Implementation of the C-Mantec Neural Network
Constructive Algorithm in an Arduino Uno
Microcontroller

Francisco Ortega-Zamorano', José Luis Subirats®, José Manuel Jerez!,
Ignacio Molina?, and Leonardo Franco!

! Universidad de Malaga, Department of Computer Science, ETSI Informéatica, Spain
{fortega, jlsubirats,jja,lfranco}@lcc.uma.es
2 Max Planck Institute, Munich, Germany
imolQuma.es

Abstract. A recently proposed constructive neural network algorithm,
named C-Mantec, is fully implemented in a Arduino board. The C-
Mantec algorithm generates very compact size neural architectures with
good prediction abilities, and thus the board can be potentially used to
learn on-site sensed data without needing to transmit information to a
central control unit. An analysis of the more difficult steps of the imple-
mentation is detailed, and a test is carried out on a set of benchmark
functions normally used in circuit design to show the correct functioning
of the implementation.

Keywords: Constructive Neural Networks, Microcontroller, Arduino.

1 Introduction

Several technologies like Wireless Sensor Networks [I], Embedded Systems [2]
and Real-time Systems [3] are nowadays being extensively used in all kind of in-
dustrial applications, most of which use microcontrollers [4] to implement. The
recent advances in the computing power of this kind of systems are starting to
permitting the use of learning systems, that are able to adjust its functioning as
the input data is received, to manage the microcontrollers present in their struc-
ture. Neural networks [5] are a kind of flexible and widely used learning systems
that are natural candidates for this task as they are very flexible. Nevertheless
a disadvantage of neural networks is that learning needs intensive computing
power and tends to be prohibitive even for modern systems. In this sense, a
recently proposed neural network constructive algorithm has the advantage of
being very fast in comparison to standard neural network training and further it
creates very compact neural architectures that is useful given the limited memory
resources of the microcontrollers.

In this work the C-Mantec[6] algorithm has been fully implemented in a mi-
crocontroller, as the training process is part of the software of the controller and
it is not carried out externally as it is usually done. We have chosen the Arduino

I. Rojas, G. Joya, and J. Cabestany (Eds.): IWANN 2013, Part I, LNCS 7902, pp. 80 2013.
© Springer-Verlag Berlin Heidelberg 2013

C-Mantec Implementation in a Microcontroller 81

UNO board [7] as it is a popular, economic and efficient open source single-board
microcontroller. C-Mantec is a neural network constructive algorithm designed
for supervised classification tasks. One of the critical factors at the time of the
implementation of the C-Mantec algorithm is the limited resources of memory
of the microcontroller used (32 KB Flash, 2KB RAM & 1KB EPROM mem-
ory) and in this sense the implementation has been done with integer arithmetic
except for one of the parameters of the algorithm. The paper is structured as fol-
lows: we first, briefly describe the C-Mantec algorithm and the Arduino board,
secondly we give details about the implementation of the algorithm, to finish
with the results and the conclusions.

2 C-Mantec, Constructive Neural Network Algorithm

C-Mantec (Competitive Majority Network Trained by Error Correction) is a
novel neural network constructive algorithm that utilizes competition between
neurons and a modified perceptron learning rule (termal perceptron) to build
compact architectures with good prediction capabilities. The novelty of C-Mantec
is that the neurons compete for learning the new incoming data, and this process
permits the creation of very compact neural architectures. The activation state
(S) of the neurons in the single hidden layer depends on N input signals, 1;, and
on the actual value of the N synaptic weights (w;) and the bias (b) as follows:

_ [1(ON) ifé>0)
~ | 0(OFF) otherwise (1)

where ¢ is the synaptic potential of the neuron defined as:

N
= witi—b (2)
i=1

In the thermal perceptron rule, the modification of the synaptic weights, Aw;, is
done on-line (after the presentation of a single input pattern) according to the
following equation:

Awi = (t — S) ’(/JZ Tfac (3)

Where ¢ is the target value of the presented input, and v represents the value of
input unit ¢ connected to the output by weight w;. The difference to the standard
perceptron learning rule is that the thermal perceptron incorporates the factor
T'tqc. This factor, whose value is computed as shown in Eq. @ depends on the
value of the synaptic potential and on an artificially introduced temperature (T)
that is decreased as the learning process advances.

T _sl
Tfac = TO e T (4)
C-Mantec, as a CNN algorithm, has in addition the advantage of generating
online the topology of the network by adding new neurons during the training

82 F. Ortega-Zamorano et al.

phase, resulting in faster training times and more compact architectures. The C-
Mantec algorithm has 3 parameters to be set at the time of starting the learning
procedure. Several experiments have shown that the algorithm is very robust
against changes of the parameter values and thus C-Mantec operates fairly well
in a wide range of values. The three parameters of the algorithm to be set are:

- ez maximum number of iterations allowed for each neuron present in the
hidden layer per learning cycle.

