P siguientes:

(A-(B—->C))=»(AANB—->C) y (AAB=C)—> (A= (B—-0))

asf como la regla GUC'y la proposicién 1.2.5(6 y 9), tenemos sucesivamente:
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''repnA— B

F'FpAA— VXB (pues X no estd libre en ¢ A A)
' —(A—-VXB)

'y —1¢, qed. «

Ejercicio 1.17 Justificar el paso de induccién para el teorema de deduccién
cuando la regla aplicada sea GEC. <

Ejemplo 1.12 Emplearemos el teorema de deducciéon para demostrar que la
férmula:

VX(p(X) = q(a)) = (3X p(X) = 3Y q(Y))

es un teorema de KLC. Para ello, probaremos simplemente que YX(p(X) —
q(a)),IX p(X) F 3Y q(Y)), como sigue:

1. V¥X(p(X) = q(a)) hipétesis
2. IX p(X) hipétesis
3. ¥X(p(X) = q(a)) = (p(X) = q(a)) axioma 9
4. p(X) = q(a) MP1,3
5. IXp(X) = q(a) GEC 4

6. q(a) MP2,5
7. q(a) = 3Y qy) axioma 10
8 3AY q(Y) MP6,7

La restriccién impuesta al teorema de deduccién para KLC tiene su sentido.
Caso de no hacerlo, podriamos obtener férmulas como p(X) — VX p(X) como
teoremas (inténtese como ejercicio), lo que es de todo punto indeseable. Sélo si
tratdsemos unicamente con féormulas cerradas, podriamos eliminar la restriccién
impuesta a la férmula ¢ y expresar el teorema de deduccién en la forma: si
ok, entonces I' - p — 1.

Proposicién 1.23 (Reciproca del teorema de deduccion,).

SiT k@ — 1, entonces T, p -

DEMOSTRACION: Idéntica a la realizada en la seccién 1.2.4. «

Ejercicio 1.18 Demostrar en KLC los esquemas de la tabla 1.2 y los esquemas
referentes al cambio alfabético:

VXg & VY (o[X/Y])
IXe ¢ Y (@[X/Y]) <
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Ejercicio 1.19 Probar como reglas derivadas de KLC las de Generalizacién
universal (GU), Generalizacién existencial (GE) y Légica proposicional (LP):

A A
au VXA GE AX A
A, . A,
LP hT’ (A consecuencia tautolégica de Ay, ..., Ay,)
Decir que “A es consecuencia tautoldgica de Aq,..., A,” significa que A; A

...N A, — A es una tautologia del ¢p. En realidad, LP no es —estrictamente
hablando— una regla, sino un esquema que representa un conjunto enumerable
de reglas (segin que n = 1,2,...).
Pista: pruébese LP por induccién sobre n.

q

1.3.2. CONSISTENCIA.

En lo que sigue, ampliaremos lo dicho al hablar de la consistencia para el
caso del cp. Notese que los resultados alli obtenidos siguen siendo vélidos, pues
consideraremos sistemas formales que contengan, como minimo, los esquemas de
axioma y las reglas del sistema KLC, que a su vez contiene los axiomas y reglas
del sistema KL. Las definiciones y resultados de este apartado valen, por tanto,
para sistemas cuyos lenguajes poseen la graméatica de los lenguajes de primer
orden y, eventualmente, nuevos operadores l6gicos. Mediante S denotaremos a
cualquiera de tales sistemas.

Proposicién 1.24 Sea [’ un conjunto de férmulas del CP donde 3X ¢ € T y
¢ una constante de la signatura del CP tal que ¢ ¢ Con(T"). Si T' es KLC-
consistente, entonces I' U {p[X/c]} es KLC-consistente.

DEMOSTRACION: Sea 3X ¢ € T y ¢ una constante del CP tal que ¢ ¢ Con(T).
Probaremos el resultado por contraposicién: supongamos que I' U {¢[X/c]}
es KLC-inconsistente; en ese caso, por la proposicién 1.2.5(6), tenemos que
I' F =p[X/c]. Entonces, de acuerdo con la proposicién 1.1.5(8), existe un sub-
conjunto finito de T, sea {¢1,...,¢n}, tal que

{1, o} b p[X/c]

Sustituyamos ¢ por una variable V que no ocurra en la anterior demostracion;
entonces, por GU, tenemos igualmente que {p1,...,p,} F —p[X/V], luego

{1, n} FVV=[X/V]
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Por tanto, {¢1,...,on} F YX—¢ (por cambio alfabético), luego, por LP (te-
niendo en cuenta que - VX -y <> =3X ), tenemos que

{o1,-. ., on} F-3X0p

de donde se sigue finalmente que T' - =3X ¢, por la proposicién 1.2.5(3). Pero
entonces I' seria KLC-inconsistente, g.e.d. «

En 1.2.4.3 definimos los conjuntos méximamente consistente de férmulas y enun-
ciamos algunas de sus propiedades. En los lenguajes CP tiene también interés
el concepto de conjunto ejemplificado:

Definicién 1.32 Sea T' un conjunto de férmulas del CP. Diremos que T es
ejemplificado si para cualquier formula 3X ¢ € T' hay un término t del CP tal
que p[X/t] € T.

Proposicién 1.25 Sea T’ un conjunto mdximamente KLC-consistente y ejem-
plificado y ¢ una formula del CP. Entonces se verifica lo siguiente:

1. Xy €T siy sdlo si existe un término t del CP tal que p[X/t] € T.

2. VX €T siysdlo si para todo término t del CP se cumple que p[X/t] € T.

DEMOSTRACION: Probemos 1. Sea 3X ¢ € I'. Entonces existe un término ¢ tal
que @[X/t] € T (pues I' es un conjunto ejemplificado).

Reciprocamente, si existe un término ¢ tal que ¢[X/t] € T', entonces

existe un término ¢ tal que I' F o[ X/¢] [por la proposicién 1.2.10(1)]
luego existe un término ¢ tal que I' F 3 X p
[por el axioma 10 y la proposicién 1.2.5(6 y 9)]

Probemos 2. Sea VX ¢ € I'. Entonces

'EVvXe [por la proposicién 1.2.10(1)]
luego para todo término t: T' - p[X/t]  [por el axioma 9 y la prop. 1.2.5(9)]
luego para todo término ¢: p[X/t] € T [por la proposicién 1.2.10(1)]

Reciprocamente, sea VX ¢ ¢ I'. En ese caso tenemos sucesivamente:

VXpel [por la proposicién 1.2.10(2)]
luego dX—-p el [por F =VXp <> 3X—p y el ejercicio 1.2.15(2)]
luego ['F3IX-p [por la proposicién 1.2.10(1)]

luego para algin término ¢: ~p[X/t] € T
[por la proposicién 1.2.10(1) y el caso 1 anterior]
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luego para algun término ¢: ¢[X/t] ¢ T [por la proposicién 1.2.10(2)]
q.ed. «

Denotaremos mediante C P al lenguaje que resulta de extender la signatura ¥
del CP con un conjunto numerable C de nuevas constantes. Es decir, CP€ es
CP(X U C), donde Cons, N C = @. El sistema para el lenguaje CPC se denota
KLCC. Similarmente se puede entender cualquier otra extensién del vocabulario
del C'P; por ejemplo, el significado de CP¥ y KLC” es claro si F es un conjunto
numerable de nuevos simbolos de funcién.

Proposicion 1.26 Sea I' un conjunto de formulas del CP. Si T' es KLC-
consistente, entonces I' es KLCC -consistente.

DEMOSTRACION: Probaremos el resultado por contraposicién: si I' es KLCC-
inconsistente, entonces habrd férmulas @1, ..., ¢, € T tales que Fgpce =(¢1 A
...Nppn). Sean ¢q, ..., ¢, todas las constantes de C que aparecen en la demos-
tracién de = (w1 A...Apy). Sean Vi,..., V,, diferentes variables que no aparecen
tampoco en dicha demostracién. La sustitucién de ¢y, ..., ¢ por Vi, ..., Vi
respectivamente a lo largo de la demostracién anterior constituye una demos-
tracién de = (g1 A ... A p,) en KLC. Luego I' serfa KLC-inconsistente, g.e.d.
N

1.3.3. CORRECCION.

Para probar la correcciéon de KLC necesitamos los siguientes lemas:

Lema 1.1 Todos los esquemas de axiomas del sistema KLC son vdlidos.

DEMOSTRACION: Ejercicio. <

Lema 1.2 Se cumple lo siquiente:
1. SiTFAyTFA— B, entonces ' F B.

2. Sil' E A — B, entoncesT' E A —» VXB, con X no libre en A ni en
ninguna formula de T.

3. SiTkE A — B, entonces ' E 3XA — B, con X no libre en B ni en
ninguna formula de T.
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DEMOSTRACION: Probemos 2. Supongamos que I' £ A — B. Teniendo en
cuenta la definicién de consecuencia ldgica, sea J una interpretaciéon cualquiera
y a una asignacion cualquiera sobre J tal que a satisface a ', en ese caso J F,
A — B. Si, ademds, J ¥, VX B, entonces para algin d € D, J ¥;x/q B. Pero
X no estd libre en ninguna férmula de T, luego a y a[X/d] coinciden en toda
variable libre que aparezca en I', asi que, teniendo en cuenta la proposicién
1.6, a[X/d] satisface igualmente a toda férmula de I'. Luego J #,x/q A, pues
también se tiene que J Fqx/qg A — B. Por lo tanto, J ¥, A, ya que X no
estd libre en A (proposicién 1.6). Es decir, JF, A — VX B, q.e.d. «

Ejercicio 1.20 Probar los casos 1 y 3 del lema anterior. «

Ahora ya podemos probar la correccién de KLC tanto en sentido fuerte como
débil:

Teorema 1.1 (Correccion en sentido fuerte de KLC). Para cualquier conjunto
[ de formulas del CP y cualquier formula ¢ del CP se tiene que:

SiTF ¢, entonces T F ¢

DEMOSTRACION: Por induccién sobre la longitud n de una derivacién de una
férmula ¢ a partir de T', teniendo en cuenta los lemas 1.1y 1.2. <

Teorema 1.2 (Correccion en sentido débil de KLC). Si b ¢, entonces E .

DEMOSTRACION: Corolario del teorema anterior considerando I' = &. «

Ejercicio 1.21 Dar una prueba detallada del teorema de correccién en sentido
fuerte. «

Ejercicio 1.22 Probar el siguiente teorema: “Todo conjunto satisfacible es
KLC-consistente”. «

Ahora probaremos la completitud de KLC. Daremos dos tipos de prueba. En
ambas utilizaremos el método de Henkin. La primera de ellas es mas directa. El

estilo de la segunda nos serd muy util en los sistemas de 16gica modal predicativa.
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1.3.4. COMPLETITUD

La complejidad de esta prueba, debida fundamentalmente a Henkin [22],
[23], [24], exige que comentemos sus pasos principales. El teorema fundamental
es el teorema de Henkin, que prueba que cualquier conjunto consistente (concep-
to sintactico) es satisfacible (concepto semdantico), en particular, es satisfacible
sobre un dominio enumerable. Para probar este teorema se requieren dos lemas
previos: el lema de Lindenbaum y el lema de Henkin. Como consecuencia del
teorema de Henkin, probaremos finalmente la completitud de la axiomética del
CP con respecto a la semdntica. Este resultado fue demostrado por vez pri-
mera por K. Godel en 1930 [16], siguiendo una linea de razonamiento bastante
diferente.

En esquema, la prueba de Henkin procede como sigue:

a) Se parte del conjunto consistente cuya satisfacibilidad se quiere demostrar
y se amplia este conjunto hasta convertirlo en un conjunto maximamente
consistente y ejemplificado. Para ello se recorre ordenadamente la lista
de todas las férmulas del lenguaje usado, afiadiendo tinicamente aquéllas
que preservan la consistencia. Llegaremos a un punto en que ya no sea
posible anadir nada més. Al hacer esto hemos procurado afiadir, para cada
férmula existencial 3X ¢, una férmula como ¢[X/c], con una constante c
(la llamaremos “testigo”) que no haya aparecido antes en la construccién.
Necesitamos dichos “testigos” para estar seguros de poder satisfacer todas
las férmulas de tipo existencial, teniendo en cuenta que la interpretacion
sintactica que se quiere ofrecer se basa en el propio lenguaje. Pero, para
ello, hemos tenido que ampliar previamente el vocabulario del lenguaje
con un conjunto enumerable de nuevas constantes. Con esta ampliacion
pretendemos disponer de un nimero suficiente de testigos (ya que puede
haber cualquier nimero de términos del lenguaje en el conjunto de partida
y, por tanto, todos los términos del lenguaje). Para entender este proceder
imaginemos la siguiente situacién: sea A = {3X p(X), =p(t1), 7p(t2), ...},
donde t1, to,...son todos los términos de un C'P dado. A es consistente
(en el sistema de Kleene), pero no podemos satisfacerlo si consideramos
que los términos del C'P son los elementos del dominio de la interpretacion
propuesta, lo que puede comprobarse facilmente. Necesitamos, por tanto,
un arsenal de nuevos términos.

Tras esta ampliacion, el lema de Lindenbaum nos proporciona un método
para lograr un conjunto miximamente consistente y ejemplificado en el
nuevo lenguaje.
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b) Como ya hemos comentado, la interpretacién propuesta tiene como do-
minio el conjunto de términos del lenguaje usado, un dominio de obje-
tos infinito numerable. En dicha interpretacién, cada término se refiere a
si mismo. La interpretacién de un simbolo de predicado viene dada por
los argumentos a los que afecta; a cada letra predicativa se le asigna como
significado el conjunto de n-tuplas de términos que son sus argumentos en
el lenguaje. El lema de Henkin prueba que el conjunto construido por el
método de Lindenbaum es satisfacible.

c) El lenguaje que hemos usado contiene mas simbolos de constante que el
lenguaje de la teorfa cuya satisfacibilidad se quiere probar. El teorema de
Henkin nos dice que el conjunto de partida es igualmente satisfacible y, en
este caso, sobre un dominio infinito numerable.

d) Finalmente, obtenemos la completitud de KLC merced al teorema de com-
pletitud de Gddel: cualquier férmula del C'P que sea consecuencia légica
de un conjunto dado de férmulas del C'P se deduce en KLC de dicho con-

junto. Como corolario: cualquier férmula del valida del C'P es un teorema
de KLC.

Ahora vamos con la prueba de completitud en detalle. Sea C un conjunto infinito
numerable de constantes que no aparecen en la signatura ¥ del C'P. Siguiendo
convenciones anteriores, llamaremos CPC a este lenguaje.

Lema 1.3 (Lema de Lindenbaum). Para todo conjunto de férmulas KLC-consis-
tente existe un conjunto mdzimamente KLCC -consistente y ejemplificado que
lo contiene.

DEMOSTRACION: Sea I un conjunto KLC-consistente. Entonces, por la propo-
sicién 1.26, I' es KLCC-consistente. Partamos de cualquier enumeracién efectiva
de las férmulas g, ¢1,...del CPC y enumeremos igualmente de modo efectivo
las variables de C. Construiremos una sucesién de conjuntos KLCC-consistentes
como sigue:

L] Fo = F

Paran >0, ',y serd

e '), siT',, U{pn} es inconsistente.

e '), U {py}, si dicho conjunto es consistente y ¢, no es una férmula
existencial.
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o Iy, U{pn, A[X/ci]}, si Ty U {pn} es consistente, p, es de la forma
JX A y ¢; es la constante de minimo indice de C' que no aparece en
Con(T,, U{pn}).

A la unién enumerable de todos los conjuntos que forman esta sucesién la de-
nominaremos I'*, i.e., T* = J,,c I'n- Ahora probaremos lo siguiente:

Pircrx

P2 Para cada n, [';, es consistente.
P3 I'* es maximamente consistente.
P4 T™* es ejemplificado.

La propiedad P1 se demuestra trivialmente.

La prueba de P2 procede por induccién sobre n.

-Paso base: sea n = 0. I'y es consistente, pues I'g =T.

-Paso de induccién: sea n > 0. Supongamos que para n = k, 'y es consis-
tente (supuesto de induccién). Probaremos que T'y11 es consistente. Hay tres
posibilidades:

m T'y41 = ['x. Pero I'y es consistente, por el supuesto de induccién, luego
I'k41 es consistente.

# Tpp1 = T U {pr}. Entonces T'yy; es consistente, por la construccién
anterior.

s Tpyr = TrU{pk, A[X/ci]}, donde ¢y, es forma IX A y ¢; no aparece en I'y,U
{¢r}. En ese caso 'y, U {¢} es consistente, por la construccién anterior.
Entonces, por la proposicién 1.24, T, U {¢, A[X/¢;]} es consistente, i.e.,
I'k41 es consistente.

Prueba de P3: probaremos primero que I'* es consistente. Supongamos que
no lo fuera; en lo que sigue anotaremos - entendiendo que se trata de la relacién
Fkrcc - Entonces hay férmulas A44,..., A, € I'* tales que

T*F=(A1 A AN A)
Por la proposicién 1.2.5(8), habria un subconjunto finito A C I'* tal que

Ab (A1 AL AAy)
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Por ser A C I'*, todas las férmulas de A estardn en algin I'; de la cadena 'y C
I C...CT', CT'yp1 € ... Sea k el minimo subindice que cumple A C T'.
Entonces, por la proposicién 1.2.5(3), I'ry F =(41 A... A A,,), incurriendo en una
contradiccién, ya que —por P2— I';, es consistente. Asi pues, I'* es consistente.
Supongamos ahora que la férmula @ es tal que ¢ ¢ I'*, veamos que I'*U{p} es
inconsistente. Con esto habremos probado que I'* es maximamente consistente.
Es claro que ¢ ocupa un lugar en la enumeracién de férmulas del C P, sea ¢ =
©n. Asi pues: @, ¢ T'*; en ese caso ¢, ¢ I'nq1, luego T'y, U{p,} es inconsistente
(o de lo contrario, ¢, € T'y41). Entonces I'* U {¢,,} es inconsistente (por la
proposicién 1.2.9(3), pues I, C IT'*); es decir, I'™* U {¢} es inconsistente.

Prueba de P4. Sea 3X A € I'*. En ese caso 3X A ocupara algin lugar en la
enumeracién de férmulas del CPC. Sea ¢,, dicha férmula. Entonces T',, U {on}
es consistente; pues, debido a la construccion de I'*, ¢,, se anade cuando le toca
el turno, es decir, al construir I', 1 si es que no estaba incluida yaen I'. Y como
' U{pn}t CT* y I'* es consistente por P3, entonces I'), U {¢,} lo es también,
por la proposicién 1.2.9(4). Ahora bien, ¢, es una férmula existencial, luego
Thi1 = ThU{pn, A[X/ci]} para alguna constante ¢; € C, por construccién. Por
tanto, ['* es ejemplificado, q.e.d. «

Lema 1.4 (Lema de Henkin). Si T es un conjunto mdzimamente KLCC -con-
sistente y ejemplificado, entonces I es satisfacible sobre un dominio numerable.

DEMOSTRACION: Sea I' maximamente KLCC-consistente y ejemplificado. De-
finamos una interpretacién J del CP¢ como sigue:

- D es el conjunto de todos los términos del C' P
- para cada constante ¢ € Conxycy: I(c) = c.

- para cada sfmbolo de funcién n-ario f del CPC€ y términos ti,..., t, del
CPC:3(f)(t1,- - tn) = f(t1,-. - tn).

- para cada sfmbolo de predicado n-ario p del CPC:
I(p) ={(t1,...,tn)| p(t1,...,tn) € T}

Definamos ademds una asignacién a sobre J de modo que a(X) = X, para toda
variable X. Ahora probaremos lo siguiente:

P1 Para todo término ¢ del CPC: J,(t) =t

P2 Para toda férmula ¢ del CP€: 3, ¢ siy sélosi ¢ €T.
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Prueba de P1. Por induccién estructural sobre cualquier término ¢ del CP€. Se
deja como ejercicio.

Prueba de P2. Por induccién sobre el grado de una férmula cualquiera ¢ del
C'P€. Trataremos el caso especifico en que ¢ posee la forma VX A, asumiendo que
P2 se cumple para cualquier férmula de menor grado que el de VX A (supuesto
de induccién). Asi pues:

JEspsiysolosi TFE, VXA,
si y sélo si para todo término ¢ del CP¢: J Fax/g A

(por def. de satisfaccién),
si y sélo si para todo término ¢ del CPC: 3k, A[X/t]
(por la proposicién 1.10),
si y sélo si para todo término t del CP¢: A[X/t] € T
(por el supuesto de induccién),
siysilosiVXAel
(pues T es ejemplificado),
siysélosip €l

Asi pues, J E, ¢ para toda férmula ¢ € T, luego T' es satisfacible (sobre un

dominio numerable), q.e.d. <

Teorema 1.3 (Teorema de Henkin). Todo conjunto KLC-consistente es satis-
facible sobre un dominio numerable.

DEMOSTRACION: Sea I'' un conjunto KLC-consistente. Por el lema de Linden-
baum existe un conjunto maximamente KLCC-consistente y ejemplificado que
lo contiene. Por el lema anterior dicho conjunto es satisfacible sobre un dominio
numerable. Ahora, por la proposicién 1.14, T" es igualmente satisfacible sobre un
dominio tal. «

Teorema 1.4 (Teorema de completitud de Godel. Completitud en sentido fuer-
te de KLC). Para cualquier conjunto T de férmulas del CP y cualquier férmula
@ del CP se tiene que:

SiTE ¢, entonces T F ¢
DEMOSTRACION: Si ' F ¢, entonces ' U {—¢} es insatisfacible (proposicién

1.16(1)). Por el teorema de Henkin, I' U {—=¢} es inconsistente; luego, por la
proposicién 1.2.9(5), ' F ¢, q.e.d. «
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Teorema 1.5 (Completitud en sentido débil de KLC). Si E ¢, entonces b ¢

DEMOSTRACION: Se deduce ficilmente del teorema anterior como corolario
parael casoI' = @. «

Ejercicio 1.23 Probar los siguientes teoremas:

1. Compacidad: si todo subconjunto finito de un conjunto I' es satisfacible,
entonces [ es satisfacible.

2.  Finitud para la consecuencia logica: si I' F ¢, entonces existe un subcon-
junto finito A C T tal que A F .

(ambos teoremas pueden formularse mediante “si y sélo si”) «

1.3.5. COMPLETITUD Y PROPIEDAD-V.

En esta ocasién procedemos a extender un conjunto KLC-consistente a un
conjunto KLCC-consistente con una determinada propiedad (la propiedad-V).
Posteriormente, ampliaremos éste hasta convertirlo en un conjunto méaxima-
mente KLCC-consistente que herede dicha propiedad. Ello implica —como se
verd— que este tltimo conjunto estd ejemplificado. Seguidamente formulamos
la propiedad-V, que exponemos como sigue:

Definicién 1.33 Sea I' un conjunto de formulas del CP. Diremos que T’ tiene
la propiedad-V si para cualquier formula de la forma YX A se tiene que

AX/t] > VXAeT
para algun término t.

Lema 1.5 SiT es KLC-consistente, existe un conjunto KLCC -consistente con
la propiedad-¥Y que lo contiene.

DEMOSTRACION: Sea una enumeracién efectiva de las férmulas universales
(i.e., férmulas de la forma VX A) y enumeremos igualmente de modo efectivo las
constantes de C. Construiremos una sucesién de conjuntos KLCC-consistentes
como sigue:

n F():F
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» Paran > 0,011 =T, U{A[X/c] - VX A}, siendo c la primera constante
de la enumeracién de C que no aparece en I'y, ni en A, y VX A es la n+1-
ésima formula de la enumeracién de férmulas universales.

Sea I'™* =
Pircr

nen In- Ahora probaremos lo siguiente:

P2 Para cada n, [';, es consistente.
P3 T'* es consistente.
P4 I'* tiene la propiedad-V.

La prueba de P1 es trivial y la de P3 sigue los mismos pasos que la prueba
efectuada en el lema 1.3 para este caso (ndtese, sin embargo, que ahora no
requerimos probar que I'* es mdximamente consistente, sino simplemente que
es consistente). Acto seguido probaremos las otras propiedades.

Prueba de P2. La prueba procede por induccién sobre n. Si n = 0, I'y es
consistente, pues I'g = I'. Sea ahora n > 0. Supongamos que I';, es consistente
(supuesto de induccién). Probaremos que ', 41 es consistente. Procedamos por
reduccion al absurdo. Si no lo fuera, existirian férmulas aq,..., a, € T, tales
que

Fo(ar Ao Aam A (A[X/c] = VX A))

Abreviemos aj A ... A a,, mediante «, o sea, F =(a A (A[X/c] — VXA)).
Entonces, por LP, obtenemos:

a)Fa— A[X/c]y

b) Fa— VXA
Sea Y una variable que no aparece en la demostracién de (a), entonces, por
GUC, tenemos que

Fa— VY (A[X/Y)])

luego F a@ = VX A (por cambio alfabético); por tanto F —«, por LP y teniendo
en cuenta (b); pero esto significa que I';, es inconsistente, lo cual es imposible.

Prueba de P4. El resultado es consecuencia directa de la construccién. Pues,
tengamos en cuenta que si I'* no tuviera la propiedad-V, entonces existiria una
féormula A tal que para todo término ¢ se tiene que A[X/t] - VXA ¢ I'*. Sea
k el indice de VX A en la enumeracién de férmulas universales y ¢ la primera
constante de la enumeracién de C que no aparece en A ni en I'j,. Entonces se
tiene que I'py1 = Iy U{A[X/c] = VX A}, pero I'yy; C I'*, incurriendo en una
contradiccién, q.e.d. «
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Lema 1.6 Para todo conjunto KLCC -consistente con la propiedad-V eziste un
conjunto maxrimamente KLCC -consistente con la propiedad-VY que lo contiene.

DEMOSTRACION: Partamos de una enumeracién efectiva g, ¢1,. . . de las férmu-
las del CPC. Sea I' un conjunto KLCC-consistente con la propiedad-V . Cons-
truyamos ahora una sucesién de conjuntos KLCC-consistentes definida como
sigue:

n FO =T
= Paran >0, I',,4; serd

o 'y, si I,y U {p,} es inconsistente.

o ', U{pnt,si[y, U{pn} es consistente.

Sea I'* = J, . ['n- Ahora se prueba que:

neN

PircCcr*

P2 Para cada n, '), es consistente.
P3 T'* es maximamente-consistente.
P4 T'* tiene la propiedad-V.

Las pruebas de P1, P2 y P3 siguen pasos ya conocidos. La prueba de P4 se
sigue del hecho de que I' posee la propiedad-V y I' CT'*. «

Lema 1.7 Todo conjunto mdzimamente KLCC -consistente con la propiedad-¥
es ejemplificado.

DEMOSTRACION: Sea I' un conjunto méaximamente KLCC-consistente con la
propiedad-V. Si 3X A € T, entonces, dado que F 3X A & VXA, por el ejer-
cicio 1.2.15(2), tenemos que -VX—-A € I. Pero, por la propiedad-V, hay un
término ¢ tal que ~A[X/t] - VX—-A € T, luego, por la proposicién 1.2.10(2 y
5), obtenemos que A[X/t] € I para algtin término t. Por tanto, I' es ejemplifi-
cado. <

Debe repararse que no todo todo conjunto consistente en un sistema formal
y que esté ejemplificado posee la propiedad-V. Un caso muy simple de conjunto
KLC-consistente y ejemplificado sin dicha propiedad es el conjunto {p(a)}.
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Lema 1.8 Para todo conjunto KLC-consistente existe un conjunto mdxima-
mente KLCC -consistente y ejemplificado que lo contiene.

DEMOSTRACION: Por los lemas 1.5, 1.6 y 1.7. «

A partir de aqui, la demostracién de la completitud sigue los mismos pasos que
en la seccién anterior.

Ejercicio 1.24 Sea S un sistema formal que contenga al menos los axiomas y
reglas de KLC. Probar que cualquier conjunto méximamente S-consistente y
ejemplificado tiene la propiedad-V . <

1.4. LOGICA DE PRIMER ORDEN Y LEN-
GUAJE NATURAL.

En la seccién 1.2.5 hemos analizado alguno de los problemas que surgen al
intentar simbolizar las conectivas del lenguaje natural mediante las conectivas
del e¢p. Ahora estudiaremos los problemas, mucho mayores, que surgen al intentar
representar en un lenguaje de primer orden los enunciados del lenguaje natural.

1.4.1. OBJETOS.

En el caso més sencillo, los objetos acerca de los cuales se habla aparecen
identificados por sus respectivos nombres propios: Mari, Juan, Vilvula-1. El
planteamiento mas directo es introducir una constante para cada uno de estos
nombres de objetos: mari, juan, v1.

Pero en el discurso normal, el uso de su nombre propio no es la tunica for-
ma —mni quizds la méas frecuente— de denotar un objeto concreto. Para ello
se emplean diversas construcciones a las que se denominan descripciones defi-
nidas. Por ejemplo, el hermano de Juan, la mujer mds gorda de Espana. Las
descripciones definidas aluden a un objeto del mundo, precisamente al #nico que
cumple la propiedad que se enuncia. Para simbolizar adecuadamente esta unici-
dad es necesario emplear el predicado de igualdad, asi que el estudio completo
de la cuestién queda pospuesto hasta el capitulo correspondiente. Por ahora
representaremos las descripciones definidas mediante constantes arbitrarias.

Otras construcciones del lenguaje natural que se emplean para nombrar ob-
jetos son las llamadas referencias deicticas. Hay una referencia de este tipo
cuando para saber cudl es el ente al que se nombra es necesario conocer al-
gunas circunstancias referentes al lugar, momento o personas que intervienen
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en la comunicacién. Ejemplos de referencias deicticas pueden ser tu casa, esta
mesa, antesdeayer. En el primer caso, cudl es el objeto concreto nombrado de-
penderd de quién es la persona a la que se habla; en el segundo, de quién habla
y dénde estd; en el tltimo, de cudndo lo hace. Por tanto, dos apariciones de una
misma referencia deictica nombran, en general, dos objetos diferentes; esto ha
de considerarse al intentar procesarlas (semi-)autométicamente.

Ademsds de constantes, el lenguaje del C'P proporciona funtores para cons-
truir nombres de objetos. No obstante, el uso de funtores en Ingenieria del
Conocimiento merece ser objeto de cierta atencion, pues los funtores del CP y
las funciones matemadticas difieren grandemente en su uso y significado.

En primer lugar, en 1égica cldsica (no asi en la llamada “légica libre”, co-
mo veremos al estudiar la légica modal predicativa), los funtores simbolizan
siempre “funciones totales”. Por ejemplo, consideremos una teoria légica con la
constante cero y el funtor monario suc. En esta teorfa estd siempre garantizada
la “existencia” de suc(cero), ya que (i) no hay restricciones sinticticas a la for-
macién de estos términos, y (ii) las reglas semdnticas obligan a asignar a todo
término del lenguaje un elemento del dominio. Todo esto nos puede parecer
muy natural; pero considérese por ejemplo la descripcién definida la conyuge de
Juan. Si la representamos como conyuge(juan), requerimos que Juan esté casado;
de lo contrario, tendriamos que asignar algin objeto arbitrario del dominio a la
funcién conyuge con el argumento juan, lo cual quizas no es lo que pretendiamos.
Ain mas, si el lenguaje tiene ya las constantes valvula-1 o piolin, la aparicién en
una férmula de conyuge(juan) hace que también “existan” los objetos denotados
por conyuge(piolin) y conyuge(valvula-1). Estos inconvenientes pueden a veces
obviarse empleando una légica multitipada, pero no seguiremos ese camino.

Ademsds, en 16gica, los funtores no proporcionan informacién adicional acerca
de los “valores” de la funcién. Para establecer ésta, habremos de recurrir a una
teoria con igualdad, anadiendo axiomas adicionales.

Sin embargo, el empleo de funtores tiene grandes ventajas cuando se utilizan
lenguajes de programacion légica (PROLOG y su familia) y, en general, sistemas
que implementan eficientemente mecanismos de unificacién.

1.4.2. ENUNCIADOS ELEMENTALES.

Consideremos ahora los enunciados mas simples que pueden concebirse en
lenguaje natural. En estos enunciados aparecen una o varias descripciones defi-
nidas o nombres —que denotan objetos determinados del mundo— y una pro-
piedad, relacién o evento que las involucra. Por ejemplo, la vdlvula 1 estd abierta,
Sdcrates es un hombre (propiedades); Mari es vecina de Conchi, A estd entre B
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y C (relaciones); Juan ama a Pepi, Mari baila, Borja limpia la cocina (eventos).

Propiedades y relaciones.

La propiedad o el estado de un objeto puede aparecer en forma de adjetivo,
como en estd abierta (el caso paradigmdtico); de nombre de clase, como en
es un hombre; o de locucién equivalente. Los verbos mas frecuentes son ser y
estar, aunque pueden emplearse muchos otros (Juan anda preocupado, la vilvula
1 constituye un punto peligroso). Puede no existir verbo alguno, lo cual es lo
més frecuente en enunciados mas complejos: Paco, feliz y nervioso, corre a casa
equivale a Paco estd feliz y Paco estd nervioso y Paco corre a casa.

El primer paso de la representacién debe ser elaborar el repertorio de propie-
dades que se van a considerar y, para cada una de ellas, el de valores que pueden
tomar. Una vez hecho esto, para representar este tipo de conocimiento caben al
menos tres alternativas:

= Los predicados de la teoria légica corresponden a los posibles valores de
las propiedades, es decir, a los adjetivos o construcciones equivalentes: por
ejemplo, los enunciados anteriores serian

abierta(valvulal);
hombre(sécrates)

Todos los términos de la teoria representan objetos del mundo, y nada mas.
Por tanto, no es posible enunciar axiomas genéricos acerca de las propie-
dades o sus valores; el correspondiente conocimiento se habra de expresar
por un conjunto de axiomas particulares. Por ejemplo, para representar
que los objetos tienen un solo color habra que anadir varios axiomas del
tipo

VX(rojo(X) — —azul(X)).

= Los predicados de la teoria légica corresponden a las propiedades a las que
aluden los adjetivos. Los enunciados anteriores serian ahora

apertura(vélvulal, abierta);
es-un(sécrates, hombre)

Los términos de la teoria representan ahora tanto los objetos del mundo
real como los valores de las propiedades. Se suele llamar reificacion a la
operacién mental consistente en considerar como objetos entes que nor-
malmente considerarfamos de otra manera (por ejemplo, los valores de las
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propiedades). Por tanto, podemos decir que en esta alternativa se reifican
los valores, lo que permite enunciar axiomas genéricos sobre los mismos,
como

VXYYVZ(color(X,Y) A color(X,Z) = Y = Z)
(suponiendo que estamos empleando una teorfa con igualdad).

= Hay un solo predicado (por ejemplo, oav) para representar el conocimiento
de este tipo. El predicado tiene tres argumentos: uno alude al objeto, otro
a la propiedad considerada y un tercero al valor de la propiedad para el
objeto. Por ejemplo:

oav(valvulal, apertura, abierta);
oav(sécrates, es-un, hombre)

Los términos de la teoria representan ahora los objetos, las propiedades y
los valores, pues se reifican tanto las propiedades como sus valores. Esta
alternativa estd muy préxima a lo que en la jerga de la Ingenieria del Cono-
cimiento se suelen llamar “ternas objeto-atributo-valor” o “representacién

O-A-V.

Andlogas consideraciones pueden hacerse para las relaciones, con la diferencia
de que ahora estan involucrados varios objetos en cada enunciado elemental.
Por ejemplo, Mari es vecina de Conchi puede ser

vecina(mari, conchi) (representacién directa)
o bien
proximidad(mari, conchi, vecina) (reificacién de los valores)
o bien
oav(mari, conchi, proximidad, vecina) (reificacién de valores y relaciones)

En este ultimo caso, debemos notar que el predicado oav tendria un niimero
indeterminado de argumentos (los de la relacién y dos mas), lo cual no suele
permitirse. Una posible solucién seria introducir el funtor de constructor de
listas (con sus correspondientes axiomas), lo cual haria que el predicado oav
tuviera siempre tres argumentos; en el ejemplo anterior seria

oav(cons(mari, cons(conchi, nil)), proximidad, vecina)
0 en una notacién mas cémoda

oav((mari, conchi), proximidad, vecina).

Ejercicio 1.25 Consideremos los siguientes enunciados en lenguaje natural:
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- Juan y el padre de Mari estin cansados, pero Mari y este nifio estdn
descansados.

- Paises limitrofes de Espana son Portugal y Francia.
- Samanta es gorda, aunque Borja y Pelayo son delgados.
- Samanta es novia de Borja, amiga de Pelayo y hermana de Jessica.

- FEl bloque A estd sobre el bloque B. El bloque A estd libre. El blogue B
estd sobre la mesa.

Simbolizar cada uno de ellos de cada una de las tres formas indicadas més arriba.
4

Eventos.

El primer paso de la representacion debe ser elaborar el repertorio de eventos
que se van a considerar y, para cada uno de ellos, el de sus caracteristicas
relevantes. Una vez hecho esto, para simbolizar este tipo de conocimiento caben
al menos dos alternativas:

= Los términos de la teoria corresponden tinicamente a los objetos del mun-
do, es decir, no se efectiia proceso alguno de reificacion. Los predicados de
la teorfa corresponden a los nombres de las acciones. Por ejemplo:

bailar(mari),
amar(juan, pepi)

El nimero de argumentos del predicado dependeréd de la accién conside-
rada. Pero, jcémo representariamos ahora Juan ama mucho a Pepi? Lo
maés directo es anadir un nuevo argumento a amar:

amar(juan, pepi, mucho)

Por tanto, ademés del repertorio previo de acciones, parece que necesita-
mos el de “rasgos” o “descriptores” que pueden aparecer en la descripcién
de cada evento.

= Los términos de la teoria corresponden a los objetos del mundo, a los
eventos y a los valores de las propiedades de los eventos. Los predicados
de la teoria corresponden a los nombres de las propiedades de los eventos.
Es decir, se reifican los eventos y los valores de sus rasgos o descriptores.
Por ejemplo, Mari baila serd ahora
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evento(el) A sujeto(el, mari) A accion(el, bailar)
Juan ama a Pepi sera
evento(e2) A sujeto(e2, juan) A accion(e2,amar) A objeto(e2, pepi)

y para representar Juan ama mucho a Pepi anadiremos a estos ultimos
axiomas propios algo asi como

cantidad(e2, mucho)

Noétese que a menudo los eventos pueden representarse mediante propiedades.
Por ejemplo, Mari baila podria enunciarse como Mari estd bailando.

Ejercicio 1.26 Consideremos los siguientes enunciados en lenguaje natural:

Samanta oye a Jessica y se aburre.

Luci vende la casa de la playa a Pepi por cien mil euros.
Mari y Juan bailan muy bien.

Borja limpia cuidadosamente la cocina.

Simbolizar cada uno de ellos de cada una de las dos formas indicadas mé&s arriba.
<

Representacion del tiempo.

Algunos dominios pueden considerarse “estaticos”, es decir, invariables a lo
largo del tiempo. Es el caso tipico de las teorias matematicas. Pero, si consi-
deramos fragmentos del mundo real, lo mds frecuente serd encontrarse en un
dominio “dindmico”, es decir, que puede pasar por muchos estados diferentes.
Puede ser que cierto enunciado elemental sea verdadero en todo estado concebi-
ble del dominio; pero también puede ser que sea verdadero unicamente en ciertos
estados. En este caso, el literal que lo representa se dice que es un fluyente. El
correspondiente predicado también se llama fluyente.

En el capitulo 1.3 se ha expuesto un formalismo para representar el tiempo: la
l6gica modal temporal. Este formalismo tiene grandes ventajas, ya que permite
representar de manera sencilla ciertos matices del conocimiento temporal. Sin
embargo, hay otros que se escapan. Para capturarlos es necesario recurrir a
un lenguaje CP en el que se reifican las entidades temporales. Por ejemplo,
consideremos Mari estd gorda. Parece que gordo debe ser un fluyente, ya que
los seres adelgazan y engordan. Por tanto, seria més exacto enunciar lo anterior
como Mari estda gorda en el tiempo t; 1o que nos llevaria a

gordo(mari, t1) (reificacién del tiempo)
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o bien
peso(mari, mucho, t;) (reificacién del tiempo y los valores)
o bien

se-tiene(peso, mari, mucho, t)
(reificacion del tiempo, los valores y las relaciones).

Pero no por llamar t; a una constante la dotamos de significado temporal.
Serd necesario enunciar las propiedades que suponemos para el tiempo y formu-
larlas como axiomas propios de la teoria. Y estas propiedades dependerdan del
tipo de entidades que estemos considerando: instantes, intervalos, ..., asi como
de la conceptualizaciéon que hagamos del tiempo: lineal o ramificado, discreto,
continuo, finito, ... Todo ello es una tarea dificil y compleja que no emprende-
remos.

Expondremos sin embargo el lenguaje empleado por el Cadlculo de situa-
ciones, del que mas adelante hablaremos mas ampliamente. En el Célculo de
situaciones se considera que el estado del dominio cambia a causa de la ejecucion
de ciertas acciones. Se llama situacion al estado resultante de ejecutar, a partir
de un estado inicial, cierta secuencia de acciones. Para designar al estado inicial
se introduce la constante sg.

Apliquemos las anteriores ideas a un ejemplo clésico, el del mundo de blo-
ques. Sobre una superficie horizontal (mesa) tenemos varios tarugos o bloques.
Concretamente, supongamos que tenemos tres bloques llamados A, B y C. En
la mesa hay algunas posiciones distinguidas o huecos, tinicos lugares en los que
se pueden colocar los bloques. Supongamos que tenemos tres huecos llamados
P, Q y R. Los bloques se pueden apilar, poniendo uno encima de otro. En el
estado actual del mundo de bloques, el bloque A estd en el hueco P, el bloque
B esta en el hueco @ y el bloque C estd en el hueco R (figura 1.1). Intentemos
conceptualizar el dominio y especificar la situacién inicial. Es claro que la onto-
logia estd compuesta de los objetos A, B, C, P, @ y R. Cada objeto X tendrd la
propiedad X es un hueco o bien X es un bloque. Como minimo, habremos de
considerar la relacién basica X estd directamente encima de Y. A partir de ella,
se pueden definir otras propiedades y relaciones, por ejemplo X estd libre (es
decir, X no tiene ningin objeto directamente encima).

Definamos ahora un lenguaje en que expresar los anteriores conceptos. Si
no reificamos atributos ni valores, pero si las situaciones, el lenguaje serd como
sigue:

= Para cada objeto introducimos una constante: a, b, c,p,q,r.

= Para cada propiedad constante, un predicado unitario: hueco(X), bloque(X).
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Figura 1.1: El mundo de bloques.

= Para cada propiedad fluyente, un predicado binario: libre(X,S)

= Para cada relacién fluyente (en este ejemplo no las hay constantes), un
predicado ternario: encima(X,Y,S).

La situacién inicial, en una primera aproximacion, sera descrita por los lite-
rales afirmados de la tabla 1.3.

Ejercicio 1.27 Definir un lenguaje para representar el mundo de bloques en
el que se reifiquen ademads i) los valores de los atributos; ii) los atributos y sus
valores. «

eil) bloque(a) A bloque(b) A bloque(c)
hueco(p) A hueco(q) A hueco(r)
encima(a, p,so) A encima(b, q,so) A encima(c, r,sp)

libre(a, so) A libre(b, s0) A libre(c, so)

(

(ei2
(ei3
(eid

NN N

Cuadro 1.3: Axiomas del estado inicial del mundo de bloques(1).

Prosigamos con nuestro ejemplo. Supongamos que la tinica accién que se consi-
dera es transportar(X,Y,Z), es decir, transportar un bloque X de una posicién
—Dbloque o0 hueco— Y a otra posicién Z. Las situaciones posibles se generan por
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la aplicacién de las acciones a la situacién inicial. Si llamamos sg a la situacion
inicial, las situaciones se podrian denominar la situacion resultante de aplicar a
so la accion de transportar A de P a B, ...

Para simbolizar estos nombres de situaciones hemos de introducir nuevos
elementos en el lenguaje. En general serdn como siguen:

= Para cada accién introducimos un término de base. Si la accién no tiene
parametros, serd una constante; si, como en el ejemplo anterior, la accién
tiene como pardmetros los objetos sobre los que actua introducimos un
funtor con tantos argumentos como sea necesario: trans(X,Y, Z).

= Para las situaciones no iniciales introducimos un funtor hacer con dos
argumentos: la accién realizada y la situacién anterior. Por ejemplo, la
situacion resultante de hacer en sy la accion de transportar A de P a B
sera,

hacer(trans(a, p,b), sp);
si ahora transportamos C' de R a P tendremos

hacer(trans(c,r, p),
hacer(trans(a, p, b), o)),

y asi sucesivamente.

Ejercicio 1.28 El robot Mari tiene dos piernas. En la izquierda lleva puestos
el calcetin Cy (de color rojo) y el zapato Z;; en la derecha, el calcetin Cy (de
color verde) y el zapato Zs. Mari dispone ademas de los calcetines C3 (rojo),
Cy (azul) y C5 (amarillo). Mari puede ejecutar las acciones de quitarse un za-
pato, quitarse un calcetin, ponerse un zapato y ponerse un calcetin (con las
restricciones obvias). Se pide:

1. Conceptualizar este dominio, identificando los objetos, propiedades y re-
laciones presentes en él.

2. Identificar el repertorio de acciones posibles.

3. Simbolizar en una teoria de primer orden el estado del dominio en la
situacién inicial.

4. Simbolizar en una teoria de primer orden el estado del dominio en la
situacién resultante de quitarse el zapato Z;.
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<

Ejercicio 1.29 Un dominio consta de 3 registros Rx, Ry, Rz, con contenidos
iniciales A, B (constantes desconocidas) y 0, respectivamente. La tnica opera-
cién permitida es copiar el contenido de un registro en otro registro, dejando
inalterado el primero. Se pide

1. Conceptualizar este dominio, identificando los objetos, propiedades y re-
laciones presentes en él.

2. Identificar el repertorio de acciones posibles.

3. Simbolizar en una teoria de primer orden el estado del dominio en la
situacion inicial.
4. Simbolizar en una teoria de primer orden el estado del dominio en la

situacion resultante de copiar el registro Rx en el registro R.

N

Ejercicio 1.30 Un mono estd encerrado en una habitacién de cuyo techo cuelga
un racimo de platanos. En el otro extremo de la habitacién hay una silla. El
mono, cuando estd en el suelo, no alcanza el racimo, pero si se sube sobre la
silla puede tocar el techo. Se pide:

1. Conceptualizar este dominio, identificando los objetos, propiedades y re-
laciones presentes en él.

2. Simbolizar en una teoria de primer orden el estado del dominio en la
situacién inicial.

3. Identificar el repertorio de acciones posibles.

4. Simbolizar en una teoria de primer orden el estado del dominio en una
situacién en la que el mono esté sobre la silla.

1.4.3. VARIABLES Y CUANTIFICADORES.

Consideremos ahora aquellos enunciados del lenguaje natural en los que se
establecen propiedades o se describen eventos sin aludir a un objeto concreto
del mundo. Por ejemplo, (1) Todo hombre es mortal, (2) Algin hombre es malo.
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Las formas en que se pueden presentar estos enunciados son muy variadas.
Consideremos (1): puede parafrasearse como Todos los hombres son mortales,
Los hombres son mortales, El hombre es mortal,.... En cuanto a (2), puede
decirse también Existe algiin hombre malo, Hay algiin hombre que es malo,. .. Se
denominan descripciones indefinidas estas construcciones del lenguaje que sirven
para designar objetos del mundo sin concretarlos completamente. Por ejemplo,
los hombres, el hombre, algin hombre,. ..