- gfac: growing factor that determines when to stop a learning cycle and in-
clude a new neuron in the hidden layer.

- Fitemp: determines in which case an input example is considered as noise and
removed from the training dataset according to the following condition:

VX € {X1,Xa,..., Xn}, delete(X) | NTL > (i + Femp-0), ()

where N represents the number of input patterns of the dataset, NTL is the
number of times that the pattern X has been presented to the network on the
current learning cycle, and the pair {y, o } corresponds to the mean and variance
of the normal distribution that represents the number of times that each pattern
of the dataset has been learned during the learning cycle. This learning procedure
is essentially based on the idea that patterns are learned by those neurons, the
thermal perceptrons in the hidden layer of the neural architecture, whose output
differs from the target value (wrongly classified the input) and for which its
internal temperature is higher than the set value of gfqc. In the case in which
more than one thermal perceptron in the hidden layer satisfies these conditions
at a given iteration, the perceptron with the highest temperature is the selected
candidate to learn the incoming pattern. A new single neuron is added to the
network when there is no thermal perceptron that complies with these conditions
and a new learning cycle starts.

3 The Arduino UNO Board

The Arduino Uno is a popular open source single-board microcontroller based on
the ATmega328 chip [8]. It has 14 digital input/output pins, which can be used
as input or outputs, and in addition, has some pins for specialized functions,
for example 6 digital pins can be used as PWM outputs. It also has 6 analog
inputs, each of which provide 10 bits of resolution, together with a 16 MHz
ceramic resonator, USB connection with serial communication, a power jack,
an ICSP header, and a reset button. The ATmega328 chip has 32 KB (0.5
KB are used for the bootloader). It also has 2 KB of SRAM and 1 KB of
EEPROM. Arduino is a descendant of the open-source Wiring platform and
is programmed using a Wiring-based language (syntax and libraries); similar to
C—++ with some slight simplifications and modifications, and a processing-based
integrated development environment. Arduino boards can be purchased pre-
assembled or do-it-yourself kits, and hardware design information is available.
The maximum length and width of the Uno board are 6.8 and 5.3 cm respectively,
with the USB connector and power jack extending beyond the former dimension.
A picture of the Arduino UNO board is shown in Fig. [l

C-Mantec Implementation in a Microcontroller 83

Fig. 1. Picture of an Arduino UNO board used for the implementation of the C-Mantec
algorithm

4 Implementation of the C-Mantec Algorithm

The C-Mantec algorithm implemented in the wiring code is transferred by USB
from the development framework from the PC to the board. The execution of the
algorithm comprises two phases or states, because first, the patterns to be learnt
have to be loaded into the EEPROM, and then the neural network learning
process can begin. The microcontroller state is selected using a digital I/O pin.
We explain next, the main technical issues considered for the implementation of
the algorithm according to the two phases mentioned before:

4.1 Loading of Patterns

It is necessary to have the patterns stored in the memory board because the
learning process work in cycles and use the pattern set repeateadly. The truth
(output) value of a given Booelan pattern is stored in the memory position that
corresponds to the input. For example, for the case of pattern of 8 inputs, the
input pattern “01101001” that corresponds to the decimal number 105 and has a
truth value of 0 would be stored by saving a value of 0 in the EEPROM memory
position 105. The Arduino Uno EPROM has 1KB of memory, i.e., 8192 bits
(213) and thus this limits the number of Boolean inputs to 13. For the case of
using an incomplete truth table, the memory is divided into two parts, a first
one to identify the pattern output and a second part to indicate its inclusion or
not in the learning set. In this case, of an incomplete truth table, the maximum
number of inputs is reduced to 12.

For the case of using real-valued patterns is necessary to know in advance the
actual number of bits that will be used to represent each variable. If one byte is
used to represent each variable then from the following equation the maximum
number of input patterns permitted can be computed:

Np‘N[+Np/8§1024, (6)

where N7 is the number of inputs and Np is the number of patterns. Np depends
on the number of entries and the number of bits used for each entry.

84 F. Ortega-Zamorano et al.

4.2 Neural Network Learning

C-Mantec is an algorithm which adds neurons as they become necessary, action
that is not easily implemented in microcontroller, so we decided to set a value
for the maximum number of permitted neurons, that will be stored in the SRAM
memory. From this memory, with a capacity of 2 KB, we will employ less than
1 KB for storing the variables of the program; and thus saving at least 1 KB of
free memory for saving the following variables related to the neurons:

- T'¢qc: must be a variable of float type and occupies 4 bytes.

- Number of iterations: an integer value with a range between 1000 and 100000
iterations, so it must be of type long, 4 bytes.