Los anteriores enunciados se pueden simbolizar facilmente en el lenguaje del
CP, empleando variables y cuantificadores. Consideremos primeramente (1).
Busquemos una parafrasis en la que aparezca mas claramente una variable, re-
presentada por la palabra objeto, ente o cosa; por ejemplo, Todos los entes que
son hombres son mortales. Busquemos ahora una paréfrasis en la que aparezcan
las conectivas del C'P: la unica posible es la implicacion, produciendo algo asi co-
mo Sea cual sea el ente considerado, si ese ente es hombre, entonces ese ente es
mortal (basta analizar las condiciones de verdad del enunciado); o, en la jerga
l6gica, Para todo X, si X es hombre, entonces X es mortal. Y representando las
propiedades por predicados llegamos a VX (hombre(X) — mortal(X)).

Consideremos ahora (2). Busquemos una paréfrasis en la que aparezca més
claramente una variable. Por ejemplo, Algin ente que es hombre es malo. Bus-
quemos ahora una parafrasis en la que aparezcan las conectivas del C'P: la tinica
posible es la conjuncidn, produciendo algo asi como Hay un ente tal que ese ente
es hombre y ese ente es malo (basta analizar las condiciones de verdad del enun-
ciado); o, en la jerga 16gica, Friste un X tal que X es hombre y X es malo. Repre-
sentando las propiedades por predicados llegamos a IX(hombre(X) A malo(X)).

Noétese la asimetria en la representacién: (1) se representa por una implica-
cién, (2) por una conjuncién. Ello viene dado por las condiciones de verdad de
los correspondientes enunciados naturales. Por ejemplo, consideremos la férmula
IX(hombre(X) — malo(X)), que el principiante a veces plantea como simboli-
zacién de (2). Esta férmula serd verdadera si encontramos un ente X para el
cual hombre(X) — malo(X) sea verdadera y, por la definicién de la implica-
cién material, bastard encontrar un ente X para el cual hombre(X) sea falsa:
asi que si en nuestro dominio hay un ente que no es un hombre, la férmula
es verdadera. Pero es evidente que el enunciado natural Algin hombre es malo
no tiene esas condiciones de verdad. Andlogamente, consideremos la férmula
VX (hombre(X) A mortal(X)), que algin principiante confuso podria proponer co-
mo simbolizacién de (1). Esta férmula serd falsa si encontramos un ente X para
el cual hombre(X) Amortal(X) sea falsa, para lo cual bastara encontrar un ente X
para el cual hombre(X) sea falsa: asi que si en nuestro dominio hay un ente que
no es un hombre, la férmula es falsa. Pero es evidente que el enunciado natural
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Todos los hombres son mortales no tiene esas condiciones de verdad.
Como ya se ha dicho, las formas en que se pueden presentar los enunciados
universales son muchas. Citemos algunas:

- uso explicito de todo, todos, siempre,...: Todo hombre es mortal, todos los
hombres son mortales,. . .

- uso explicito de ninguno, nadie, nada,...: Ningin hombre es inmortal,
nadie es inmortal, nada es eterno. Nétese la peculiariedad del espafiol en
el empleo de la doble negaciéon: Juan no ama a nadie no es un enunciado
afirmativo, sino negativo.

- uso del articulo definido para enunciar una ley general: Los hombres son
mortales, el hombre es mortal,. ..

- uso del articulo indefinido: Un elefante es mds pesado que un raton tiene
un obvio sentido universal.

- uso explicito de cada, cualquiera,...: Cada uno debe velar por sus propios
intereses, cualquiera puede hacer eso,. ..

En cuanto a los enunciados existenciales, se pueden presentar también de muchas
formas:

- uso explicito de alguno: Algin hombre es malo.

- uso explicito de hay alguno, existe: Existe algun hombre malo, hay algin
hombre malo.

- uso explicito de algunos, existen, hay con plural: Algunos hombres son
malos, existen hombres malos, hay hombres malos. En este caso, es dudoso
si se quiere decir hay al menos un... o bien hay mds de un.... Por el
contrario, el sentido de hay un hombre malo puede ser hay al menos un
hombre malo o bien hay exactamente un hombre malo. Para simbolizar hay
al menos un. .. y hay exactamente un. .. es necesario emplear el predicado
de igualdad, como veremos en el capitulo correspondiente.

- uso del articulo indefinido: Juan vio a un hombre tiene un obvio sentido
existencial. Esto contrasta claramente con el significado universal asignado
antes a Un elefante es mds pesado que un raton

Ejercicio 1.31 Considérense los siguientes enunciados en lenguaje natural:
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10.

11.

12.

No toda funcion continua es diferenciable.

Algunas personas son o perezosas o estiupidas.

Si un tren se retrasa, entonces todos los trenes se retrasan.
Algunas personas odian a todo el mundo.

Tampoco es verdad que no haya nadie bueno entre los alumnos de Papi-
roflexia 1.

Los elefantes son mds pesados que los ratones.
Todos los calvos de Mdlaga llevan sombrero, menos algunos locos.

Son comerciantes los que, teniendo capacidad legal para ejercer el comer-
cio, se dedican a €l habitualmente; y las companias mercantiles e indis-
triales que se constituyeren con arreglo al Cédigo.

Feliz el pueblo donde algunos ciudadanos son ricos y ninguno pobre.

Sea cual sea el problema que propongas, sequro que viene resuelto en los
libros de la biblioteca.

Una condicion necesaria y suficiente para que un polinomio se anule en
todo punto es que todos sus coeficientes sean nulos.

Los jugadores del Madrid son mejores que los del Barcelona.

Simbolizar adecuadamente —si es posible— cada uno de ellos, empleando tni-
camente constantes para representar los objetos del mundo real. Indicar clara-
mente el conjunto de predicados considerados y sus posibles valores. <

Ejemplo 1.13 Enunciemos ahora algunas algunas definiciones y leyes en el
dominio del mundo de bloques:

Todo objeto es un bloque o un hueco, pero no ambas cosas.
Un objeto esta libre si y solo si no existe nada encima de €l.
Un bloque estd siempre encima de algin objeto.

Encima de un objeto solo puede haber un bloque.

Las definiciones y leyes del dominio se convierten en los axiomas propios de la
tabla 1.4. <«
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(apl) VX(bloque(X) V hueco(X)) A = (bloque(X) A hueco(X)))
(ap2) VXVS(libre(X,S) < —3Yencima(X,V,S))

(ap3) V¥XVS(bloque(X) — FYencima(X,Y,S)))

(ap4) VYXVYVS((encima(X,Y,S) — bloque(X,S))

Cuadro 1.4: Axiomas propios del mundo de bloques (I).

Ejercicio 1.32 Consideremos el dominio del ejercicio 1.28. Se pide simbolizar
las siguientes leyes del dominio: Todo objeto es una pierna, un calcetin o un
zapato. Un zapato puede estar puesto o quitado. El robot solamente se pone
calcetines limpios. <

1.4.4. DISCURSO Y ANAFORAS.

El conocimiento expresado en forma natural no se concentra en un solo enun-
ciado, sino que se desarrolla a lo largo de un conjunto estructurado de enunciados
llamado discurso. Los objetos a los que se alude en cada enunciado del discurso
pueden quedar identificados, ademds de como hemos visto hasta ahora, por “re-
ferencias anaféricas”. Una referencia anaférica es una referencia a un objeto que
va ha sido mencionado en el discurso, realizada no directamente, sino mediante
una palabra o expresién especialmente destinada a esta tarea (pronombre). Por
ejemplo, consideremos el discurso Juan ama a Mari. Ella le desprecia, que cons-
ta de dos enunciados. En el segundo de ellos aparecen los pronombres ella y e,
que sirven unicamente para realizar sendas referencias anaféricas a los mismos
objetos designados anteriormente por los nombres propios Mariy Juan. De esta
manera, la simbolizacién correcta del discurso seria

ama(juan, mari) A desprecia(mari, juan)

Cuando en un discurso aparecen descripciones indefinidas, también es po-
sible realizar referencias anaféricas a los objetos por ellas sefialados. Ya que la
simbolizacién de las descripciones indefinidas obliga al uso de variables cuanti-
ficadas, hay que comprobar que el ambito del cuantificador abarque todas las
referencias directas y anaféricas al objeto considerado, aunque se extiendan a lo
largo de varios enunciados. Por ejemplo, consideremos el discurso Juan ama a
una vigilante de la playa. Ella le desprecia. Seria incorrecto simbolizarlo como

|| 3X(ama(juan, X) A vigilanteplaya(X)) A desprecia(X, juan)

ya que la variable X queda libre en desprecia(X, juan). Lo correcto serfa
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IX(ama(juan, X) A vigilanteplaya(X) A desprecia(X, juan))

Existen muchas construcciones anaféricas en lenguaje natural. Una de las més
frecuentes es el uso de pronombres relativos; por ejemplo, el discurso anterior
puede parafrasearse —de forma més natural— como Juan ama a una vigilante
de la playa que le desprecia. La simbolizacion seria la misma. Nétese que un
pronombre relativo realiza una referencia anaférica al objeto cuya descripcion
le precede inmediatamente: es imposible pensar que en este ejemplo la palabra
que se refiera al objeto designado por Juan.

Menos frecuentemente, en un discurso aparece una referencia indirecta a un
objeto que ain no ha sido mencionado directamente (catdfora). Por ejemplo,
otra parafrasis del discurso anterior seria Aunque ella le desprecia, Juan ama a
una vigilante de la playa. La simbolizacion seria la misma.

Las anaforas tienden a ser ambiguas; por ejemplo, en el discurso Juan ad-
mira a Pedro. El le conoce, si no se proporciona informacién adicional parece
imposible saber a quién se refieren los pronombres él y le. El lenguaje natu-
ral evita algunas de las posibles ambigiiedades mediante el género gramatical;
considérese, por ejemplo, el discurso Juan conoce a una vigilante de la playa
que ama a un hombre que la desprecia. No es posible que la se refiera al objeto
designado por Juan, ya que el género gramatical es distinto; por tanto, ha de
referirse al designado por una vigilante de la playa. La simbolizacién seria

3IX3Y (conoce(juan, X) Avigilanteplaya(X)Aama(X, Y)Ahombre(Y)Adesprecia(Y, X))

Otras veces, sélo el conocimiento adicional que los hablantes —pero no el
ordenador— tienen del mundo real permite realizar la desambigiiacién.
Ejercicio 1.33 Consideremos los siguientes discursos:

- Juan ama a una mujer que no le ama; €l es desgraciado, pero ella es feliz.

- Clierto alumno conoce a un vendedor de ordenadores que es vecino de Luis;
éste tiene un perro. Por cierto, suele ladrarle.

- Juan y su perro estan contentos. El uno ladra, el otro silba.

Para cada uno de ellos se pide dar todas las simbolizaciones gramaticalmente
aceptables, y seleccionar de ellas las que sean compatibles con el conocimiento
de sentido comun. <«

Hasta ahora, la tinica conectiva empleada el el discurso ha sido la conjuncién. La
mayoria de los discursos (anaféricos o no) involucran otras conectivas. Conside-
remos primeramente la negacién, aplicdndola al discurso afirmativo existencial
Juan tiene un Porsche, cuya simbolizacion es
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(1) IX(tiene(juan, X) A porsche(X))
La negacién es Juan no tiene un Porsche, cuya simbolizacién sera
(2) —3X(tiene(juan, X) A porsche(X))
o equivalentemente
(3) VX(porsche(X) — —tiene(juan, X))
(4) VX(tiene(juan, X) — —porsche(X))

que corresponde a las parafrdsis Si una cosa es un Porsche, entonces Juan
no la tiene y Si Juan tiene una cosa, entonces esa cosa no es un Porsche.
Debe observarse que sinticticamente estas férmulas (3) y (4) se parecen poco
a la afirmativa (1). Né6tese ademds que en espafiol es més frecuente y correcto
expresar esta negacién de forma doble, diciendo Juan no tiene ningin Porsche.
Consideremos ahora el discurso afirmativo Juan tiene un Porsche que le
gusta a Mari cuya simbolizacién sera
3X(tiene(juan, X) A porsche(X) A gusta(X, mari))
Sea ahora el discurso Juan tiene un Porsche que no le gusta a Mari. Su simbo-
lizacién sera
3X(tiene(juan, X) A porsche(X) A —gusta(X, mari))
Sea ahora Juan no tiene un Porsche que le gusta a Mari. Su simbolizacién serd
IX(—tiene(juan, X) A porsche(X) A gusta(X, mari))
A diferencia del caso (2) anterior, la negacién se aplica a tiene(juan, X), no
al enunciado completo. Nétese que en espanol dirfamos méas claramente, para
evitar otras posibles interpretaciones, Juan no tiene cierto Porsche que le gusta
a Mari.
Consideremos ahora la implicacién. Partamos de un discurso sin condiciona-
les como Juan ama a una vigilante de la playa y sufre. Su simbolizacién es
IX(ama(juan, X) A vigilanteplaya(X)) A sufre(juan)
Introduzcamos ahora una construccién condicional, como Si Juan ama a una
vigilante de la playa, sufre. Su simbolizacién es
VX(ama(juan, X) A vigilanteplaya(X) — sufre(juan))
que no equivale a la férmula anterior, ni tampoco a
|| 3X(ama(juan, X) A vigilanteplaya(X) — sufre(juan))
pero si equivale, por las leyes del CP (cuadro 1.2), a la férmula existencial
IX(ama(juan, X) A vigilanteplaya(X)) — sufre(juan)
Introduzcamos ahora una referencia anaférica en el segundo enunciado: Si Juan
ama a una vigilante de la playa, la telefonea. La simbolizacién correcta serd
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VX(ama(juan, X) A vigilanteplaya(X) — telefonea(juan, X))
Como antes, nétese que el cuantificador ha de ser universal. Seria incorrecto

| 3X(ama(juan, X) A vigilanteplaya(X) — telefonea(juan, X))
ya que para que tal férmula sea verdadera basta que Juan no ame a alguien,
o que alguien no sea vigilante de la playa. Pero ahora, a diferencia del caso
anterior, también seria incorrecta

| 3X(ama(juan, X) A vigilanteplaya(X)) — telefonea(juan, X)

ya que la variable X queda libre en el consecuente.

Como ya indicamos en la seccién 1.2.5.1, las construcciones condicionales
aparecen en el lenguaje natural disfrazadas de muchas formas. Una de las que
citdbamos era la oracion de relativo en subjuntivo. Por ejemplo, consideremos
el discurso Juan no tiene ningiin Porsche que le guste a Mari. Una parafrasis de
este discurso seria Si Juan tiene un Porsche, entonces éste no le gusta a Mari,
o sea, andlogamente a la férmula (4) anterior,

VX(tiene(juan, X) A porsche(X) — —gusta(X, mari))
Ejercicio 1.34 Consideremos los siguientes discursos:
- Si un agricultor tiene un burro, lo azota.

- Si un hombre lleva paraguas rojo e impermeable verde, no dejard de haber
quien se burle de él.

- Cuando un bosquimano habla, ningin andaluz lo entiende.

- Si Juan ama a una mujer que no le ama, es desgraciado, pero si ella le
ama, es feliz.

- Si alguno admira a una mugjer a la que le gustan todos los gatos, entonces,
si la ve, debe felicitarla.

- Si alguno admira a todas las mujeres que gustan a todos los gatos, enton-
ces, si ve a una de ellas, debe felicitarla.

- Juan y Mari tienen casa. Se aman mucho.

Para cada uno de ellos se pide dar todas las simbolizaciones gramaticalmente
aceptables, y determinar cudles son compatibles con el conocimiento de sentido
comun. <
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1.4.5. ONTOLOGIAS.

En el dmbito de la Inteligencia Artificial, se habla mucho de ontologias.
.. Qué quiere decirse con esta venerable palabra, que se remonta a los escritos
de Aristételes? Al presentar el enfoque logicista en 1.1.2, ya la introduciamos,
diciendo que una ontologia estd formada por los objetos, relaciones y funciones
que describen la parte del mundo acerca de la que se desea razonar; o, segun la
conocida definicién de Gruber [17], una ontologia es la especificacién explicita
de una conceptualizacion. En este sentido hemos hablado de ontologias en las
secciones precedentes.

Pero, si contemplamos maés de cerca el uso de este término, veremos que
puede presentar diversos matices. En primer lugar, frente al sentido limitado
en que lo hemos empleado, ontologia puede designar —y este sentido es el mas
préximo al aristotélico— un sistema de categorias con el que se puede descri-
bir el mundo; es decir, una exposicion formal y sistemdtica de de la ldgica de
todas las formas y modos de ser [7]. Por tanto, una ontologia deberd describir
axiomdticamente el repertorio de tipos de entidades del mundo (objetos, even-
t0s,...) y de categorias usadas para modelarlo (conceptos, propiedades,...) Es
lo que se suele denominar ontologia formal.

En relacién con lo anterior, podemos distinguir entre ontologias genéricas y
ontologias del dominio. Las ontologias genéricas o top-level describen conceptos
muy generales, que tienen aplicacién en cualquier dominio: el espacio, el tiempo,
los sucesos, las acciones,. . . Por el contrario, las ontologias del dominio describen
las palabras asociadas a un &mbito concreto de actividad: la medicina, los buques
de guerra,...

Es claro que todo sistema basado en el conocimiento emplea cierta ontologia
y que, cuanto mas complejo y extenso sea el dominio considerado, mas dificil
y costoso serd extraerla y expresarla. Por ello se pretende modernamente em-
plear ontologfas estdndar o compartidas, de forma que (i) todo ingeniero del
conocimiento pueda reutilizar lo expresado en las ontologias genéricas; y (ii) un
ingeniero interesado en un dominio concreto pueda reutilizar trabajos anteriores
en el mismo dominio y, a su vez, su trabajo pueda ser reutilizado en trabajos
posteriores.

A la hora de concretar estas propuestas, surgen los problemas del nivel de
representacion y de la estructuracion. En cuanto al nivel de representacion, es-
tamos suponiendo que escribimos directamente en un lenguaje de primer orden;
sin embargo, es posible construir formalismos méas préximos al lenguaje natural,
que posteriormente se traduzcan a enunciados de un lenguaje de primer orden
(quizds ampliado y/o restringido). De esta forma, ademds, es posible propor-
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cionar cierta estructura al conocimiento, pues las construcciones del formalismo
reflejardn cierta ontologia formal, es decir, implicardn un cierto conjunto de
conceptos basicos y de propiedades de los mismos.

Por ejemplo, consideremos el siguiente fragmento de ontologia expresada en
ONTOLINGUA [17]:

(define-relation CONNECTS (7compl 7comp2)
"The most general binary conection relation..."
:def (and (component ?compl)
(component 7comp2)
(not (subpart-of ?compl 7comp2))
(not (subpart-of ?comp2 ?compl))))

Vemos que los conceptos relacion, componente y subparte-de estan ya predefi-
nidos. Supuesto esto, la construcciéon anterior equivale a la férmula de primer
orden

VC1VCy(connects(Cq, Cy) —

component(C;) A component(Cy)A

—subpartof (Cy, Co) A —subpartof(Cy, Cq)).
Existen muchos formalismos para describir ontologias (ONTOLINGUA, KIF, Cyc,
..., asi como muchas ontologias estdndar desarrolladas para dominios concre-
tos. Realmente, este campo de investigacién y desarrollo estd hoy en plena ebu-
llicién y transformacién, asi que remitimos al lector interesado, mejor que a
documentos impresos, a una busqueda en la web, partiendo por ejemplo de
http://www.ontology.org o de http://ksl-web.stanford.edu/kst/.
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Capitulo 2

DEMOSTRACION
AUTOMATICA EN EL CP

“De todo lo cual resulta claramente que, si se pudiesen encontrar
caracteres o signos aptos para expresar todos nuestros pensamien-
tos tan neta y exactamente como la aritmética expresa los niimeros
...seria posible hacer todo lo que es posible en aritmética en todo
tipo de materias, en la medida en que estén sujetas al razonamiento.
Todas las investigaciones ...se harian ...mediante una especie de
calculo .. . todo el mundo tendria que convenir en lo hallado o con-
cluido . ..y si alguien dudara de lo que yo hubiera podido aventurar,
le diria: calculemos, senor. Y asi, con pluma y tinta, resolveriamos
prontamente el asunto”.

(Leibniz, “El método verdadero”, c. 1678)

El lector atento se habra dado cuenta de que la definicién de validez que
hemos dado para el CP involucra un universo indefinidamente grande de inter-
pretaciones; es decir, a diferencia de lo que ocurre en el ¢p, en general no existe
una lista finita (algo asf como una tabla de verdad) que contenga todas las po-
sibles interpretaciones de una teoria. En realidad, como veremos més adelante,
el teorema de Herbrand (ejercicio 2.3) nos permite considerar inicamente las
interpretaciones de Herbrand a efectos de estudiar la validez de una teoria ex-
presada en forma clausal; pero, aun asi, el nimero de interpretaciones posibles
es infinito.
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Quizas alguno tenga la esperanza de encontrar otro método que reduzca atin
més el conjunto de interpretaciones que hay que tener en cuenta o que, de alguna
otra forma, proporcione un algoritmo para decidir la validez de una férmula o
argumentacién. Pero, por desgracia, ello es imposible; como Church [6] [5] y
Turing [41] [42] demostraron en la década de 1930, el problema de la validez
de una férmula del CP es indecidible. Puede darse una demostracién basada en
una idea muy simple: la pregunta de si una maquina de Turing o dispositivo
equivalente se detiene, se puede reducir a estudiar la validez de cierto argumento;
asi que, si la validez fuera decidible, también lo seria el problema de la parada;
pero éste, como sabemos, no lo es.

Asi que, a lo sumo, podemos aspirar a contar con procedimientos de semide-
cision, esto es, métodos que garanticen sélo una respuesta correcta de la mitad
del problema planteado. Es decir, podemos encontrar métodos que den siempre
una respuesta correcta cuando una férmula (o argumento) sea vélido. Pero si no
es asi, es decir, si la férmula (o argumento) no es valido, puede que el método
no termine. Trataremos ahora dos de tales procedimientos, que son los mismos
que vimos en el capitulo 1.2 —resolucién y arboles— adaptados al caso presente.

2.1. RESOLUCION.

El método de resolucién [37] es quizds el mds conocido y empleado para
demostracién automaética en el C'P. Por ello lo trataremos con cierta extensién.
El lector puede ampliar y contrastar lo dicho en esta paginas con lo expuesto
por ejemplo en [4], [14] o [9].

El método exige primeramente pasar cada férmula a la llamada forma nor-
mal de Skolem (seccién 2.1.1). Por otra parte, el proceso de unificacidn (seccién
2.1.2) es parte integrante del método para el CP. Expuesto todo esto, ya serd po-
sible enunciar la regla y el método de resolucion (seccién 2.1.3) y demostrar sus
propiedades (secciones 2.1.4 y 2.1.5). Finalmente, expondremos algunas varian-
tes del método (seccién 2.2).

2.1.1. FORMA NORMAL DE SKOLEM.

Definicién 2.1 Se dice que una férmula ¢ estd en forma prenexa cuando ¢
carece de cuantificadores o es de la forma €1 X;...¢, X, M, donde X1,..., X,
son todas distintas, cada €;X; (1 <i<n) esVX; o bien 3X;, y M carece de
cuantificadores. Llamaremos a €1 X;...¢, X, el prefijo y a M la matriz de la
formula .

78



CAPITULO 2. DEMOSTRACION AUTOMATICA EN EL CP

Por ejemplo, la siguiente férmula estd en forma prenexa:
WIZ(p(f(a)) — a(Y, 2)).

y la siguiente férmula no estd en forma prenexa:
vX3Y (p(X) = 3Z q(f(Y, Z)).

Definicién 2.2 Una férmula estd en forma normal de Skolem cuando cumple
estas tres condiciones:

i) estd en forma prenexa;
ii) todos los cuantificadores son universales;
iii) la matriz estd en forma normal conjuntiva.

Por ejemplo, la siguiente férmula estd en forma normal de Skolem:
VXYY ((~p(X) V (F(X)) A ~r(g(Y))

y la siguiente férmula no lo estd
vX3Y p(X,Y).

Definicién 2.3 (Forma normal de Skolem correspondiente a una férmula.)
Una formula generada a partir de la formula A por el procedimiento de la ta-
bla 2.1 es una forma normal de Skolem correspondiente a A, y se denota por
FNg(A).

Los pasos 2-6 se efectiian merced a las equivalencias de los cuadros 1.2.6 y 1.2.
Por su parte, el paso 8 del procedimiento aun tiene que especificarse. Las cons-
tantes y simbolos funcionales que se introducen al eliminar los cuantificadores
existenciales se denominan constantes de Skolem y funciones de Skolem respec-
tivamente. Al llegar a este paso, el lector puede comprobar que tenemos una
férmula en forma prenexa ¢ X;...¢,X,M, donde la matriz M esti en forma
normal conjuntiva. Sea €;X; (para algin i, 1 < i < n) el primer cuantificador
existencial 3X; del prefijo € X;...¢€,X,,, entonces:

a) Si no aparece ningin cuantificador universal antes de 3X;, se elige una
constante ¢ que no aparezca en M y se sustituye M por M[X;/c]; acto
seguido se borra 3X; del prefijo.

b) En caso contrario, consideremos la lista de cuantificadores universales
Cuy Xuyy -+, €, Xy, que preceden a 31X, en el prefijo y elijamos una
letra de funcién f que no aparezca en M. Se sustituye M por

M[Xl/f(XUUaXum)]

y se borra 3X; del prefijo.
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1. Eliminar cuantificadores vacuos y renombrar
variables, de forma que no haya apariciones
libres y ligadas de una misma variable, ni varios
cuantificadores con la misma variable.

2. Eliminar todas las apariciones de <.

Eliminar todas las apariciones de —.

Llevar todas las apariciones de — hasta los atomos

y aplicar doble negaciédn.

Llevar todos los cuantificadores a la cabeza.

Pasar la matriz a forma normal conjuntiva.

Cuantificar existencialmente las variables libres.

Suprimir los cuantificadores existenciales,

=~ w

® N o

sustituyendo sus variables por constantes y
funciones de Skolem.

Cuadro 2.1: Procedimiento para pasar a forma normal de Skolem.

La férmula resultante tras efectuar los pasos a) o b) ha perdido un cuanti-
ficador existencial. Repetimos la operacién con dicha férmula hasta que ya no
queden cuantificadores existenciales en el prefijo.

Para realizar este paso necesitamos, ademads, disponer siempre de nuevas
constantes y funciones que no intervengan en las férmulas para las cuales se
quiere obtener la forma normal de Skolem; por ello, a veces habré que extender el
conjunto de simbolos de constante y funcién del lenguaje usado. Para simplificar,
presupondremos hasta el final de esta seccién que contamos siempre con un
lenguaje cuyo vocabulario posee un conjunto infinito numerable de simbolos de
constante y también de funcion.

Ejemplo 2.1 . Vamos a aplicar el procedimiento descrito a algunas férmulas.
Por ejemplo, sea la férmula

-3IX(p(X) = ¥X q(X) Vr(Y))
1. Renombrar variables:
-3IX(p(X) = VZ q(Z) V r(Y))
2. No hay apariciones de >
3. Eliminacién de —
=3AX(=p(X) VVZ q(Z) Vv r(Y))
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4. Paso de — a los 4tomos y doble negacién:

VX~ (—=p(X) VVZ q(Z) V r(Y))
YX(==p(X) A =VZq(Z) A =r(Y))
VX(p(X) A IZ=q(Z) A =r(Y))

5. Paso de los cuantificadores a la cabeza:
VX3Z(p(X) A ~q(Z) A r(Y))
6. Forma normal conjuntiva de la matriz: ya esta.
7. Cuantificacién existencial de las variables libres:
IYVXIZ(p(X) A =q(Z) A —r(Y))
8. Supresién de los cuantificadores existenciales:
VX (p(X) A ~q(F(X)) A r(a))
Sea ahora la férmula
VX(=p(X,a) = Y (p(Y, g(X)) A VZ(p(Z,g(X)) = p(Y,2))))
1. Forma prenexa:

VX(p(X,a) vV 3IY(p(Y,g(X)) AVZ(=p(Z,g(X)) Vp(Y,Z))))
VXIAYVZ(p(X,a) V (p(Y,&(X)) A (=p(Z,g(X)) Vp(Y,Z))))

2. No hay variables libres.
3. Forma normal conjuntiva de la matriz:
VXIYVZ((p(X,2) V p(Y,g(X))) A (p(X,2) V ~p(Z,g(X)) V p(Y,2)))
4. Supresién de cuantificadores existenciales:
VXVZ((p(X,a) V p(f(X),g(X))) A (p(X,a) V =p(Z, g(X)) V p(f(X), Z))) <

Ejercicio 2.1 Pasar a forma normal de Skolem las siguientes férmulas:
1. ¥Xa(X) = =3Z(b(W,Z) = VY c(W,Y))
2. a(X,Y) A (X b(X) = VYVZc(X,Y,Z))
3. VX@EY q(X,Y) vVY3IZr(X,Y,Z))
4. VYX-3IX p(X,Y) — IX q(X, X)
5. VX(=VY=VZ p(Y,Z) Vv -3IY(VZq(X,Y,Z) = p(X,Y)))
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El algoritmo de la tabla 2.1 no precisa cudl es la forma normal de Skolem més
abreviada de una férmula; pues no hemos establecido una prioridad respecto del
orden de extracciéon de los cuantificadores en el paso 5. Mejoraremos el método
si extraemos primero los cuantificadores existenciales antes que los universales,
siempre que sea posible. Por ejemplo, sea la férmula

VX p(X) = 3Y q(Y) ATZ r(Z).
Dos formas posibles de ejecutar el proceso hasta el paso 6 son:
a) VXIYIZ(((=p(X) vV a(Y)) A (=p(X) V r(Z)))
y
b) IYIZVX(((=p(X) V a(Y)) A (=p(X) V r(Z)))
Por la primera llegamos a la forma normal de Skolem
a) VX((=p(X) V q(f(X))) A (=p(X) V r(g(X)))
y por la segunda a

b) VX((=p(X) V q(a)) A (=p(X) V r(b));
esta forma es evidentemente menos compleja que la primera, la cual cuenta con

dos simbolos de funcién. Remitimos al lector a [1], [34], donde puede encontar
algoritmos “astutos” para encontrar formas normales optimizadas.

En general, no se puede afirmar que una férmula como A < FNg(A) sea
vélida. Por ejemplo, consideremos la férmula YX3Y p(X,Y). Pasidndola a forma
normal de Skolem tenemos VX p(X,f(X)). Ahora definamos una interpretacién J
con dominio D = {0, 1} tal que J(p) = {(0,1),(1,1)} e I(f) es la funcién cons-
tante en D. Es facil ver que VX3Y p(X,Y) es verdadera en J, pero ¥X p(X, f(X))
es falsa en J. No obstante, si tenemos el siguiente teorema:

Teorema 2.1 Sea FNgi(p) una forma normal de Skolem cualquiera de una
formula ¢. Entonces ¢ es insatisfacible si y sélo si FNgp(p) es insatisfacible.

DEMOSTRACION: Repasemos el proceso de obtencién de F'Ngy, () ofrecido por
el algoritmo de la tabla 2.1. En virtud del ejercicio 1.8, la proposicién 1.11 y las
equivalencias de los cuadros 1.2.6 y 1.2, resulta que ¢ y la férmula obtenida en
el paso 6 de dicho algoritmo son légicamente equivalentes (puede comprobarse
facilmente). Ahora, si el paso 7 del algoritmo es aplicable, entonces, por el
ejercicio 1.10, la férmula obtenida en el paso 6 es satisfacible si y sélo si lo es su
clausura existencial. Pero tanto si es aplicable dicho paso como si no, tenemos
finalmente una férmula cerrada, siendo ésta la forma prenexa

FP(p) = €1 X, ...C X, M
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donde M estd en forma normal conjuntiva, de acuerdo con el procedimiento.
Ahora atendamos a las diferentes etapas de la skolemizacion (dltimo paso del
algoritmo):

1. Sino hay cuantificadores existenciales en F'P(¢p), entonces F P(p) es FNgp(p)
y se cumple el resultado trivialmente.

2. Silos hay, sea €; X; el primer cuantificador existencial del prefijo de F'P(yp).
Ahora tenemos dos casos:

a) Sii =1, entonces, FP(p) es de la forma 3X; ¢, X, ... ¢, X,,M. Abre-
viemos €2 Xs ... ¢, X, M mediante €X M. Probaremos que F P(y) =
3X,E€X M es satisfacible si y sblo si o' = €X M[X/c] es satisfacible,
donde ¢ es una nueva constante de Skolem, es decir, ¢ ¢ Con(F P(y)).

Supongamos que FP(p) es satisfacible; entonces existe una inter-
pretacién J y una asignacién a tales que J F, FP(p), es decir,
J Faxy/q) €X M. Tomemos dicho elemento d y definamos una in-
terpretaciéon J* que es igual que J en todo salvo quizd por el hecho
de que J* asigna d a la constante ¢, i.e., 7*(¢) = d. Por lo tanto, J e
J* coinciden en todo sobre F'P(yp) y, puesto que ambas interpretacio-
nes poseen el mismo dominio, no hay ningin inconveniente en tomar
a[X/d] como una asignacién sobre J3*. Luego J* Fqrx, /q) €X M, es
decir, 7% Fqrx, /3+(c)) €X M, luego, por la proposicién 1.10 (sustitu-
cién), obtenemos que J* F, €X M[X;/c]. Luego ¢ es satisfacible.
Reciprocamente, supongamos que ¢' es satisfacible. Entonces hay
al menos una interpretacién J y una asignacién a tales que J F4
CXMI[X,/c], luego, por la proposicién 1.10, J Fqx, /3¢ €XM,
asi que J F, 3X1€X M. Por lo tanto, FP(p) es satisfacible igual-
mente.

b) Sii # 1, entonces sea ¢’ la férmula:
VX, .. -VXi—IQ:H-lXH—l . Q:anM[XZ/f(Xl, . 7Xi—1)]

donde f ¢ Fun(FP(p)). Probemos que ¢’ es satisfacible si y sélo si
FP(p) lo es. Supongamos que F P(¢p) es satisfacible. Existe, entonces,
una interpretacién J y una asignacién a tales que J F, F'P(p). Sea D
el dominio de J. Consideremos objetos cualesquiera d,. .., d;—1 € D.
Entonces tenemos

IRy /i) Xio fdia] 3Xi Cip1 X - . E X n M
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Abreviemos la asignacién a[X1/ di]...[X;—1/ di—1] mediante a* y
la féormula €1 X1 ... €, X, M mediante €X M. Existe, pues, un
d € D tal que

3 Eaerx,ja) CXM

Sea J* una interpretacién que coincide en todo con J salvo quiza por
el hecho de que J* interpreta el simbolo f como una funcién que asigna
dicho d alasecuencia dy,. .., d;—1. Es facil ver que 3" Fq-[x, /q) €X M;
luego, por la proposicién 1.10, tenemos que

I o EXMIXG/f(Xy, .0, X))

Ahora bien, dy,..., d;_1 eran elementos cualesquiera del dominio D,
por tanto J* E,- . Luego ¢’ es satisfacible.

La reciproca se demuestra de modo similar y se deja al lector.

Hemos probado, entonces, que hay una férmula ¢’ en la que ha desaparecido
un cuantificador existencial de F'P(p) y que es satisfacible si y sélo si F/P(p)
lo es. Repitiendo este proceso con ¢’ obtendremos una férmula ¢’ en la que
ha desaparecido un nuevo cuantificador existencial, y asi sucesivamente hasta
eliminarlos todos. En otras palabras, supongamos que hay k cuantificadores
existenciales en F'P(y). Si realizamos el proceso anterior k veces, partiendo de
FP(y), obtenemos finalmente el resultado deseado.
<

Una forma normal de Skolem se ajusta, pues, al esquema
VX1.. VX, (C1 A... A Ch)

donde las diferentes C,..., Cy son cldusulas. Las definiciones de cldusula y
literal son las mismas que para la légica proposicional. En este caso, los literales
positivos o dtomos tienen la forma p(ti,..., t,). A partir de una forma normal
de Skolem podemos obtener una férmula conjuntiva de la forma

VX .. VX,Ci AL AYX, L VX,C

Tengamos en cuenta que el cuantificador universal se distribuye en la conjuncién,
de modo que VX (A A B) es logicamente equivalente a VX A A VX B. Debido a
este hecho y al resultado de la proposicién 1.2.1(2), es costumbre prescindir de
los cuantificadores universales y presentar VX, ...VX(Cy A... A Cy) en forma
de conjunto de cldusulas: {C1,...,Ci}. Seguiremos esta practica en lo sucesivo,
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y deberemos tener en cuenta que las variables de las cldusulas se consideraran
cuantificadas universalmente. Por analogia con la seccion 1.2.6, dada una férmula
¢, el conjunto de cldusulas que aparecen en F'Ng;(y) lo denotaremos C,. A su
vez, el conjunto de cldusulas de un conjunto de férmulas I' se denota Cp =
Uger €y Por ejemplo, la férmula

YXVYVZYU(p(X,Y) A (a(a,f(Z)) vV =r(U)),
que ya esta en forma normal de Skolem, se representa

{p(X,Y),a(a,f(2)) v =r(U)}.
Asi pues, andlogamente a la proposicién 1.2.12, tenemos

Proposicién 2.1 Se cumple lo siguiente:
1. ¢ es satisfacible si y solo si Cy, es satisfacible.

2. T es satisfacible si y solo si Cp es satisfacible.

Ejercicio 2.2 Sean

@ =YX p(X) = VY q(f(Y) vr(g(Y)))
y

p=VX3Y(p(Y) A (a(X) = VZ r(Z))).

Construir los conjuntos Cy, Cp, y Cry, 3 <

Definicién 2.4 Sea I' un conjunto de clausulas. Una clausula es un instancia
de base de una cldusula C de T', si procede de C por sustitucion de las variables
de C' por términos de base de T'. A una instancia de base de una cldsula la
denominaremos clausula de base.

Por ejemplo, las férmulas —p(f(f(a))) V q(f(a)) y —p(f(a)) V q(a) son instancias
de base de —p(f(X)) V q(X). Por su parte, p(f(a)) V p(f(a)) y p(a) V p(b) son
instancias de base de p(X) V p(Y).

Esta definicién es un caso particular de la nocién de ”instancia de una ex-
presién” que daremos més adelante.

Ejercicio 2.3 Sea una interpretacién J con dominio D de un conjunto de
férmulas T'. Definiremos una interpretacién de Herbrand H de I' a la que deno-
minaremos interpretacion de Herbrand correspondiente a J como sigue. Asigne-
mos a cada elemento u (un término de base) de Ur un elemento de d, al que
denotaremos d[u], de acuerdo con el siguiente plan:
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- para cada constante ¢ € Con(T'): d[c] = J(c).

Si no hay constantes en Con(T), entonces se elige un elemento arbitrario
de D para la tnica constante que se introduce en el universo de Herbrand.

- para cada simbolo de funcién n-ario f € Fun(l) y términos t1,..., t, €

Ur, d[f(t1,. .., tn)] = 3(f)(d[tn] ... d[tn]).
- para cada predicado n-ario p € Pred(T") y términos ty,..., t, € Ur:
(t1,. .., tn) € H(p) siy solo si (d[ty,] ...d[t,]) € I(p).

Sea una asignacién a’” sobre H cualquiera. Definamos una asignacién a sobre J
tal que para toda variable X, a(X) es el elemento de D asociado a af (X) € Ur,
o0 sea:

a(X) = a(X)[a" (X)]
Ahora se pide probar lo siguiente:
1. Paratodo término t que aparezca en I se tiene que Hy(t) = Hy(t)[Hyn (t)].
2. SiJFE , entonces H F .
Pista: por induccién sobre el grado de una férmula ¢ de T

3. Un conjunto de cldusulas tiene un modelo si y sélo si tiene un modelo de
Herbrand.

<

Es de notar que el resultado del apartado 3 del ejercicio anterior no se puede
generalizar a conjuntos de férmulas cualesquiera; sélo vale para conjuntos de
cldusulas. Pues, sea el conjunto I' = {p(a), "VX p(X)}. Tomemos la interpreta-
cién J con dominio {0, 1} tal que J(a) = 0, I(p) = {0}. J es un modelo de I. Sin
embargo, la base de Herbrand de T" es {p(a)}. Las interpretaciones de Herbrand
de " son @ y {p(a)} y ninguna es un modelo de I.

Ejemplo 2.2 Veamos algunos ejemplos de interpretaciones de Herbrand correspon-
dientes a ciertas interpretaciones dadas.

1. Sea {p(X,a),q(b,f(Y))}. Sea J una interpretacién con domino D tal que
D = {1, 2}
3(a) = 1, 3(b) = 2.
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Ilp) = {1, 1), (2, D}; 3(a) ={(2, 2)}
J(f) es la funcién identidad sobre D.

En lo que sigue convenimos en que f" significa la iteracién n veces de f.
La interpretacién de Herbrand correspondiente a J es

{r(a,a),p(b,a),a(b,b)} U {p(f"(a)),a)| n > 0} U {p(f"(b),a)| n > 0}.
2. Sea {p(X),q(f(Y))}. Sea J una interpretacién con dominio D tal que
D = {1, 2};
I(p) = {1}; 3(a) = {2};
) ={1,2), (2 D}
En este caso tenemos dos interpretaciones de Herbrand, H; y H, corres-
pondientes a J, ya que no aparecen constantes en el conjunto de clausulas
y tenemos dos elementos en el dominio D. Asi que a la constante de Her-

brand introducida a le podemos asignar uno u otro elemento del dominio.
Pensamos que para Hy, a es 1 y para Hs, a es 2, entonces

H, = {p(a)} U{q(f"(a))|n es impar}
H, = {q(f"(a))|n es par}

<

Proposicién 2.2 Una cliusula C' de un conjunto de cldusulas T' es verdadera
en una interpretacion de Herbrand si y solo si cualquier instancia de base de
C es verdadera en dicha interpretacion. C' es falsa en una interpretacion de
Herbrand si y solo si al menos una instancia de base de C es falsa en dicha
interpretacion.

DEMOSTRACION: Es la de 1.17, teniendo en cuenta que C' esta universalmente
cuantificada. «

2.1.2. SUSTITUCION Y UNIFICACION.

El procedimiento expuesto en la seccién anterior produce finalmente un con-
junto de clausulas en las que aparecen variables universalmente cuantificadas.
Estas variables podrian sustituirse por términos cualesquiera del universo de
Herbrand preservandose la verdad, de acuerdo con la proposicién 2.2. De esta

87



A. Burrieza y J. L. Pérez de la Cruz

forma, sustituyendo las variables por términos de base cualesquiera, tendriamos
un conjunto de cldusulas sin variables al que aplicariamos la regla de resolu-
cion del ep. Este procedimiento es la llamada resolucion bdsica. Por ejemplo, el
conjunto de clausulas

{=p(X) va(Y), p(a),—a(b)}
da lugar por sustitucién de las variables al conjunto

{=p(a) va(a), =p(a) v q(b), =p(b) V q(a), =p(b) V q(b), p(a), ~q(b)}

y ahora podemos resolver a partir de este conjunto procediendo exactamente
igual que en el caso proposicional. El problema es que si hay simbolos de funcién
el conjunto de cldusulas de base es infinito. Ciertamente, de acuerdo con el
teorema fundamental de Herbrand (ejercicio 2.10), la insatisfacibilidad de un
conjunto de cldusulas depende de la de algiin conjunto finito de cldusulas de
base de dicho conjunto; pero no hay un método eficiente para ir generando tales
subconjuntos finitos de cldusulas de base e irlos tratando.

Por ello el descubrimiento por Alan Robinson en 1965 [37] de una versién del
método de resolucién que opera con cldusulas de todo tipo (no necesariamente
de base) se considera como uno de los principales hitos en la historia de la
Demostracién Automética.

Pongamos un sencillo ejemplo. Sean las cldusulas:

C1 = p(X) vV —q(X)
Ca = =p(f(Y))
Cs =q(2)

Si solamente consideramos la resolucién en férmulas de base, no podemos ope-
rar directamente con los literales p(X) y —p(f(Y)); sin embargo, es obvio que
los d4tomos p(X) y p(f(Y)) se reducen al mismo si sustituimos X por f(Y). Esto
traeria consigo realizar dicho cambio en todas las apariciones de X a lo largo
de C1 (no olvidemos que C; se halla en el 4&mbito del cuantificador VX). Como
consecuencia de la sustitucién mencionada tendremos p(f(Y)) V =q(f(Y)) (una
instancia no basica de C) y, resolviendo con Cs, obtenemos —q(f(Y)). La re-
duccién de p(X) y p(f(Y)) a un mismo dtomo antes de resolver se denomina
unificacidn (de dtomos). Una enorme ventaja de este proceder es que podemos
resolver una instancia de una clausula resolvente con otras cldusulas del con-
junto inicial. Ahora, la resolvente —q(f(Y)) junto con Cs da lugar a la cldusula
vacia sustituyendo Z por f(Y).

Expondremos ahora con detalle el proceso de unificacién. El mecanismo ge-
neral de la sustitucién se expuso en la secciéon 1.2. La nocién que vamos a
emplear aqui es lo que denominamos entonces “sustitucién simultdnea” (con la
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simple restriccién de eliminar las apariciones de expresiones de la forma X;/X;
en una sustitucién). Necesitamos explorar ahora este mecanismo en el contexto
especifico de la resolucion, y lo haremos con la notaciéon que se suele emplear
en dicho contexto. El uso que vamos a hacer de la sustituciéon no requiere, sin
embargo, tomar tantas precauciones como antes, pues las férmulas que vamos a
tratar poseen una forma muy especifica: siempre serdn cldusulas, en las que se
pueden sustituir sin problemas las variables por cualquier término.

Definicién 2.5 Una sustitucién o es un conjunto finito de la forma
{Xy/t1, ..., Xn/tn}

donde X1,. .., Xy, son variables (todas distintas entre si), t1,. .., t, son términos
y X; es distinta de t; (para 1 <i <n). Cada elemento X;/t; es un par de o y
X, es una cabecera de o. Si todos los términos de la secuencia tq,..., t, son
de base se dice que o es una sustitucion basica. Si o carece de elementos se
denomina sustitucion vacia y se denota mediante €.

Por ejemplo, los siguientes conjuntos son sustituciones:

{X/Y,Y/a,Z/f(g(a,b))},
{X/f(a),Y/b}.
Esta dltima es una sustitucién basica. El siguiente conjunto no es una sustitu-
cién:
{X/f(a),X/b,Y/Z}.
La unién de dos sustituciones no es siempre una sustitucién. Por ejemplo, sean
o1={X/a,Y/f(b)} vy o2 ={X/Y,Z/f(b)}.
La unién resultante es
{X/a, Y/f(b), X/Y, Z/f(b)}

que no es una sustitucion.

En lo que sigue, mediante expresion entenderemos lo siguiente: término, lite-
ral o clausula.

Definicién 2.6 Sea £ una expresion y o una sustitucion {Xi/t1,..., Xn/tn}.
Eo denota la expresion resultante al sustituir simultineamente en £ cada apa-
ricion de X; por t; (para 1 <i < n). Eo se denomina instancia de £.

Podemos también definir recursivamente £ como sigue:

= Sea £ un término. Tenemos:
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1. Sea & la variable X. En ese caso, resulta:

a) Si X no aparece como cabecera en o, entonces Xo es X.

b) Si X aparece como cabecera en o y X/t es un par de o, entonces
Xoest.

Si £ es la constante ¢, entonces £o es c.

3. Si €& esel término f(ty, ..., t,), entonces Ea es f(t10,. .., tho)

= Sea £ un literal L. En este caso:

1. Si L es un dtomo p(t1, ..., t,), entonces o es p(tio, ..., tho).
2. Si Leslanegacién de un dtomo —p(ty, - .., t,), entonces Eo es —p(t1 o,
vy tpo).
) n

= Sea &£ una clausula L,V ...V L,. Entonces €0 es LioV ...V Lo, elimi-
nando los posibles literales repetidos.

En general, si £ es una expresion cualquiera, £e = &.

Ejemplo 2.3 Sea o la sustitucién {X/Y,Z/f(a)}. Si € es la expresion que se
indica en cada uno de los siguientes casos, £o es el resultado correspondiente:

1. & es el término f(X); entonces o es f(Y).
2. & esel atomo p(X, Y, g(Z)); entonces Eo es p(Y, Y, g(f(a))).

3. & esla clausula p(X,Y) V —q(a); entonces £ es p(Y,Y) V 7q(a).

4

Si {&1,...,&x} es un conjunto de expresiones, entonces {&1,...,Ey}o denota

{&10,..., Eyo}. Es claro que si £ y £ son conjuntos de expresiones, entonces
(EfU&E)o=EaU&o vy (& —&)o=Eo-Eo

Definicién 2.7 La composicién de dos sustituciones o1 = {X1/t1,..., Xn/tn}

yo2 ={Y1/ui,..., Yo /un} es la sustitucion denotada
o100y = {X1/t10a,..., Xp/tno2, Y1 /U1, ..., Y /um}

de la cual se ha borrado todo par de la forma X;/t;oo tal que tioo = X; y todo
par de la forma Yj/u; tal que Y; € {Xq1,..., X, }.
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Ejemplo 2.4 Sean

o1 = {X1/t1, Xa/ta, X3/tz} = {X/Y,Y/b,Z/U}
y

o2 = {Y1/u1, Ya/us} = {Y/f(a),U/Z}.
Entonces

{Xi/tio2, Xa/taos, X3/tz02, Y1 /u1, Yo us} =
{X/Y02,Y/boa,Z/Ua,,Y [f(a),U/Z}=
{X/F(a),Y /b, Z/Z,Y [£(2), U/Z}.
De este conjunto borramos Z/Z, i.e., X3/t302, pues t3o2 = X3,y también Y /f(a),
pues Y aparece en {X1, X», X3}. Asi que, finalmente, tenemos

o100 = {X/f(a),Y/b,U/Z}. «
Ejercicio 2.4 Probar lo siguiente:

1. Para cualquier sustitucién o se tiene:
go€E=€00 =o0.
2. Para sustituciones cualesquiera o1, o2 y o3 se cumple lo siguiente:
((71 ¢} 0'2) 003 = 0710 ((72 0(73).
3. Para cualquier expresion £ y sustituciones cualesquiera oy y o3:
(Eo1)os = E(01 0 02).
N
Definicién 2.8 Seann expresiones&y,. .., Ey (n > 1) Ununificador de {&4,.. .,

En} es una sustitucidn o tal que E10 = ... = E,0. Es decir, o reduce todas las
expresiones a la misma expresion.

En particular, si n = 1, es claro que € es un unificador de {&;}.
Por ejemplo, sea el conjunto de términos {f(X,g(h(a)), f(g(Y),g(Y))}. En-
tonces la sustitucién

{X/g(h(a)), Y/h(a)}

es un unificador de dicho conjunto, pues obtenemos el mismo término, a saber:

f(g(h(a)), g(h(a))).

Sea el conjunto de dtomos {p(X,f(Y)), p(a, Z), p(X, Z)}; entonces la sustitucién

{X/a,2/f(Y)}

es un unificador de dicho conjunto, pues obtenemos el mismo resultado: p(a, f(Y)).
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Definicién 2.9 Se dice que una sustitucion o1 es mas general que una sustitu-
cion oo si existe una sustitucion os tal que o5 = o1 o 03. Se dice que o es un
unificador més general (umg) de un conjunto de expresiones {&1,..., E,}si es
mds general que cualquier otro unificador de {&1,..., En}.

Un wmg contiene, por tanto, el minimo numero posible de pares para unificar y
contiene el mayor nimero posible de variables como cabeceras. Por ejemplo, sea
el conjunto de dtomos {p(X,g(Y)), p(f(a),Z)}. Un unificador de dicho conjunto
es la sustitucién

o1 = {X/f(a),Y/a,Z/g(a)}.

Otro, es la sustitucién

o2 = {X/f(a),Z/g(Y)}.
Pero o5 es mas general que o1, ya que

o1 = op0{Y/a}.
Hay una forma algoritmica para encontrar un umg para un conjunto de &ato-
mos, caso de que sean unificables, que puede darse igualmente para términos.

Seguidamente exponemos el procedimiento, pero antes daremos las siguientes
definiciones:

Definicién 2.10 Una discrepancia entre dos términos t; y ty se obtiene locali-
zando el primer simbolo (contando desde la izquierda) no igual entre t1 y t2
y extrayendo el subtérmino que comienza con ese simbolo. Similarmente, una
discrepancia entre dos atomos con el mismo predicado, A1 y As, se obtiene
localizando el primer simbolo (contando desde la izquierda) no igual entre Ay
y Ao y extrayendo la subexpresién (término) que comienza con ese simbolo. Si
hay una discrepancia entre los términos t; de Ay y t2 de As, la denotaremos
mediante t1 — ta.

Por ejemplo, sean los atomos p(f(a),X,b) y p(Z,Y,b). Una discrepancia entre
ambos es: f(a) — Z.

Definicién 2.11 Sea {&,..., E,}un conjunto de expresiones. Dicho conjunto
es unificable si y sdlo si existe un unificador del mismo.

Proposicion 2.3 Dados dos dtomos A1, A, se puede decidir si son unificables,
y en caso afirmativo es calculable el unificador mds general que los unifica.

DEMOSTRACION: La tabla 2.2 proporciona un algoritmo de unificacién. Probe-
mos su correccién. Para ello hay que probar que: a) el algoritmo siempre termina;
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1. SUSTITUCION < e.
Mientras exista una discrepancia entre A; y As

2. A, « A,;SUSTITUCION; A, ¢ A»SUSTITUCION.
3. t; —ty + primera discrepancia de A; y As.

4. Si t; y ta son constantes o funtores diferentes,
devolver FRACASO.

5. Si uno de ellos es una variable V y otro un
término donde aparece V, devolver FRACASO.

6. Si uno de ellos es una variable V y otro un
término ¢, SUSTITUCION ¢« SUSTITUCION o {V/t}.

fin-mientras.

7. Devolver SUSTITUCION.

Cuadro 2.2: Algoritmo de unificacién.

b) si termina en los pasos 4 6 5, no existe ningun unificador; c¢) si termina en el
paso 7, el algoritmo devuelve una sustitucién que es un umg. a) es trivialmente
verdadero, ya que en cada ejecucién del ciclo mientras se reduce el numero de
variables que aparecen en ambos dtomos. b) tampoco presenta dificultad, pues
ninguna sustituciéon puede unificar constantes diferentes, ni constantes con fun-
tores, ni términos que empiezan por diferentes funtores: y en cuanto al paso 5,
basta considerar que ¢; y t; son de distinta longitud y que lo seguiran siendo
tras cualquier sustitucion de V.

Queda, pues, probar c), es decir, que si hay un unificador 6, el algoritmo
devuelve una sustitucién o que es un umg, es decir, tal que § = o o §', para
alguna sustitucién 6. Consideremos la sucesién de sustituciones og, o1,..., oy
generadas en el paso 6 del algoritmo. Probemos por induccién que para cualquier
i, 0 < i < n, existe una 6’ tal que § = o; o f'. Consideremos i = 0; entonces
trivialmente serd o9 = € y # = € o . Consideremos la proposicién verdadera
para ¢t =0,..., k y demostremos que también lo es para k + 1. Si es verdadera
para i = k, entonces existe ¢}, tal que # = oy o 6}.. Sea Vj — t;, la discrepancia
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detectada en el paso k del algoritmo. Puesto que 6 = o o 6}, es un unificador,
6}, debe unificar Vi, — ti, es decir, Vi.0}, = t10}, vy Vi no aparece en t;. En el paso
siguiente serd o1 = oy o {Vi./tx}. Sea 8 | = 0, — {Vi/tx0}.}. Como Vi no
aparece en ty, es claro que #30;_ , = #40).. Ahora tenemos dos casos:

i) Vi es una cabecera de 6. Entonces t,6,_, # Vi (pues es claro que V,.0), #
Vi; asi que, por definicién de composicién, {Vi/tr} o0 = {Vi/t0) 1}
Ui = {Va/trb,} U0 = {Vi/tr0,} U (0, — {Vi/tr0}}) = 0} Luego
0= O 09;c = 0k © {Vk/tk} 09;6+1 = Ok+1 09;6+1.

ii) Vi no es una cabecera de 0),. Entonces Vi, = V3.0), = ti0;,, luego {Vi./tr} o
0, = ({Vi/te0;} U 0;) —{Vi/t10,.} = 0},. Ademis, en este caso, 0., = 0,
luego se obtiene de nuevo 6 = oy41 00 ,, q.e.d.

Ejemplo 2.5 . Vamos a aplicar el algoritmo a 4; = p(X,f(Y)), A2 = p(a, X).
Renombrar variables:

p(X,f(Y)) p(a,Z)
Arrancamos con la sustitucién o9 = €. Discrepancia: X — a. Se sustituye X por
a, es decir, tenemos la sustitucién o4 = {X/a} y queda

p(a, f(Y)) p(a,2)
Discrepancia: f(Y) — Z. Se sustituye Z por f(Y). Ahora tenemos oy = o1 o
{2/f(Y)} = {X/a,Z/f(Y)} y queda

p(a, f(Y)) p(a;f(Y))
No hay discrepancias: éxito con la sustitucién {X/a, Z/f(Y)}.
Sean ahora 4; = p(X,f(Y),g(Z)), A2 = p(f(U), U, h(b)). No hace falta renombrar
variables; op = €.

Discrepancia: X — f(U). o1 = {X/f(U)} y queda

p(f(U),f(Y),8(2)) p(f(U), U, h(b))
Discrepancia: f(Y) — U. o2 = a1 o {U/f(Y)}= {X/f(f(Y)),U/f(Y)} ¥ queda
p(f(f(Y)),f(Y),8(2)) p(f(f(Y)),£(Y), h(b))

Discrepancia: g(Z) — h(b). No se puede unificar (g y h son distintos simbolos de
funcién). Se devuelve FRACASO. «
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Ejercicio 2.5 Unificar, si es posible, los siguientes pares de dtomos:
a) p(a, X, (X)), p(X, X, U)
b) p(X,f(Y), Z), p(g(W), U, g(W))
c) p(g(W),U,g(W)),p(V,V,g(T))
d) a(X,£(X),g(X)),a(g(¥),f(X),X) <

Podemos considerar indistintamente —y asi lo haremos— que el algoritmo de
unificacion estd definido tanto para atomos como para términos. En este tltimo
caso, basta con mencionar en la tabla 2.2 los términos u; y us en lugar de los
atomos A; y As respectivamente.

Hemos establecido el algoritmo de unificacién de forma que se unifiquen
dos atomos cada vez (unificacion binaria). Sin embargo, podemos operar de un
modo més general, esto es, estipular las cosas de manera que pueda unificarse un
conjunto de mas de dos dtomos (unificacion miltiple). Para ello es suficiente con
reducir el problema a la unificacién binaria aludida. Unificar 4tomos es unificar
sus términos; asi que es suficiente con formular la siguiente

Proposicién 2.4 Sea {ty,..., t,} un conjunto de términos unificable. Defina-
mos una secuencia de sustituciones, cada una de las cuales se computa por el
algoritmo de la tabla 2.2, como sigue:

o1 es un umg de ty y t1

o2 es un umg de tooy Y ta0

o3 es un umg de to(oy 0 02) y t3(o1 0 02)

on es un umg de to(op 002 0...00,_1) Yytu(op0020...00,_1).

Entonces 01 0 020...00, es un umg de {to,. A tn}.

DEMOSTRACION: Consideremos un conjunto de términos unificable {tg,. .., t,}
y supongamos la hipétesis de la proposicién acerca de este conjunto de términos.
Tomemos dos atomos cualesquiera de la formas:

f(to,...,to) y f(tl,...,tn)

Es claro que un umg de estos dtomos lo es de {to,..., t,} y reciprocamente.
Ahora apliquemos el algoritmo de unificacién binaria. Consideremos los términos
ordenadamente; primero elegimos las discrepancias entre ¢y y t1, obteniendo o
como un umg de ambos. Después, las discrepancias de tgo; y to0q, para los
cuales 02 es un umg. Hasta el momento, analizando el algoritmo, éste arroja un
umg de {to, t1, t2} como o1 005. Siguiendo este proceso, el valor que el algoritmo
da cuando computa todas las discrepancias es oy 0 g3 0...00,, q.e.d. <

95



A. Burrieza y J. L. Pérez de la Cruz

2.1.3. METODO DE RESOLUCION/UNIFICACION.

Ya tenemos todos los elementos para plantear el método de resolucién para
el CP, al que también denominaremos método de resolucion/unificacion, para
hacer hincapié en la importancia de este dltimo proceso.

Un detalle previo que hay que tener en cuenta es el renombramiento (cambio
alfabético de variables ligadas). En cada paso del algoritmo, antes de intentar
aplicar la regla de resolucién, hemos de reescribir las variables de cada clausula
de manera que no haya un par de cldsulas con variables en comun. Un ejemplo
aclarard esto. Consideremos el conjunto de cldusulas

{p(X), =p(f(X))}

Este conjunto es claramente insatisfacible. Pero p(X) y p(f(X)) no son unifica-
bles, ya que X ocurre en f(X) y el “test de aparicién” (paso 5 del algoritmo de
unificacién) devolveria FRACASO al intentar unificar y, por tanto, no se podria
aplicar la resoluciéon a ambas clausulas. Esto se evita facilmente poniendo Y en
lugar de X en —p(f(X)), por ejemplo.

Comenzaremos presentando la versiéon mas sencilla de la regla de resolucién,
la llamada resolucion binaria.

Definicién 2.12 (Resolucién binaria). Sean Cy y Ca un par de cliusulas que
no tienen variables en comin. Sean A y B dos dtomos tales que A aparece en C
y B en Cy. Si A y B son unificables mediante un umg o, entonces la cldusula
resultante de borrar de Cio V Cyo todas las apariciones de Ao y ~Bo es una
resolvente binaria de C; y Cy en A y B. Puesto de otra forma, una resolvente
binaria es

((Cr = {4} U (C: = {-B}))e

Se dice, entonces, que Cy y Co es un par de cldusulas resolubles y que hemos
aplicado la regla de resolucién binaria a Cy y C2 en A y B o, simplemente, que
hemos resuelto en A y B.

Ejemplo 2.6 Sean las clausulas
Cy = q(f(Y)) vp(Y,2Z)

Cy = =p(f(X), X) V r(X).
Consideremos el dtomo A = p(Y,Z) que aparece afirmado en C; y el &tomo B

= p(f(X), X) que aparece negado en Cy. Ambos son unificables mediante el umg
o ={X/Z,Y/f(Z)}, quedando

Cio = q(f(f(2))) v p(f(2),2)

y
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y

Cao = —p(f(2),Z) v r(Z).
Asi que, borrando de Cio V Cyo todas las apariciones de los literales p(f(Z), Z)
y =p(f(Z),Z) obtenemos la cldusula

a(f(f(2))) vr(2)

que es una resolvente binaria de C; y Cz. <

Podria pensarse que la regla de resolucién binaria es suficiente para obtener la
cldusula vacia a partir de cualquier conjunto insatisfacible de clatdsulas. Pero
ello no es asi. Supongamos por ejemplo que tenemos las clausulas

€1 = p(X) vp(f(Y))
Cz = =p(Z) vV -p(U)

El conjunto {C1,C>} es insatisfacible; sin embargo, con la regla de resolucién
binaria es imposible obtener la cldusula vacia, ya que las clausulas generadas
partiendo de este conjunto —es inmediato comprobarlo— tendran siempre dos
literales.

El lector que conozca ya la resolucién en el cp y haya reflexionado sobre el
ejercicio 1.2.27 no debe sorprenderse por este hecho. En efecto, supongamos que
se admitieran repeticiones de literales dentro de una misma clausula. Conside-
remos entonces el conjunto de clasulas I' = {p V p, —p V —p}. La tnica cldusula
adicional que resolviendo podemos obtener es pV —p, asi que el método acabaria
en fracaso. Sin embargo, es obvio que I" equivale l6gicamente a {p A —=p} y por
tanto es insatisfacible; y, claro estd, al escribir las cldusulas de I sin repeticiones
de literales, se puede obtener inmediatamente la clausula vacia.

En el caso del CP la cuestién es algo mas compleja y no basta con eliminar
las repeticiones de literales, pues puede que en una cldusula haya literales no
idénticos, pero si unificables; y éstos literales habran de procesarse adecuada-
mente para asegurar la completitud del método. La solucién que adoptaremos
serd dar la posibilidad de, previamente a la aplicacién de la regla de resolucién,
elegir dentro de una cldusula un conjunto de dtomos y unificarlos.

Por ejemplo, podemos tomar p(X) y p(f(Y)) de C; y unificarlos mediante
o1 = {X/f(Y)}, quedando Cyo7 = p(f(Y)). Analogamente, podemos tomar de
C> los literales =p(Z) y —p(U) y unificarlos mediante oo = {U/Z}, obteniendo
Cy05 = p(Z). Ahora podemos resolver Cioy y Cyo2 unificando mediante o =
{Z/f(Y)}, obteniendo la clusula vacia.

El proceso asi ejemplificado se puede describir formalmente mediante el con-
cepto de factor.
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Definicién 2.13 (Factor). Sea C' una cldusula. Sea C' un subconjunto de C
unificable mediante el umg o. Entonces Co es un factor de C'.

Noétese que a) si consideramos un subconjunto C’ unitario, es unificable mediante
la sustitucién vacia, por lo que la misma cldusula C' es un factor de si misma;
b) tal como se definié la sustitucién en cldusulas, siempre se eliminardn las
apariciones repetidas de un literal en un clausula.

Por ejemplo, sea C' la cldusula p(X) V p(f(Y)) vV q(a); o, en forma conjuntista,
{p(X), p(F(Y)), a(a)}. Tenemos el umg o = {X/F(Y)} de C" = {p(X), p(F(Y))},
que es un subconjunto de C'. Entonces Co es {p(f(Y)), q(a)}, i.e. p(f(Y)) Va(a).
Esta cldusula es un factor de C.

Definicién 2.14 (Resolucién general) Sean Cy y C2 un par de cldusulas que
no tienen variables en comin. R es una resolvente de C; y Cy en A y B si es
una resolvente binaria de (un factor C'y de) Cy y (un factor C'y de) Cy en A y
B. Se dice entonces que Cy y Cy es un par de cldusulas resolubles y que hemos
aplicado la regla de resolucién a Cy y Cs (a través de los factores C'y y C'3) o,
simplemente, que hemos resuelto C; y Cs (a través de los factores C'y y C's)
en Ay B.

Notaremos esta resolvente como Res(Cy,Ca,C;,C}, A, B).

Ejemplo 2.7 Sean las clausulas

C1 = p(X) Vp(f(Y)) va(a) y

Cy = =p(Z) Vr(Z)
entonces un factor de C; es C'y = p(f(Y)) Vq(a). Una resolvente binaria de esta
C'y y Cy es r(f(Y)) Vq(a). Por tanto, r(f(Y)) V q(a) es también una resolvente
de Cy y Cs, concretamente una resolvente a través de p(f(Y)) V q(a) en p(f(Y))
y p(Z). O sea, r(f(Y)) V q(a)=

Res(p(X)Vp(f(Y)) Va(a), =p(Z) Vr(Z), p(f(Y)), ~p(Z) Vr(Z), p(£(Y)), P(Z)).

Volvamos a considerar el conjunto insatisfacible

C1 = p(X) Vp(f(Y)), Co = =p(Z) V =p(V).
Un factor de C} es C] = p(f(Y)); un factor de Cy es C4 = —p(U); y resolvien-
do binariamente C] y C) obtenemos la cldusula vacia, que es por tanto una
resolvente general de Cy y Cs a través de los mencionados factores, es decir,

O = Res(p(X) vV p(f(Y)), =p(Z) V =p(U), p(f(Y)), =p(U), p(f(Y)),p(V)). <

Definicién 2.15 (Método de resolucidn/unificacion). Es el formulado en la ta-
bla 2.3, donde PENDIENTES es el conjunto de todas las séxtuplas (Cy, Cs, C;, C4,
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A, B) tales que C1,C> € CLAUSULAS, C], CY son factores suyos (en particular,
pueden ser las mismas Cy1,C5), es posible resolver C1 y Cs a través de C,C en
los literales A y B, y no se ha realizado esta resolucidn en ningin paso previo
del método.

Ejemplo 2.8 Estudiemos la validez de la argumentacién siguiente:
VX (r(X,a) = r(X,b))
q(b) Aq(a)
IX q(X) — r(a,a)

r(a,b)

Negando la conclusién, pasando las férmulas a forma normal de Skolem y re-
nombrando queda

VX (=r(X,a) vV r(X,b))
a(b) Aa(a)
YY(=q(Y) Vr(a,a))
—|r(a, b)

Las clausulas iniciales son

1. —r(X,a) Vr(X,b)

2. q(b)

3. q(a)

4. —q(Y) Vr(a,a)

5. -r(a,b)

Resolviendo 1 y 5 en {r(X,b),r(a,b)}
6. —r(a, a)

Resolviendo 4 y 6 en {r(a,a)}

7. —q(Y)

Resolviendo 2 y 7 en {q(b),q(Y)}
8. O

El procedimiento acaba con éxito; por tanto, el razonamiento es valido. <

Noétese que la descripcién ofrecida en la tabla 2.3 no define todavia un algoritmo,
pues en el paso 8 del método no se determina qué eleccién debe hacerse cuando
PENDIENTES no sea un conjunto unitario. Para realizar esta eleccién hay que
completar la descripciéon dando una estrategia de resolucion.
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1. FORMULAS <« PREMISAS U {NEGACION de la CONCLUSION};
2. FORMULAS < F'Ng;(FORMULAS);

3. CLAUSULAS < Descomponer las FORMULAS segin las
conjunciones;

4. CLAUSULAS < Renombrar variables de CLAUSULAS;
9. Mientras la cldusula vacia no pertenezca a CLAUSULAS

6. Calcular PENDIENTES;
7. Si PENDIENTES # & entonces
8. Seleccionar (Cy,Cs,C7,C%, A, B) € PENDIENTES;
9. R+ Res(Cy,Cs,C1,C4, A, B);
10. Renombrar R y afiadir a CLAUSULAS
11. Si no,
12. Devolver FRACASO;

fin-mientras;

13 Devolver EXITO;

Cuadro 2.3: Método de resolucién para el C'P.
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8’. R < Res(Estrategia(PENDIENTES));

Cuadro 2.4: Método de resolucién para el CP (II).

Definicién 2.16 Se denomina estrategia de resolucién a un procedimiento que
para cada conjunto PENDIENTES y cada paso del algoritmo devuelve una séxtupla
(Cy,Cs,Cy,Ch, A, B) € PENDIENTES.

De esta forma, los pasos 8 y 9 del cuadro 2.3 se refundirian como aparece en el
cuadro 2.4.

Enseguida discutiremos mas ampliamente la cuestion de las estrategias. Pero
ahora es el momento de proponer unos ejercicios.

Ejercicio 2.6 Simbolizar los siguientes enunciados mediante férmulas del C'P
y aplicarles el método de resolucién:

1. Hay alguien tal que si bebe, todo el mundo bebe (teorema del trago de
Smullyan).

2. Si todos los alumnos de Mari la quieren y Mari quiere a todos los que la
quieren, entonces, si Pepe es alumno de Mari, ella lo quiere.

3. Al menos una de estas cuatro alternativas es verdadera: O no hay ovnis,
o algun ovni estd tripulado por algin alienigena, o alguno estd tripulado
por algin terricola, o algin ovni no estd tripulado.

4. FEs falso que se den simultdneamente estas cuatro situaciones: Hay ovnis;
ningun alienigena tripula ningin ovni; ningin terricola tripula ningun ov-
ni; todos los ovnis estdan tripulados por alguien.

<

Ejercicio 2.7 Representar en una teoria de primer orden los siguientes razo-
namientos y aplicarles el método de resolucién:

1. Ninguna vaca es un cuadripedo.
Algunas vacas son berrendas.
Luego algin ser berrendo no es un cuadripedo.
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2. Uno de los ladrones es amigo mio.
Los ladrones hablan inglés y viven en el pueblo.
Los amigos mios que, no siendo extrangjeros, hablan inglés, son todos va-
rones.
Por tanto, ya que en el pueblo no viven extrangeros, alguno de los ladrones
ha de ser varon.

3. El ilustre profesor Tornasol afirma que el libro “Desventuras de un estu-
dioso estudiante de Informdtica” se debe a la pluma de Jiménez o a la
de Giménez. Ahora bien, es sabido que Jiménez daba siempre a sus libros
un final feliz; por el contrario, entre los de Giménez —todos ellos muy
breves— hay alguno que acaba francamente mal. Pero “Desventuras de un
estudioso estudiante de Informdtica” es un libro largo cuyo final, lamen-
tablemente, es cualquier cosa menos feliz. Por tanto, el ilustre Tornasol
se equivoca por esta vez.

Ejercicio 2.8 El agente del ejercicio 1.2.26 ha aprendido a emplear un lenguaje
CP, asi que puede expresar su conocimiento como sigue:

Hay un monstruo en una posicion contigua. Las posiciones contiguas son,
por definicion, la de arriba, la de abajo, la de la izquierda y la de la derecha.
Si hay un monstruo en la casilla desde donde sopla el viento, entonces huele
mal. Caen gotas de moco verde solo si hay un monstruo arriba. Cuando hay
un monstruo en una de las casillas desde donde viene la iluminacion, entonces
la luz es escasa. FEl viento sopla desde la derecha. La iluminacion viene de la
izquierda y de abajo. No huele mal, ni caen gotas de moco verde. La iluminacion
es brillante.

Si nuestro agente aplica el método de resolucién y confia en su correccidn,
ipensard que hay un monstruo arriba y que no lo hay en ninguna de las restantes
posiciones contiguas? <

2.1.4. TERMINACION.

Como indicamos al comienzo de esta seccidn, para el problema de la validez
en el CP lo méas que podremos encontrar serd un procedimiento de semidecisién,
esto es, un algoritmo que acabe devolviendo “éxito” siempre que se le proponga
una férmula véalida; pero que, ante una férmula invélida, en general no termi-
nard, aunque a veces sea capaz de terminar devolviendo “fracaso”. Por tanto,
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no serd posible garantizar la terminacién del método de resolucién en ninguna
de sus variantes. Por ejemplo, consideremos el argumento invalido
VX(r(X) = r(f(X)))
IX=r(F(X))

Aplicando el método de resolucién, el conjunto inicial de cldusulas es
CLAUSULAS,y = {-r(X) V r(f(X)), r(f(X))}.

PENDIENTES consta de una sola posibilidad de resolucién, asi que en el paso

siguiente serd siempre

CLAUSULAS; = {—r(X) V r(f(X)), r(f(X)), r(f(f(X)))}.
De nuevo PENDIENTES es un conjunto unitario, asi que en el paso siguiente
sera siempre

CLAUSULAS; = {-r(X) V r(f(X)), r(f(X)), r(f(f(X))) r(f(f(f(X))))}
y asi sucesivamente, de forma que en cada paso habréd una nueva posible reso-
lucién, sin alcanzar nunca la cldsula vacia.

Pero, ;qué ocurre si el argumento proporcionado es valido? Entonces es
posible garantizar la terminaciéon del método de resolucién, suponiendo que
la estrategia seguida es equitativa. Hablando informalmente, una estrategia es
equitativa cuando le da a todos las posibles resoluciones una oportunidad, o sea:

Definicién 2.17 Se dice que una estrategia de resolucion es equitativa si, para
todo conjunto finito de clausulas T', dicha estrategia o bien produce la cldusula

vacta o bien genera cualquier resolvente posible de todo par de clausulas Cy, Cs
deT.

Si la estrategia no es equitativa, tampoco estd garantizado que el método acabe
aplicado a férmulas o argumentos validos, como muestra el siguiente

Ejemplo 2.9 Una estrategia muy sencilla podria ser como sigue: estructurar
las cldusulas en una lista, ir anadiendo las nuevas cldusulas al final de la misma,
dar preferencia siempre a la primera cldusula de la lista y dentro de cada clausula
dar preferencia al minimo conjunto de literales unificable con el literal més a la
izquierda. Apliquemos esta estrategia para estudiar la argumentacién valida

r(a)

YX(r(X) — r(f(X)))

p(a)

p(a)
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Si ordenamos de esta forma las clausulas y seguimos la estrategia mencionada,
el algoritmo no acaba:

5. ((f(a)) de 1y 2
6. (((?))) de2y5
a

7. (f(f(f(a)))) de 2y 6

Sin embargo, hasta el lector méas desatento se habra dado cuenta de que re-
solviendo 3 y 4 se habria llegado en un paso a 0. Pero la estrategia seguida
no era equitativa y nunca llegaba a considerar (3) y (4), al preferir siempre la
resolucién de (2) con las nuevas cldusulas. <

Ejemplo 2.10 Una estrategia equitativa simple —pero escasamente eficaz— es
el método de saturacion consistente en lo siguiente: dado un conjunto finito de
cldusulas inicial T', llamemos PR(T") al conjunto I' junto con todas las resolven-
tes posibles de las cldusulas de T'. Este conjunto es finito, por serlo I'. Ahora
definamos

RUT) = R(T)

RHHT) = RR™MT))
Tenemos asf una secuencia de conjuntos finitos de cldusulas donde cada R¥(T") C
R*+1(T). En caso de que la cldusula vacia pueda obtenerse por resolucién/unifi-
cacion, entonces —tarde o temprano— para algiin nimero natural k, dicha
cldusula aparecerd en R¥(T'). <«

Ejercicio 2.9 Aplicar la estrategia de saturacién del ejemplo 2.10 al razona-
miento del ejemplo 2.9 y comprobar que el método de resolucién acaba. <

Posponemos la prueba del siguiente teorema de terminaciéon hasta probar la
completitud del método en la subseccién siguiente:

Teorema 2.2 Sea ¢ una férmula vdlida. Supongamos una estrategia equitativa
de resolucion. Entonces, el método de resolucion aplicado a ¢ siempre acaba.

2.1.5. CORRECCION Y COMPLETITUD.

La correccion del método de resolucién para el C'P se prueba de modo muy
parecido a la que expusimos para el ¢p.
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Lema 2.1 Si C es una resolvente de Cy y Cy (siendo Cy y Cs cldusulas que no
poseen variables en comin), entonces C es consecuencia ldgica de {Cy, Ca2}.

DEMOSTRACION: Primeramente, es ficil ver que para todas cldusula C' y susti-
tucién o, C'o es consecuencia légica de C. A partir de esto, la demostracion es
andloga a la realizada para el cp. <

Lema 2.2 Si el método devuelve EXITO partiendo de T' como conjunto de
cldusulas inicial, entonces I' es insatisfacible.

DEMOSTRACION: Al igual que en el cp, es facil probar por induccién que si I es
un conjunto de cldusulas satisfacible, cualquier secuencia de cldusulas obtenida
por resolucién partiendo de I' como conjunto inicial es satisfacible. Por tanto,
tal secuencia no pude contener la clausula vacia, ya que ésta es insatisfacible. Y
si el método acaba con EXITO, es porque ha aparecido la cldusula vacia, luego
I' es insatisfacible, q.e.d. <

Teorema 2.3 (Correccion del método de resolucion para el CP). Si el método
devuelve EXITO partiendo de C-, como conjunto de cldusulas inicial, ¢ es
vdlida.

DEMOSTRACION: Sea ¢ una férmula del CP. Supongamos que el método de-
vuelve EXITO a partir de C-, como conjunto de cldusulas inicial. Entonces
—vpor el lema anterior— C-, es insatisfacible, de donde se sigue, por la propo-
sicién 2.1(2) que —p es igualmente insatisfacible. Luego la férmula ¢ es vélida
(proposicién 1.4), q.e.d. <

Como corolario se tiene facilmente la siguiente

Proposicién 2.5 Si el método devuelve EXITO partiendo de Cy,, . ;. -}
como conjunto de cldusulas inicial, la argumentacion ({1,..., on}, @) es vdli-
da.

Aprovecharemos la idea de los drboles semdanticos expuesta en la seccién 1.2.6.5
para dar la prueba de completitud. Nuestra estrategia, sin embargo, es ahora més
complicada. Pues, al tratar los drboles, directamente proporcionamos pruebas
por resolucién bésica, a partir de las cuales podemos dar el salto a una resolucién
mds general, en la que estamos interesados. El lema del “levantamiento” (lifting)
nos permitird dar ese salto.
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Sea I' un conjunto de cldusulas de primer orden. En este caso, cada arco
del drbol para ' estd etiquetado con un literal (positivo o negativo) tomado
del universo de Herbrand Up. Consideraremos tinicamente interpretaciones de
Herbrand, asi que las interpretaciones parciales asociadas a los nodos de un arbol
semantico para I seran subconjuntos de alguna interpretacién de Herbrand de T'.
Una diferencia con los arboles seméanticos usados en la l6gica proposicional es que
ahora un arbol puede ser finito o infinito. En el caso de los drboles completos para.
una teoria que contenga simbolos de funcién éstos son forzosamente infinitos.

Los arboles que tratamos son de ramificacién finita, es decir, cada nodo tiene
a lo sumo un nuimero finito de hijos o descendientes inmediatos. Por lo tanto,
les es aplicable el lema de Konig (lema 1.3.8): todo drbol infinito de ramificacion
finita posee al menos una rama infinita.

Definicién 2.18 Sea N un nodo. La interpretacién parcial asociada a N, deno-
tada Hyr, es el conjunto de todos los literales que etiquetan los arcos del camino
que va desde la raiz del drbol hasta N'. La interpretacién asociada a una rama
t es la union de todas las interpretaciones parciales asociadas a los nodos de la
rama.

Si t es una rama finita, la interpretacién asociada a ¢ es la interpretacién asociada
a su nodo hoja. Si no lo es, su interpretacién asociada es una unién numerable
de interpretaciones parciales.

Definicién 2.19 Un drbol semantico para I' es completo si y sdlo si cada rama
del drbol estd asociada a una interpretacion J tal que, para todo dtomo A; de la
base de Herbrand Br, se tiene que A; € J o bien —A; € J.

bR EN1Y

Por lo demas, las definiciones de “nodo fallo”, “nodo inferencia” y “arbol seménti-
co cerrado” son las mismas que las expuestas en la seccién 1.2.6

Ejemplo 2.11 Sea I' = {p(f(X)), =p(X) V =q(Y), q(X)}. La base de Herbrand
de este conjunto es

{p(a), a(a), p(f(a)), a(f(a)), p(f(f(a))), a(f(f(a))),. .- }

Un arbol semdantico completo para I' es el de la figura 2.1. Los arcos estin
etiquetados con elementos de la base de Herbrand de I'. «

Un arbol seméantico cerrado para I' es el de la figura 2.2. Cada nodo hoja
estd marcado con instancias de base de cldusulas de I' (nétese que las hemos
reescrito). Cada nodo no hoja estd etiquetado con resolventes de las cldusulas
de base que etiquetan sus descendientes inmediatos. Las cldusulas de base que
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Figura 2.1: Ejemplo de arbol semantico completo

etiquetan los nodos son instancias de las cldusulas subrayadas correspondien-
tes. Cualquier rama del arbol muestra que hay una interpretacién parcial de
Herbrand en la que es falsa alguna instancia de base de una cldusula de T.
Dicha clasula es igualmente falsa; recuérdese que las variables que aparecen en
las clausulas de T' estdn universalmente cuantificadas. Por ejemplo, la clatsula
-p(Y)V —q(Z) es falsa en la interpretacién {p(f(a)), q(a)}, pues =p(a) vV -q(f(a))
es falsa en dicha interpretacién. Si caminamos de abajo a arriba en el arbol y
tenemos en cuenta las clausulas de base que etiquetan los nodos, obtenemos
una prueba de la clausula vacia a partir del conjunto de clausulas de base de
los nodos hoja por resolucién basica. Podemos ir reduciendo paulatinamente el
arbol mediante un proceso que nos es conocido desde la seccién 1.2.6.5. Pero
también tenemos una prueba de la clausula vacia a partir de I' por resolucién
con unificacién, si atendemos a las clausulas subrayadas. Tengamos presente que
las clausulas de base que etiquetan los nodos no hoja son instancias de base de
resolventes de las clausulas subrayadas correspondientes a las etiquetas de sus
descendientes inmediatos. Por ejemplo, —p(f(a)) etiqueta un nodo inferencia y
es una instancia de base de =p(Y), y ésta es una resolvente de —p(Y) V —q(Z)
y q(U). Seguidamente mostramos este proceso. Hemos marcado cada nodo con
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Figura 2.2: Ejemplo de arbol seméantico cerrado

un nimero que indica el nimero de linea de su etiqueta en la prueba.

Resolucion bdsica Resolucion no bdsica
L. -p(f(a))v-qg(@ 1. =p(Y)V-q(Z)
2. q(a) 2. q(U)
3. p(f(a) 3. p(f(X))
4. -p(f(a)ydely2 4. =p(Y)dely2 (umgo={Z/U})
5. 0O de3y4 5. O de3y4 (umgo={Y/(X)})

Lema 2.3 Si un conjunto de cldusulas T' es H-insatisfacible, entonces hay un
arbol semdntico finito cerrado para T.

DEMOSTRACION: SiT es H-insatisfacible, para cada rama de un arbol seméntico
para I, existe una instancia de base C' (de una cldusula C de T) falsa en la
interpretacién asociada a la rama. Dado que el nimero de literales en C' es
finito, esto garantiza que exista en la rama un nodo fallo (pues se necesita sélo
un ndmero finito de etiquetas de arcos para refutar C'). Tenemos, entonces un
arbol cerrado para I'. Ademas, dicho arbol es finito; pues si fuera infinito, dado
que de cada nodo sélo parte un numero finito de arcos, existiria al menos una
rama infinita (por el lema de Konig), lo que es imposible, pues esto significa que
no habria nodos fallo en la rama. <
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Tal y como se expuso en el ejercicio [.2.28, la otra direccién del lema anterior
vale igualmente.

El lema 2.3 se suele enunciar en una forma diferente: Un conjunto de cldusu-
las T es insatisfacible si y solo si hay un drbol semdntico finito cerrado para T.
Sin embargo, lo tinico que necesitaremos para dar la prueba de completitud es
lo que hemos presentado.

Ejercicio 2.10 Probar el teorema fundamental de Herbrand: Un conjunto de
cldusulas I' es insatisfacible si y sélo si hay un conjunto finito de clasulas de
base de I que es insatisfacible. «

Como paso previo a la demostracién del “lema del levantamiento” (que proba-
remos seguidamente) introducimos la siguiente notacién. Dada una cldusula C
(como conjunto de literales):

s Lit(C) denota el conjunto de literales que intervienen en C.

s LitT(C) denota el conjunto de literales positivos (4tomos) que intervienen
en C.

s Lit~(C) denota el conjunto de literales negativos (negaciones de 4tomos)
que intervienen en C'.

s Lit(C) denota el conjunto de los elementos opuestos que aparecen en
Lit(C).
Nétese, entonces, que Lit+(C) = Lit— (C) y Lit—(C) = Lit*(C).

Lema 2.4 (Lema del levantamiento). Si Cy y Cy son cldusulas sin variables en
comin, C| y C4 son instancias de base de Cy y Cy respectivamente y C' es una
resolvente de C| y C}, entonces hay una resolvente de Cy y Cs, sea C, tal que
C' es una instancia de base de C.

DEMOSTRACION: Sean C; y Csy cldusulas tales que Var(Cy) = {Xi1,..., Xn}ty
Var(C2) = {Y1,..., Y}, con Var(Cy) N Var(C2) = @. Supongamos que C] es
una instancia de base de C; y C lo es de Cs. En ese caso, hay una sustitucién
o1 tal que C] = Cyo1 y una sustitucién oo tal que C4 = Choy. Sea C' una
resolvente de C] y C}; de esto se sigue que hay un atomo A tal que A estd en
C] y —4 estd en C} (es indiferente si es al revés) y C' proviene por resolucién
(basica) de Cf y C4 respecto de A. Ello quiere decir que tiene que haber un
conjunto de 4tomos A} y un conjunto de dtomos negados A :

Af ={A,...,A,} CLitt(C)) Ay ={=Bi,...,~Bp} C Lit™ (Cy)
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tales que Aoy = {A} y Ay o0 = {=A}.

Presupondremos, para simplificar, que o1 sélo contiene pares cuyas cabeceras
estén en Var(C1) y lo mismo pasa con o9 respecto a Var(Cs). Sea o la unién de
01y 09. La sustitucién o estd bien definida, ya que C; y C5 carecen de variables
en comun. Asi que Cf es Cio y C} es Cyo (pues o hace las mismas sustituciones

en C7 y Cy que 01 y 02 respectivamente). Ademds, o unifica A1+ U (AY), luego

Afo = (Ay)o = {A}, o sea, que A, o = {~A}. Por el teorema de unificacién,
existe un umg o* de A U (A). Sea C laresolvente ((C; — A1) U (Cy — Ay))o*.
Como o* es un umg, tenemos o = o* o ¢', para alguna sustitucién o’. Ahora,
sin mas comentarios:
C" = (€1 —{4hu(C; - {-4})

= (Cyo — Af o) U (Cao — Ay 0)
((Cr =AU (Co = Ay))o

= ((C1 =AU (O = A7) (0% 0 0')

= (((C; = AT)U(Cy — AT ))o*)o’ = Co'.
Luego la cldusula resolvente C’ es una instancia de base de la resolvente C. «

Lema 2.5 Si un conjunto de cldusulas ' es H-insatisfacible, entonces, a par-
tir de T' como conjunto de clausulas inicial, hay una sucesion de conjuntos de
cldusulas generada por el método de resolucion que acaba en un conjunto que
contiene la cldusula vacia.

DEMOSTRACION: Hemos de modificar la prueba del lema andlogo para el cp
(lema I.2.5). La modificacién afecta al caso (b), cuando el drbol 2* tiene més de
un nodo. En este caso existe en 2* al menos un nodo inferencia, sea A/, y N1 y N>
sus descendientes inmediatos, que son nodos fallo. Por tanto, existen instancias
de base C{ y C4 de cldusulas C; y C> de T respectivamente tales que C| es
falsa en la interpretacién de Herbrand Ha, y C4 es falsa en la interpretacién
de Herbrand M. Sea L un literal tal que L etiqueta el arco que va de N a
N1 y =L el arco que va de N a Ns. Sea C' una resolvente de C] y C respecto
a L. Por el lema anterior, C’ es una instancia de base de una cldusula C, una
resolvente de C; y Cs. Ademds, C' es claramente falsa en H s, por tanto, C' lo
es igualmente por la proposicién 2.2. Ahora, anilogamente a como hicimos en
la prueba del caso proposicional, podemos reducir el arbol y originar un arbol
cerrado para 'U{C'}, y asi sucesivamente hasta quedarnos con la cldusula vacia
como la etiqueta de un unico nodo. Esto significa que tenemos finalmente un
conjunto de cldusulas que pueden generarse por resolucién y que contiene la
clausula vacia. <
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Férmula valida Férmula no valida
oL . FRACASO
estr. equitativa EXITO NO TERMINACION
estr. no equitativa EXITO FRACASO
SO CAURAEVE | N TERMINACION | NO TERMINACION

Cuadro 2.5: Resultado del método de resolucién.

Teorema 2.4 (Completitud del método de resolucion para el CP). Si ¢ es
vdlida y la estrategia de resolucion es equitativa, entonces el método devuelve
EXITO partiendo de C-, como conjunto de clausulas inicial.

DEMOSTRACION: Probaremos el teorema y el resultado de terminacién enuncia-
do previamente (teorema 2.2). Sea ¢ una férmula del C'P. Si es valida, entonces
- es insatisfacible (proposicién 1.16). Luego, por la proposicién 2.1(2), lo es
C-,, asi que trivialmente este conjunto es H-insatisfacible y, por el lema 2.5, hay
un conjunto de clasulas que puede ser generado por resolucién y que contiene
la cldusula vacia. Esto quiere decir que toda estrategia equitativa acabard gene-
rando la cldusula vacia y acabard con EXITO, q.e.d. <

Como corolario tenemos obviamente la siguiente

Proposicién 2.6 Si la argumentacion ({¢1,...,¢n},p) es vdlida y la estrate-
gia de resolucion es equitativa, entonces el método devuelve EXITO partiendo
de Cg,,....on—p}y cOmMo conjunto de cldusulas inicial.

Sefialemos nuevamente que el teorema anterior no afirma la terminacién del
procedimiento mas que en los casos de férmulas o argumentaciones vélidas.
Si no lo son, puede ser que el método acabe en FRACASQO, pero también
que no acabe. Alin mds, si la estrategia de resolucién no cumple la condicién
de equitatividad, puede ser que el procedimiento no acabe tampoco para las
férmulas o argumentaciones vélidas. Todo ello se resume en la tabla 2.5.

2.2. ESTRATEGIAS Y VARIANTES.

En la practica existen numerosas versiones del método de resolucién que
intentan evitar la generacién de clausulas inutiles para el objetivo final de en-
contrar la cldusula vacia. Con esta finalidad, es posible “simplificar” el conjunto
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de cldusulas mediante procedimientos de subsuncidn (seccién 2.2.1) y también
puede ser conveniente dar preferencia a las cldusulas unitarias (seccién 2.2.2).

Desde un punto de vista méas general, podemos buscar estrategias que, con-
servando la equitatividad y completitud, sean un poco mas “astutas” que la de
saturacién. En esta linea, se pueden mencionar las diversas variantes de la reso-
lucién lineal [30], [31], [28], la resolucién con bloqueo (*‘lock resolucion”) 2], [4]
y la resolucién seméntica. En esta obra nos centramos en esta ultima (seccién
2.2.3), considerando en especial dos casos particulares de ella: la hiperresolucién
(seccién 2.2.4) y la estrategia del conjunto de apoyo o estrategia sos (seccién
2.2.5). Para la resolucién lineal, nos remitimos a [4], [9], [14] y [29].

2.2.1. SUBSUNCION.

Definicién 2.20 (Subsuncién). Sean dos cliusulas C, D. Se dice que D sub-
sume C' cuando existe una sustitucion o tal que Do C C, o bien cuando C' es
una tautologia.

Por ejemplo, sean las clausulas:

Cl p(U) \ ﬁp(U)7

C> = p(f(Y)) Va(a),

Cs = p(2).

C es subsimida por todas las demds, ya que es una tautologia. Cy subsume
(>, pues sustituyendo en Cy Z por f(Y) se obtiene p(f(Y)), subconjunto de Cs.
C4 también subsume Cj3, pues sustituyendo en Cy Z por X se obtiene p(X),
subconjunto de C'3. Por ultimo, C'5 subsume Cs, ya que sustituyendo en C3 X
por f(Y) y W por a se obtiene la misma Cs.

Es obvio que si C es identica a C3, o es una instancia suya, entonces Cy
subsume C4. También es obvio que la relacién “Cy subsume C;” es reflexiva y
transitiva. Sin embargo, no es antisimétrica, es decir, es posible que C' # D, C
subsuma D y D subsuma C. Por ejemplo, considérese el caso de C' = p(a) y D
= p(X) V p(a).

Proposicion 2.7 Sean C,D dos cliusulas tales que D subsume C. Entonces
FED—C.

DEMOSTRACION: Si E5 D, entonces sea cual sea o, F5 Do. Pero C es de la
forma Do V C’, asi que también serd Fy C. <«
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Proposicion 2.8 Sea I' un conjunto finito de clausulas y sean dos clausulas
C,D €T tales que D subsume C. Entonces, el conjunto T' — {C} equivale l6gi-
camente o I

DEMOSTRACION: Directamente de 2.7 <

Definicién 2.21 (Reglas de subsuncién).

Subsuncién inicial: Sea CLAUSULAS, el conjunto inicial de cldusulas. En-
tonces, sustituirlo por el conjunto obtenido por el siguiente procedimiento: mien-
tras exista C' € CLAUSULASy subsumida por

D € CLAUSULASy, C # D, CLAUSULASy « CLAUSULAS, — {C'}

Subsuncidén adelante: Sea R la resolvente obtenida y sea D € CLAUSULAS
tal que D subsume R. Entonces, no anadir R a CLAUSULAS.

Subsuncidén atras: Sea R la resolvente obtenida y sea C' € CLAUSULAS tal
que R subsume a C. Entonces, quitar C de CLAUSULAS y aniadir R a CLAUSULAS.

Puede probarse facilmente la siguiente

Proposicién 2.9 Si es posible obtener una refutacion de I' empleando el méto-
do de resolucion, entonces también es posible obtener una refutacion aplicando
el método de resolucion a partir del resultado de aplicar la subsuncion inicial
a T, y aplicando subsuncion adelante, o subsuncion atrds, o secuencialmente
subsuncion adelante y subsuncion atrds a cada resolvente calculada.

Notese que las reglas de subsuncién se han enunciado cuidadosamente para
evitar su aplicacién en paralelo. Si se aplicaran en paralelo, se perderia la com-
pletitud ya que, como hemos mencionado, es posible que D subsuma a C' y a la
vez C subsuma a D; con lo cual si subsumiéramos en paralelo borrariamos a la
vez C'y D,y el conjunto de clausulas no equivaldria al que teniamos antes de
subsumir.

Ejemplo 2.12 Consideremos el conjunto

(1) p(X)

(2) —a(a)

(3) =p(X) V q(X)

(4) p(a) Va(a)
Una refutacién es
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(5) q(a) de (3) y (4)
(6) O de (2) y (5)
Pero si aplicamos la regla de subsuncién al conjunto inicial y suprimimos (4)
(que estd subsumida por (1)) es igualmente posible obtener una refutacién:
(4°) a(X) de (3) y (1)
(5%) O de (2) y (4)
4

Ejemplo 2.13 Veamos ahora un ejemplo que muestra el uso de la subsuncién
adelante. Sea el conjunto

(1) p(X) v a(X)

(2) p(Y) VvV —q(X)

(3) =p(Z) Va(Z)

(4) =p(V) V —a(U)
Empleando la estrategia de saturacién y la regla de subsuncién, el lector puede
comprobar que se generan en la primera fase unicamente 4 cldsulas:

(5) p(A)
(6) a(B)
(7) q(C)
(8) —p(D)
y en la segunda y ultima
(9) O
N

Ejercicio 2.11 Repetir el ejemplo anterior sin aplicar la regla de subsuncién.
;Cudntas cldusulas se generan? «

2.2.2. CLAUSULAS UNITARIAS.

Definicién 2.22 (Regla de borrado con las cldusulas unitarias o Unit deletion ).
Sea R la resolvente obtenida y sean Lq,...,L, literales de R tales que ezisten
cldusulas unitarias Uy, ..., U, € CLAUSULAS tales que —Ly,...,—L, son instan-
cias de Uy,...,U,. Entonces, resolver R con Uy,..., U, obteniendo R' y hacer
CLAUSULAS « CLAUSULAS U {R'}.

Proposicién 2.10 Si es posible obtener una refutacién de T’ empleando el méto-
do de resolucion, entonces también es posible obtener una refutacion en la que
se ha empleado siempre que ha sido posible la regla de borrado con las cldusulas
unitarias.
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DEMOSTRACION: Basta considerar que la cldusula R’ realmente afiadida se
podria anadir unos pasos méas adelante, y que R’ subsume a R. <

Definicién 2.23 (Regla de conflicto de cldsulas unitarias o Unit conflict). Sea
R la resolvente obtenida, sea R wunitaria y sea C' € CLAUSULAS una cladsula
unitaria resoluble con R. Entonces, resolver R con C obteniendo O, y acabar
con EXITO.

Ejemplo 2.14 Consideremos el conjunto inicial de cldusulas Cy dado por
(1) p(X)  (2) a(X) (3) =p(a) V=r(X) (4) =q(b) V r(X).

Si resolvemos, por ejemplo, (3) y (4), obtenemos la resolvente

(5) =p(a) V =q(b)
que se afiadirfa a Cp, obteniendo el conjunto C; = Co U {-p(a) V —q(b)}. En
dos pasos mas podria anadirse la cldusula vacia. Pero si aplicamos la regla de
borrado con las cldusulas unitarias, (5) se reducirfa inmediatamente a (5”) O,
ya que las cldusulas unitarias (1) y (2) pueden “borrar” ambos literales de (5).
Asi que ahora Cy = Cy U {0} y ya tenemos el éxito.

La regla de conflicto de cldusulas unitarias, sin embargo, no es aplicable al
caso anterior, ya que la resolvente no es unitaria. En este otro caso si lo es:

(D p@) (2)a@) (3) =pX)V-r(X)  (4) r(X).
Si resolvemos (3) y (4), obtenemos la resolvente unitaria

(5) =p(X)
que estd en conflicto con la cldusula unitaria (1), asi que en el mismo paso se
acaba con éxito. «

2.2.3. RESOLUCION SEMANTICA.

La resolucién seméntica se debe a J. Slage [39]. La expondremos siguiendo
a [4], capitulo 6.

La idea intuitiva que subyace en la resolucién seméntica es la siguiente: su-
pongamos que dividimos todo conjunto de clausulas S en dos partes disjuntas
S1 y Se, v que prohibimos realizar resoluciones entre dos cldusulas de la mis-
ma parte. De esta forma conseguiremos reducir considerablemente el nimero
de posibles resoluciones. Si podemos demostrar que las resoluciones prohibi-
das no eran utiles para obtener [, la omisién de esos cdmputos no afectara la
completitud del método de resolucién.

115



A. Burrieza y J. L. Pérez de la Cruz

En la resoluciéon seméntica, para particionar el conjunto de cldusulas S se
usa una interpretacién J cualquiera, de la forma siguiente: una cldusula C € S
se asigna a S1 si JF C, y se asigna a Sy si J ¥ C. Es decir, agrupamos por
un lado todas las clausulas verdaderas en J, y por otro todas las falsas. Por
ejemplo, consideremos la interpretacién J = @ y sea S dado por la siguiente
lista:

(1) p(a)

(2)  —p(a) v p(b)
(3)  —p(b) Vp(c)
(4)  —p(c) Vp(d)
(3)  —p(d) Vp(e)
(6) —p(a) vV —aq(b)

La tnica cldusula verdadera en J es (6), asi que S; = {-p(a) V ~q(b)}, vy
las demds estdn en Ss. La unica resolucién posible es la de (1) y (6), dando (7)
—q(b), que es verdadera en J y por tanto se afiadiria a S;. Como ahora no es
posible ninguna resolucion, se acaba con fracaso. El lector puede comprobar que
realizando todas las resoluciones posibles, sin tener en cuenta la restriccon dada
por J, se llega también al fracaso, pero tras generar unas cuantas cldusulas més.

Aplicaremos simultdneamente la nocién anterior y la de “choque” o clash,
que puede verse como una ampliacién de la resolucién binaria, de forma que per-
mitimos resolver a la vez mas de dos cldsulas, evitando asi los pasos intermedios.
Formalmente:

Definicién 2.24 (J-choque, J-resolvente.) Sea J una interpretacion y sea un
conjunto finito de cldusulas S. = {E1,...,Ey,N},q > 0, donde las E1, ..., E, se
denominaran electrones y N se denominard nucleo. S. es un choque seméntico
respecto a J o un J-choque cuando se cumplen las siguientes condiciones:

1. Ey,...,E, son falsas en J.

2. Sea Ry = N. Para todo i = 1,...,q hay un resolvente R;11 de R; y F;.

3. Ryy1 es falsa en J.

Ejemplo 2.15 Sea J = & y sean las clausulas

Er =p(a) Vp(c), B> = p(b) Vp(c), N = =p(a) V -p(b) V p(c).
El conjunto {E1, E2, N} es un J-choque donde Ej, Es son los electrones y
N es el nucleo, pues se satisfacen las tres condiciones enunciadas:

1) E;, y E> son falsas en J.
2) N es resoluble con E;, dando Ry = —p(b) V p(c), que es resoluble con E,
dando R3 = p(c).

116



CAPITULO 2. DEMOSTRACION AUTOMATICA EN EL CP

3) R3 es falsa en J.

Sin embargo, ni {E;, N} ni {E2, N} son un I-choque, pues en ambos ca-
508 Rg+1 es verdadera en J. {E;, E>} tampoco es un J-choque, pues E» no es
resoluble con E;. «

Ejemplo 2.16 Sea J = {p(a),p(f(a),...,p(f"(a)),...,} y sean las cldusulas
E, = —p(X), B2 = r(f(X)), N = p(a) V-r(X) Vq(X). El conjunto {E;, E2, N} es
un J-choque donde E;, E> son los electrones y N es el nicleo, pues se satisfacen
las tres condiciones enunciadas:

1) Ey y Es son falsas en J.

2) N es resoluble con E;, dando Ry = —r(X) V q(X), que es resoluble con E»,
dando R3 = q(f(X)).

3) Rz es falsaen J. «

En lo sucesivo, hablaremos de J-deduccién o de J-derivacién a partir de S para
referirnos a una sucesion de cldusulas tales que se obtienen de las anteriores
empleando unicamente resolucién semantica con respecto a J, es decir, tales que
son miembros de S o son J-resolventes de elementos anteriores de la sucesién.

Ejemplo 2.17 Sea el argumento

q(a) Aq(b)

q(a) Aq(b) — p(b)
p(b) Aq(a) — p(a)
p(a)

Consideremos la interpretacién J = {p(a)}. Demostraremos la validez por
el método de resolucién empleando unicamente J-resolventes, es decir, dare-
mos una J-derivacion de [ a partir de la forma clausal de las premisas mas la
negacién de la conclusién.

Generando el conjunto inicial de cldusulas, y separando ya los conjuntos Sy
de clausulas verdaderas en J, y S2 de clausulas falsas en J, tenemos

S1 (1) —q(a) Vv —q(b)Vp(b)
Si(2) =p(b) V—q(a)Vp(a)
Sy (3) a(a)
Sy (4) a(b)

Sz (5)  —p(a)
Hay un J-choque dado por {(3), (4), (1)}: en efecto, (3) y (4) son falsas en
J, y su J-resolvente es
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Sz (6) p(b)
que es también falso en J, asi que se anade a Sy. Si ahora consideramos {(5),
(6), (2)}, tenemos un nuevo J-choque, pues (5) y (6) son falsas en J y su IJ-
resolvente es

Sy (6) O
que es evidentemente falso en J; y acabamos con éxito. <

Estudiaremos dos casos particulares muy importantes de la resoluciéon semanti-
ca: uno el de hiperresolucién, otro el de la estategia sos. Pero previamente pro-
cederemos a demostrar la completitud de la resolucién seméntica. Para ello es
necesario demostrar dos lemas:

Lema 2.6 (Regla de un literal) Sea S un conjunto de clisulas y sea L € S
una cldusula unitaria de base. Sea S’ el conjunto obtenido suprimiendo de S las
cldusulas que contienen a L. Sea S" el conjunto obtenido suprimiendo de las
cldusulas de S’ todas las apariciones de —L. Entonces, S es insatisfacible si y
solo si S" es insatisfacible.

DEMOSTRACION: Supongamos que S es satisfacible; entonces existe J tal que
JE S yportanto JE Ly JE —L. Por otra parte, ya que S’ C S, JE S’. Pero
cada clatsula de S” se obtiene de una de S’ suprimiendo =L, que es falsa en J;
por tanto, J es también modelo de S” y S” es satisfacible.

Supongamos ahora que S” es satisfacible. Entonces tiene un modelo J".
Es obvio que todas las clausulas de S que no contienen L son satisfechas por
J".SeaJ = 3" siJ F L, y en caso contrario sea J el resultado de afiadir a
J = 73" el literal necesario para que J £ L. En ambos casos, es obvio que todas
las cldusulas de S que no contienen L siguen siendo satisfechas por J, y que
también son satisfechas todas las que contienen L. <«

Lema 2.7 (Regla de la particion.) Sea L es un literal cualquiera y sea S un
conjunto de clisulas de la forma

(AVL)AN... ANARVL)ANBV-L)A...AN(B,V-L)AR
donde {A;}, {B:} y R no contienen ninguna aparicién de L ni de L. Sean

Si=A1IN...NAL AR

y
Sy =By A...AB, AR.

Entonces, S es insatisfacible si y solo si S1 V S es insatisfacible, es decir, si y
solo si S1 y S2 son ambos insatisfacibles.
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DEMOSTRACION: Supongamos S; V S» satisfacible. Entonces S; o Sa lo son;
supongamos que lo es S7 y que J; F Sy Si formamos J anadiendo a IJ; el literal
necesario para que J F =L, es evidente que J es modelo de S y por tanto S es
satisfacible. Andlogamente se razona si es S, satisfacible.

Supongamos que S es satisfacible y 3 F S. Si 3 F =L, es obvio que J es
modelo de Sy; y si JF L, es obvio que J es modelo de Ss. Por tanto, uno de los
dos (S 6 S2) es satisfacible, y S V S también lo es. <

(Al lector que conozca el método de Davis-Putnam [11] quizas le hayan resultado
familiares estos lemas.)

Lema 2.8 (Completitud de la resolucidn semdntica para cldusulas de base.) Si
S es un conjunto finito insatisfacible de cldusulas de base, e J es una inter-
pretacion cualquiera de S, entonces existe una J-deduccion de O a partir de

S.

DEMOSTRACION: Sea A C By el conjunto de atomos de base que aparecen en
S. Daremos una prueba por inducién sobre |A].

Caso base: |A] = 1, o sea, A = {a} Entonces es claro que tanto a como -«
estdn en S y que, sea cual sea J, uno de los dos es falso en J. Por tanto, (I es
un J-resolvente de o y —av.

Paso de induccién: supongamos que el lema se cumple para |A| = i < n.
Supongamos ahora |A| = n + 1. Consideremos dos casos:

Caso 1: hay una clatsula unitaria L € S que es falsa en J. Apliquemos la
construccién del lema 2.6 para obtener S”, que serd también insatisfacible, y
contendra exactamente n atomos diferentes; luego, por la hipétesis de induccidn,
hay una J-deduccién D" de O a partir de S”. A partir de D" obtenemos una J-
deduccién de O a partir de S como sigue: i) para cada J-choque {E, ..., E;,, N}
de D" donde las cldusulas Ei,...,E;,N € S”, si N se obtuvo de M € S eli-
minando —L, reemplazamos este J-choque por el J-choque {E1,...,E;,L,M};
ii) por otra parte, si F; se obtuvo eliminando —L de F' € S, anadimos el J-
choque {L, F'} cuyo J-resolvente es precisamente F;. De esta forma obtenemos
una I-deduccién D de O a partir de S.

Caso 2: no hay ninguna clausula unitaria L € S que sea falsa en J. Escojamos
entonces un atomo cualquiera a € S. Apliquemos la construccion del lema 2.7
para obtener S; y So: ambos seran también insatisfacibles, y no contendran « ni
-, luego tendran menos de n dtomos diferentes. Por la hipétesis de induccidn,
habrd una J-deduccién DY de O a partir de Sy y otra a partir de S>. Supon-
gamos que es « falsa en J (andlogamente se razonarfa si fuera —« falsa en J,

119



A. Burrieza y J. L. Pérez de la Cruz

cambiando S; por Sy.) Consideremos la refutacién Df. Pongamos de nuevo «
en las cldusulas de donde se eliming; DY sigue siendo una J-deduccién, ya que «
es falsa en J; lo que ocurre es que posiblemente no se llegue a [, sino a «. Ahora
bien, en este ltimo caso consideremos el conjunto S U {a}. Puesto que SU {a}
contiene una clatsula unitaria falsa en J, es posible aplicar la construccién del
Caso 1 y llegar a una J-deduccién D» de O a partir de SU{a}. Conectando DY
y D5 llegamos a la J-refutacién buscada a partir de S. «

Teorema 2.5 (Completitud de la resolucidn semdntica.) Si S es un conjunto
finito insatisfacible de cldusulas, e J es una interpretacion cualquiera de S,
entonces existe una J-deduccion de O a partir de S.

DEMOSTRACION: Supongamos S insatisfacible. Por el teorema de Herbrand
(ejercicio 2.10) ha de existir un conjunto S’ finito e insatisfacible de cldusulas
de base y, por el lema 2.8, existird una J-deduccién de O a partir de S’. Por
un razonamiento analogo al del lema del levantamiento (lema 2.4), podemos
mostrar que existe también una J-deduccién de OO0 a partir de S, ya que si
{E1,...,E4, N} es un J-choque, entonces también lo serd cualquier conjunto
{E{,...,EJ, N9} tal quelos Ei,..., Ey, N son instancias de los EY, ..., ES, N9,
respectivamente. <

2.2.4. HIPERRESOLUCION.

La regla de hiperresolucion es debida también a A. Robinson [36]. Desde un
punto de vista tedrico, es simplemente un caso sencillo de resolucién seméantica,
en que la interpretacién considerada J es bien & (hiperresolucién positiva), bien
la base de Herbrand By (hiperresolucién negativa). Llamaremos hiperresolvente
al J-resolvente obtenido mediante hiperresolucién.

Cuando aplicamos hiperresolucién, el nicleo, los electrones y el J-resolvente
(hiperresolvente) se pueden describir de forma especialmente intuitiva:

—en el caso de la hiperresolucién positiva, todos los electrones son falsos
en J = &, asi que deben contener tinicamente literales afirmados. El hiperre-
solvente se obtiene resolviendo cada electrén con el niicleo, asi que el niicleo
forzosamente contendra algin literal negado. Para que el hiperresolvente sea
falso en J, debera ser O, o contener inicamente literales afirmados. Asi que el
nucleo constard de literales negados resolubles con los electrones, y quizds de
literales afirmados.
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—en el caso de la hiperresolucién negativa, todos los electrones son falsos
en J = By, asi que deben contener unicamente literales negados. El hiperre-
solvente se obtiene resolviendo cada electrén con el niicleo, asi que el niicleo
forzosamente contendra algiin literal afirmado. para que el hiperresolvente sea
falso en J, debera ser [, o contener tnicamente literales negados. Asi que el
nucleo constard de literales afirmados resolubles con los electrones, y quizas de
literales negados.

Ejemplo 2.18 Vemos un ejemplo de hiperresolucién positiva. Sea el nicleo
N==p(X1) V=q(X1,Y1) Vr(Y1,Y1) Vs(Xy, Y1)
y los satélites
S1 = p(f(X2) V p(f(f(X2))),
S> = q(f(X3),X3) V p(X3).
Aplicando el u.m.g
{X1/£(X2), X3/X2, Y1/X2},
un hiperresolvente es
p(f(f(X2))) V p(X2) V r(X2, X2) V s(f(X2), X2)

Existen otros; calcilelos el lector como ejercicio. «

Cuando sélo tenemos reglas definidas, el proceso de hiperresolucién positiva es
facilmente visualizable como una aplicacién “hacia adelante” del modus ponens.
Por ejemplo, sea el argumento

(1) p(a), (2)afa,b), (3) =p(X) VvV -a(X,Y) va(Y,X)
(4) q(b,a)

Es claro que el argumento es valido. La regla de hiperresolucién positiva per-
mite justificarlo rdpidamente, pues en un solo paso de (1), (2) y (3) se obtiene
(5)q(b,a), que es la conclusién buscada; asi que la podemos hiperresolver en el
siguiente paso con la negacién de (4), obteniendo O.

Por su parte, el proceso de hiperresolucion negativa es visualizable como una
aplicaciéon “hacia atrds” del modus tollens. En el argumento anterior, —q(b,a)
se hiperresuelve con (3) dando

(5) —~p(a) v ~a(a, b)
que se hiperresuelve con (1) y (2) dando O.
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2.2.5. ESTRATEGIA sos.

La estrategia sos fue propuesta por Wos, G. Robinson y Carson en 1965 [44] y
es la que sigue el demostrador OTTER. Hablando informalmente, la idea bésica
de la estrategia sos es no resolver entre si dos clausulas a menos que alguna
de ellas tenga alguna “relacién” con un “conjunto de apoyo” inicial, conjunto
que normalmente vendrd dado por la negacién de la conclusién. Vista de esta
forma, la estrategia puede verse como una forma de razonamiento “hacia atras”
o a partir de los objetivos.

Definicién 2.25 (Conjunto de apoyo o sos). Consideremos una particion de
CLAUSULASy en dos conjuntos no vacios

CLAUSULASY®®"¢ ¢ CLASULAS;’®

siendo CLAUSULASY®?¢ satisfacible. CLASULASE?® se denomina conjunto de apo-
yo.
La estrategia queda definida por el siguiente procedimiento:
Definicién 2.26 (Estrategias sos). En cada paso i > 0, realizar lo siguiente:
1. Seleccionar una cldusula C' € CLAUSULAS;®?;
2. CLAUSULAS!?¢'e = CLAUSULASY**'c U {C};

3. Hallar el conjunto R de todas las resolventes de C' con algin elemento de
CLAUSULASY#9%%e ;

4. CLAUSULAS]?% = (CLAUSULAS*® — {C'}) UR;
Ejemplo 2.19 Consideremos el argumento

p(a) vV -p(b), p(b), q(a), YX(=q(X) V q(f(X)))
p(f(a))

Si suponemos —como es el caso normalmente— que el conjunto de premisas es
satisfacible, entonces podemos tomar

CLAUSULAS{**"'* = {p(a) V -p(b), p(b),a(a), VX(=a(X) V a(f(X)))}

CLASULAS{® = {-p(f(a))}
Seleccionando la tnica cldusula del conjunto sos tendremos

CLAUSULAS}**'® = {p(a) V -p(b), p(b),qa(a), VX(=a(X) V a(f(X))), ~p(f(a))}
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pero como no se genera ninguna resultante,
CLASULAS{®® = &.

y el procedimiento acaba con FRACASO, ya que no es posible elegir ningu-
na cldusula del conjunto sos. Nétese que siguiendo una estrategia simple de
saturacién el método no habria terminado. «

Es claro que cuanto menor sea el conjunto sos inicial, mas resoluciones inutiles
podremos ahorrarnos. Y este ahorro no afecta a la compeltitud del método,
como muestra el siguiente

Teorema 2.6 (Completitud de la estrategia sos.) Si S es un conjunto finito
insatisfacible de cldusulas, T C S, y S — T es satisfacible, entonces eziste
una deduccion de O empleando la estrategia sos cuyo conjunto de apoyo es T,
es decir, existe una deduccion de O empleando la estrategia sos a partir de
CLAUSULASY®ebe = S — T y CLASULAS{*® = T.

DEMOSTRACION: Si S — T es satisfacible, entonces existe una interpretacién J
donde todas sus cldusulas son verdaderas. Pero si S es insatisfacible, habrd una
J-deduccién D de O a partir de S. Sea {Ex, ..., E;, N} un J-choque de D. Cada
E; es falsa en J, luego no puede pertenecer a S — T'. Luego en cada resolucién
binaria al menos una de las dos clausulas resueltas habra de ser de T'. Teniendo
en cuenta este hecho, a partir de D se puede obtener una deduccion sos de . <

2.3. EL METODO DE LOS ARBOLES.

Ampliaremos el procedimiento explicado para el ¢p, anadiendo dos nuevas
reglas de expansién, una para cada cuantificador. Consideraremos unicamente
teorfas cerradas. Usaremos lenguajes CP(X) donde Funy = &; por tanto, los
términos de base utilizados seran tinicamente las constantes iniciales de la teoria
y, en su caso, las constantes adicionales que se anadan. Al igual que en la seccién
[.2.7, usaremos férmulas con signo, esto es, férmulas de la forma (¢, s), donde
 es ahora una férmula de primer orden y s es V o F.

2.3.1. FORMULAS ~ Y 6.

Si t es la rama de un arbol, seguimos con la convencién de anotar t para
referirnos al conjunto de férmulas con signo de t. Asi pues, Con(t) denota el
conjunto de constantes que aparecen en t. Ademds, presupondremos en lo que
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sigue que las constantes de t estdn efectivamente ordenadas (lo cual es siempre
posible, ya que es posible ordenar todos los términos de un lenguaje de primer
orden).

Arbol inicial.

Se define como para el cdlculo de proposiciones.

Reglas de expansidn.

Se tienen las reglas («) y (8) del célculo de proposiciones. Ademads, se definen
otras dos clases de férmulas con signo (férmulas v y férmulas ¢, tablas 2.6 y
2.7) con sus correspondientes reglas.

REGLA (v). Si una férmula y aparece en 2 en un nodo VIVO A de una rama
abierta dada t, y ¢ es la primera constante en Con(r) tal que v(¢) no aparece en
t, entonces t se expande anadiendo, debajo de su hoja, un nodo etiquetado con
“y(c), VIVO” y el nodo N sigue “VIVO”.

Decir que un nodo “sigue VIVO” significa que permanece activo tras la
aplicacién de una regla. Estd, por tanto, disponible para nuevas aplicaciones.
Este hecho es fundamental en el caso de la regla (), pues pueden necesitarse
nuevas aplicaciones de la misma cuando aparezcan nuevas constantes.

REGLA (4). Si una férmula ¢ aparece en 2l en un nodo VIVO N, entonces
cada rama abierta de 2 que contenga el nodo A se expande afiadiendo, debajo
de su hoja, un nodo etiquetado con “§(c), VIVO”, donde ¢ es una constante que
no aparecia en la rama (constante de Skolem) y el nodo A pasa a “MUERTO”.

Nétese que cada vez que aplicamos la regla (§) en una rama se introduce
una nueva constante (i.e., una que no aparezca previamente en dicha rama); esto
puede requerir, a su vez, tener que extender con nuevas constantes el vocabulario
del lenguaje usado para disponer de un arsenal de constantes suficiente. Es decir,
fijado CP(X), podemos tener que expandir Cony, lo que da lugar a un nuevo
lenguaje CP(X'), donde Cony, C Consy, Preds = Predsy y Funsy, = Funsy =
. Por ello, y para simplificar, usaremos en lo que sigue un lenguaje C'P(X)
tal que Cony es un conjunto infinito numerable de constantes, con objeto de no
tener que realizar sucesivas extensiones del vocabulario. Siguiendo la costumbre
lo denotaremos simplemente C'P.

Gréficamente se muestra la aplicacion de las reglas (v) y (8) en las figuras 2.3
y 2.4.

124



CAPITULO 2. DEMOSTRACION AUTOMATICA EN EL CP

v v(c)
(VX A4,V) | (A[X/d,V)
AX A, 7) | (A[X/d, 7)

Cuadro 2.6: Férmulas gamma.

)

5 50)
VX A4, F) | (A[X/d], F)

(
AX AV | (A[X/d, V)

Cuadro 2.7: Formulas delta.

Definicién 2.27 Sean una férmula con signo (p,S), una interpretacion J y

una asignacién a sobre J. Se dice que J satisface (p,S) con a, en simbolos:

JEq (p,S), si se cumple una de las dos condiciones siguientes:
1. JE,pyS=V.
2. T pyS=F.

Definicién 2.28 Se dice que (p,S) es verdadera en J, en simbolos T E (¢,S),
st se cumple una de las dos condiciones siguientes:

1. ¢ esverdadera enI yS =V.
2. pesfalsaend yS=>F.

Es fécil comprobar lo siguiente:

i) (¢, V) es verdadera en J si y sélo si ¢ lo es;
ii) (¢, F) es verdadera en J si y solo si ¢ es falsa en J.

Definicién 2.29 Sea T un conjunto de formulas con signo. Diremos que I tiene
un modelo (o que hay un modelo de T') si existe al menos una interpretacion en
la que son simultdneamente verdaderas todas sus formulas con signo.

Por extensién del lenguaje diremos que una férmula con signo (p,S) es cerrada
o abierta segin lo sea . Conviene destacar, sin embargo, que en los arboles
Unicamente introduciremos férmulas con signo cerradas. Recordemos que
para una férmula cerrada, “ser satisfacible” y “tener un modelo” son nociones
equivalentes (ejercicio 1.10(3)). En lo que sigue usaremos la nocién de “modelo”.
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v, VIVO v, VIVO

. ¢ € Con(r) .

~(c), VIVO

Figura 2.3: Regla (7)

Definicién 2.30 Sea un drbol 2. Diremos que una rama de 2 tiene un modelo
si el conjunto de sus formulas con signo tiene un modelo. Diremos que 2 tiene
un modelo si alguna de sus ramas tiene un modelo.

» W

Los conceptos de “drbol (rama) cerrado(a)”, “drbol (rama) abierto(a)” y “férmu-
la (o argumentacién) A-deducible” son los mismos que los de la seccién 1.2.7.
Ampliaremos, sin embargo, la nocién de “arbol para” un argumento o una
férmula a fin de dar cabida a drboles infinitos.

Para ello, definiremos el lfmite de una sucesién de arboles

b2

(Ao, Ap, .o, An, )

como el drbol 2 tal que el conjunto de nodos de 2 es la unién numerable de los
nodos de todos los 2,, de la sucesién y cada nodo de A, estd etiquetado en A
con la misma férmula con signo que en 2,,.

Definicién 2.31 Se dice que 2 es un drbol para T'S si se cumple una de las
dos condiciones siguientes:

1. Egziste una secuencia finita de drboles (g, 2Ay,..., 2Ay), conn > 0, donde:
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5, VIVO 5, MUERTO

S c¢Con(t)

5(c), VIVO

Figura 2.4: Regla (0)

a) Ao es el drbol inicial para T'°.
b) Para cada i < n, U;r1 proviene de 2; segin algin nodo de U;
c) A, es2A.

2. Existe una secuencia infinita de drboles (g, Ay,. .., An,... ) que satisface
las condiciones (a) y (b) anteriores y cuyo limite es 2.

Un arbol para (¢, F) es un drbol para {(p,F)}.

Ejemplo 2.20 Sea la férmula
VX(p(X) = q(X)) = (VX p(X) = VX q(X))
En la tabla 2.5 probamos que es 2-deducible. <

En los casos en los que no hay ninguna constante en la rama, es necesario
emplear también la siguiente regla:

REGLA AUXILIAR (Yauz)- Si una férmula v aparece en 2 en un nodo VIVO
N, y en una rama abierta a la que pertenece N no aparece ningin término
de base, entonces la rama se expande anadiendo, debajo de su hoja, un nodo
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L YX(p(X) = a(X)) — (VX p(X) = ¥X q(X)), F

2. YX(p(X) = q(X)),V de 1 por (@)

3. VX p(X) = VX q(X),F de 1 por ()

4. VX p(X),V de 3 por («)

5. VX q(X),F de 3 por («)

6. q(a),F de 5 por (4)

7. p(a),V de 4 por (v)

8. p(a) = q(a),V de 2 por (v)
/\

9. p(a),F de 8 por (f) q(a),V de 8 por (B)

Figura 2.5: Arbol cerrado completo para el ejemplo 2.20

etiquetado con “y(c), VIVO”, donde ¢ es una constante que no aparecia en la
rama, llamada constante auziliar, y el nodo A sigue “VIVO”.

Gréficamente se representa en la figura 2.6.

Aunque un arbol para el C'P puede ser infinito, sin embargo, podemos definir
la nocién de un “arbol completo” de acuerdo con el método:

Definicién 2.32 Una rama v estd completa si estd cerrada o bien:
1. Sia €z, entonces a; €t y as € t.
2. Sip €, entonces f1 €t 0 B2 € t.
3. Sid €, entonces para alguna ¢ € Consx, §(c) € t.
4. Sivy €, entonces para toda constante ¢ € Con(t): y(c) € t.
Un darbol A estd completo cuando todas sus ramas estdn completas.

Gracias a la presencia de la regla (Yquz ), €l conjunto Con(t) nunca es vacio para
ninguna rama t abierta y completa.

Ejemplo 2.21 Sea la férmula 3Y(3X p(X) — p(Y)). Probemos que es deducible
por el método de los drboles. Para ello tendremos que emplear la regla (Yaue),
como se muestra en la figura 2.7. Se llega a un arbol cerrado, luego la férmula
es deducible segun el método de los arboles. «
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v, VIVO v, VIVO
3 3
I
(Con(r) = @) 7(), VIVO

Figura 2.6: Regla (Yauz)

2.3.2. CORRECCION.

Hasta ahora no hemos especificado qué eleccién debe hacerse en el caso
de que haya varios nodos de expansién en un paso del método; por tanto, no
hemos descrito por completo un procedimiento sistemdtico para el CP. Sin
embargo, ello no es necesario para probar la correccién del método: sea cual sea
la estrategia de expansidn, si el método acaba con éxito, el argumento (férmula)
es vélido(a).

Lema 2.9 Supongamos que T' es un conjunto de férmulas con signo que tiene
un modelo.

1. SiaeTl, entonces T'U {aq,as} tiene un modelo.

2. SipB €T, entonces al menos uno de las dos conjuntos, TU{B1} o TU{B2},
tiene un modelo.

3. Sid €T yc esuna constante tal que ¢ ¢ Con(T'), entonces TU{d(c)} tiene
un modelo.

4. Siy €T, entonces T'U{y(c)} tiene un modelo para cualquier constante
¢ € Con(T).
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1. AY(IX p(X) — p(Y)),F

2. IX p(X) — p(a),F de 1 por (Vauz)
3. IX p(X),V de 2 por («)
4. p(a),F de 2 por («)
5. p(b),V de 3 por (9)
6. X p( ) = p(b),F de 1 por (7)
7. X p(X),V de 6 por («)
8. p( ),F de 6 por («)

Figura 2.7: Arbol cerrado completo para el ejemplo 2.21

DEMOSTRACION: Los casos 1y 2 son triviales. Probaremos el caso 3, que es el
problemético. Supongamos que § € T' y que I' tiene un modelo, sea J. Entonces
es un ejercicio trivial comprobar —atendiendo a las dos posibles formas de §,
a saber, (VXp,F) vy (3Xp,V)— que J F 4. Sea a cualquier asignacién sobre
I. Tenemos entonces que J F, 0, de donde se sigue que J Fqx/q 6(X), para
algin d € D (tomamos §(X) como (A,V) o bien (A, F) dependiendo de que
d sea (VX A, F) o (X A,V) respectivamente). Sea ¢ ¢ Con(T') y sea J' una
interpretacijon que coincide en todo con J excepto a lo sumo en que J' le asigna
a c dicho elemento d, i.e. 3'(¢) = d. Es ficil comprobar, usando la proposicién
1.10, que J’ es un modelo de T' y, ademds, J' E4 d(c). Como d(c) es una férmula
con signo cerrada, J' £ §(c). Por tanto, I' U {§(c)} tiene un modelo, q.e.d. <

Ejercicio 2.12 Probar el caso 4 del lema anterior. <

Lema 2.10 Sea A un drbol. Si A tiene un modelo y A* proviene de 2 segin
algin nodo de 2, entonces A* tiene un modelo.

DEMOSTRACION: Hay que considerar todos los casos posibles de aplicar reglas
(a)-(0) a un arbol satisfacible. <

Lema 2.11 Si hay un drbol cerrado para (p,F), entonces no existe mingin
modelo de (p, F).

DEMOSTRACION: Es andloga a la prueba del lema 1.2.10. <
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Teorema 2.7 (Correccion del método de los drboles para el CP). Si ¢ es -
deducible, entonces  es vdlida.

DEMOSTRACION: Es andloga a la demostracién del teorema 2.8. «

Como corolario tenemos la siguiente

Proposicién 2.11 Si ({¢1,..., pn}, p) es A-deducible, entonces ({p1,..., on},
) es un argumento vdlido.

2.3.3. COMPLETITUD.

Al tratar con férmulas de primer orden podemos encontrarnos con que el
método de arboles genere arboles infinitos; esto es, arboles que poseen al menos
una rama de longitud infinita. Es un problema similar al que teniamos al aplicar
el método de resolucién. Por esa razon, conviene disponer de alguna estrategia
de aplicacién de las reglas. Vamos a dar un método para construir “arboles
sistemdticos”, Unica forma de asegurarnos la completitud. Un arbol sistemati-
co estd construido con un procedimiento que nos asegure que, a efectos de la
expansién, “todos los nodos del lenguaje tienen su oportunidad”. Por tanto, el
arbol infinito generado por el algoritmo, “en el limite” llegard a ser completo.

Definicion 2.33 Un drbol sistemdtico es un drbol construido de acuerdo con el
procedimiento de la tabla 2.8

Hablando informalmente, dicho procedimiento actia como sigue. Se visitan to-
dos los nodos activos en las ramas abiertas del arbol de la siguiente forma:
primero se visitan todos los «, los 8 y los §. Esto supone la aplicacién de las
reglas (a), (8) y (6) un nimero finito de veces. Cumplido esto, viene el caso
delicado. Se considera el conjunto NODOS-G de los nodos y activos en ese
momento en ramas abiertas y se van expandiendo hasta que se agote la lista
o se cierre el arbol; ello supone también un nimero finito de expansiones. Por
el contrario, si tomaramos ahora en consideracién todos los nodos de expansién
v —incluso los que se van generando por expansién de otros y— seria posible
que se realizaran un numero infinito de expansiones, dejando asi de “dar su
oportunidad” a los nodos de otro tipo.

En los ejemplos que desarrollemos manualmente, no seguiremos estrictamen-
te este orden de expansion, sino el camino que nos parezca més corto para llegar
al cierre del arbol. Sin embargo, en una implementacién automatica es necesario
seguir un orden como el propuesto aqui, que garantice que no quede olvidado
ningin nodo de expansion.
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Inicializar A;
Repetir
POSIBLE-EXITO < FALSO;
Mientras haya alguna rama abierta y
un nodo de expansién activo «, 3, §
Seleccionar una rama abierta t
y un nodo de expansién activo N €t
que sea «a, 3, 0
Expandir A segin N
POSIBLE-EXITO < VERDADERO;
fin-mientras;
NODOS-G ¢ lista de nodos de expansién 7y
activos en ramas abiertas;
Mientras NODOS-G # NIL y haya una rama abierta
N « primero(NODOS-G);
NODOS-G ¢ resto(NODOS-G);
Expandir A segin N
POSIBLE-EXITO < VERDADERO;
fin-mientras;
si Arbol-cerrado(A), devolver EXITO;
hasta que POSIBLE-EXITO = FALSO;
Devolver FRACASO.

Definicién 2.34 Diremos que un conjunto I' de formulas con signo es un con-
junto de Hintikka (respecto de Con(T")) si se cumplen las siguientes condiciones:

1.

Cuadro 2.8: Procedimiento de los drboles sisteméticos para el C'P.

No eziste ninguna proposicion atémica A(ci,...,c,) tal que suceda a la

vez: (A(ciy...,cn),V) €Ty (Aler,...,cn), F) €T

Sia €T, entonces a1 €T y ag €T

Si B e, entonces B1 €T 0 By € T.

Si 0 € T, entonces para alguna constante ¢ € Cons, 6(c) € T.

Siy € T', entonces para toda constante c € Con(T): v(c) € T.
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Lema 2.12 SiT es un conjunto de Hintikka (respecto de Con(T)), entonces T
tiene un modelo.

DEMOSTRACION: Sea I' un conjunto de Hintikka respecto de Con(T). Cons-
truyamos una interpretacién J de I' de la manera siguiente:

- El dominio de J es Con(T).
- Para cada constante ¢ € Con(T'): J(c) = c.

- Para cada simbolo de predicado p € Pred(T’) y constantes cualesquiera ¢y,
..., cn € Con(T), resulta:

e si (p(er,...,cn), V) €T, entonces (c1, ..., ¢,) € IJ(p)
e si (p(cr,...,cn), F) €T, entonces (¢, ..., cn) ¢ J(p)
e en caso contrario, (¢, ..., ¢,) € J(p) (da igual si establecemos en su

lugar (ci, ..., cn) ¢ J3(p))

~

Las asignaciones sobre J son irrelevantes por tratarse I' de un conjunto de
férmulas con signo cerradas. Ahora, por induccién sobre la longitud de una
férmula con signo de I', podemos probar que I' tiene un modelo, en concreto,
la interpretacion J asi definida. Usamos para ello la proposicién 1.17. Tenemos,
facilmente, las siguientes equivalencias:

JFasiysélosiTFa; yJIF as
JEBsiysdlosiTESL 0 TE Bs
J E v siy sélo si para toda constante ¢ € Con(T): T E v(c)
JE § siy sélo si para alguna constante ¢ € Cony, J E §(c)

Los detalles de la prueba se dejan al lector. «

Lema 2.13 El conjunto de formulas con signo de cualquier rama abierta v de
un drbol sistemdtico completo es un conjunto de Hintikka (respecto de Con(t)).

DEMOSTRACION: No hay més que seguir el método para drboles sistemdticos y
comprobar que el conjunto de férmulas con signo de una rama abierta cumple
las propiedades de un conjunto de Hintikka. <

Teorema 2.8 (Completitud del método de los drboles para el CP). El método
de los drboles sistemadticos para el CP es completo, es decir:
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1. Sip es una formula vdlida, entonces ¢ es ™A-deducible.

2. Si ({¢1,---, ©n}, @) es un argumento vdlido, entonces ({¢1,..., Yn}t, @)
es A-deducible.

DEMOSTRACION: Probaremos 1 (2 es un corolario de 1). Supongamos que ¢
no es A-deducible. En ese caso, cualquier drbol sistemético construido a partir
de (p,F) como raiz tiene una rama abierta completa que, por los dos lemas
anteriores, tiene un modelo. Esto hace que la raiz, (¢, F), sea verdadera en
alguna interpretacion, luego ¢ es falsa en alguna interpretacién, por tanto, ¢ no
es valida, q.e.d. «

Las observaciones que plantedbamos al tratar la terminacién del método de re-
solucién para el C'P son validas mutatis mutandis para el método de los arboles.
Es decir, ya que no hay un método de decisién para el problema de la validez en
el C'P, es imposible garantizar que el método termina siempre. Lo que si pode-
mos asegurar es lo siguiente: atin si el método no es sistematico, la terminacién
con EXITO implica la validez de la férmula o argumentacién; y, si el método
es sistemdtico, toda argumentacién (o férmula) vilida llevard a una terminacién
con EXITO, mientras que una argumentacién (o férmula) no vélida llevard a
la terminacién con FRACASO o a la no terminacién.

Al igual que hicimos en el caso proposicional, podemos mostrar cémo usar
el método de arboles para encontrar contraegjemplos de la validez de férmulas o
argumentos.

Ejemplo 2.22 Probaremos la invalidez del argumento

IX(p(X) = q(X))
X p(X)

X a(X)

usando el método de los arboles (figura 2.8). El arbol estd completo y tiene
una rama t; abierta. Ahora, procediendo andlogamente al caso proposicional,
podemos mostrar una interpretacién a partir de dicha rama que invalide el
argumento propuesto. Para ello, podemos seguir las indicaciones del lema 2.12,
en cuyo caso, obtenemos la interpretacién J con dominio D, definida por

D = {a,b}, I(p) = {a}, J(q) = 2
que muestra claramente la invalidez de nuestro argumento. <
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F

—q(a),V de 1 por (§)
p(b),V de 2 por (d)

q(a),F de 3 por (v)

/\

p(a),F de 4 por (3) q(a),V  de 4 por ()
q(b),F de 3 por (v) XXX
T

AN
o
~
o8
L

® N

Figura 2.8: Arbol abierto completo para el ejemplo 2.22

Ejercicio 2.13 Estudiar por el método de arboles la validez de las siguientes
férmulas:

= YX(p(X) = IY q(Y)) = (IXp(X) = Y q(Y))

. VXYY (r(X,Y) = r(Y, X)) AYXYYVZ(r(X,Y) A r(X,Z) = r(Y,X)) =
VXY (r(X,Y) = r(X, X))

Ejercicio 2.14 Probar que el método de los arboles sistematicos no acaba al
aplicarse para estudiar la validez de la férmula g(a) — IXVY p(X,Y). «

Ejercicio 2.15 Representar en una teoria de primer orden los razonamientos
del ejercicio 2.7 y analizar su validez por el método de los arboles. «

2.3.4. OTRAS PERSPECTIVAS.

La aplicacion al C'P del método de los arboles tal como se ha expuesto aqui es
bastante ineficiente pues, a diferencia de lo que ocurre en el método de resolu-
cion/unificacion, la regla v nos permite encontrar la contradiccién dnicamente
en férmulas de base.
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Por ello, un planteamiento que se va extendiendo es usar arboles con “varia-
bles libres”. El método utiliza funciones de Skolem para tratar variables cuan-
tificadas y una regla de unificacién al estilo de la empleada en el método de
resolucién, que permitira sustituir adecuadamente las variables libres. La idea
bésica es retener la aplicacién de la regla (), posponiéndola hasta que haya
m3s informacién en la rama que asi lo aconseje. Por este motivo, se introduce
en el arbol una férmula como v(X), siendo X una variable libre en v(X) y
nueva en la rama. Posteriormente, se utiliza el mecanismo de unificacién eli-
giendo valores adecuados de X para cerrar la rama. Esto obliga a modificar la
regla (0) igualmente. En una de sus versiones [19], su aplicacién a una férmula
0 introduce una constante ¢ si no hay variables libres en §; en caso contrario,
se introduce §(f(X1,...,Xn)), siendo Xi,..., X, todas las variables libres de
0(f(Xy,...,Xy)) v f un nuevo funtor de Skolem (en la rama). El método de
arboles con variables libres consigue que las ramas cerradas cierren cuanto antes.
Sin embargo, se complica por el hecho de que han de efectuarse sustituciones
apropiadas de un modo ordenado. Recuérdese que el cierre de un arbol contesta
a una parte del problema planteado acerca de la validez; en concreto, nos dice
que una argumentacién (o férmula) es vélida, si realmente lo es. Y esta cuestién
es soluble.

No expondremos dicho método aqui. El lector interesado puede consultar
una exposicién de este tipo de métodos, por ejemplo, en [13] y [18].
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