- Synaptic weights: almost all calculatios are based on these variable, so to
speed up the computations we choose integer types of 2 bytes long.

According to the previous definitions, the maximum number of neurons (Ny)
that can be implemented should verify the following constraint:

4-Ny+2-Ny+2-Ny-(N;+1) <1024, (7)

where Ny is the number of inputs. For the maximum number of permitted in-
puts (13), the maximum number of neurons is 30. The computation of T, is
done using a float data type because it requires an exponential operation that
can be done only with this type of data, but as its computation involves other
data types (integers) , a conversion must be done. To make this change without
losing accuracy, we multiply the value of T4 by 1000, leading to values in the
range between 0 and 1000. When we convert to integer data type, precision is
lost starting from the fourth digital number. Weights are of integer type in the
range from -32768 to 32767, and as they are multiplied by the value of T4, we
compensate this change by dividing them by 1000. When any synaptic weight
value is greater than 30, or less than -30, all weights are divided by 2. This
change does not affect at all the procedure of the network as neural network
are invariant to this type of rescaling. To avoid the overflow of the integer data
type, we apply the previous transformation whenever a synaptic weight reach
the maximum or minimum permitted values. One very important thing in the
implementation is the the execution time needed by the algorithm. In our case,
this value depends strongly on the number of neurons actually used, as this time
grows exponentially as a function of the number of used neurons. Fig [2] shows
the execution time as a function of the neurons used in an architecture generated
by the C-Mantec algorithm.

5 Results

We have tested the correct implementation of the C-Mantec algorihtm in the
Arduino board by comparing the obtained results, in terms of the number of
neurons generated and the generalization accuracy obtained, with those previ-
ously observed when using the PC implementation. The test is also carried out

C-Mantec Implementation in a Microcontroller 85

120 ,]:

100 b

80

60 E

40

Time (minutes)

20

0 5 10 15 20 25 30
Neurons

Fig. 2. Mean and standard deviation (indicated by error bars) of the execution time of
the learning process as a function of the number of neurons used in a network created
by the C-Mantec algorithm. The values shown are averages across 20 samples.

Table 1. Number of neurons and generalization ability obtained for a set of benchmark
function for the implementation of the C-Mantec algorithm in an Arduino Uno board.
(See text for more details).

Function # Inputs # Neurons Accuracy generalization
Theory Arduino Theory Arduino
cm82af 5 3,0£0,0 3,0£0,0 93,3£11,1 87,2£5,3
cm82ag 5 3,0£0,0 3,0£0,0 60.0+£37,3 72,5+12,3
cm82ah 5 1,0+£0,0 3,0+£0,0 100.0+0,0 95,3+4,7
z4ml24 7 3,0£0,0 3,0£0,0 98,3+3,7 97,9£1,1
z4ml25 7 3,1£0,9 3,1+£0,9 90,8+12,3 86,0£0,9
z4ml26 7 3,0£0,0 3,0£0,0 96,7+5,9 94,6+£0,4
z4ml27 7 3,0£0,0 3,0£0,0 99,2428 99,9£0,9
9symml 9 3,0£0,0 3,0£0,0 99,44+0,9 97,5+1,2
alu2k 10 11,2+0,9 11,841,2 974+19 95,54+0,9
alu2l 10 18,9+1,5 19,3+1,3 79,2+5,5 70,3+1,3
alu2o 10 11,24+0,9 12,840,2 90,2+2,3 85,842,2

to analyze the effects of using a limited precision representation for the synaptic
weights. A set of 10 single output Boolean functions from the MCNC benchmark
were used to test the generalization ability of the C-Mantec algorithm. The C-
Mantec algorithm was run with the following parameter values: gfq. = 0.05 and
Ia = 10000. Table[dlshows the results obtained with the microcontroller for the

86 F. Ortega-Zamorano et al.

set of benchmark functions. The first two columns indicate the function reference
name and its number of inputs. Third and fourth columns shows the number of
neurons obtained by the PC and Arduino implementations, while fifth and last
column shows the generalization ability obtained both for the PC and Arduino
cases. The averages are computed from 20 samples and the standard deviation
is indicated. The generalization ability shown in the table was computed using
a ten-fold cross validation procedure.

6 Conclusion

We have successfully implemented the C-Mantec neural network constructive
algorithm in an Arduino Uno board. The main issues at the time of the im-
plementation are related to the memory limitations of the board. In this sense,
we have analyzed the maximum number of Boolean and Real patterns that can
be used for the learning process. For the case of Boolean patterns, we carried
out a comparison against published results, showing that the algorithm works
almost exact in comparison to the original PC implementation. As the number
of inputs of the test functions increases, the Arduino implementation needs just
a small extra number of neurons, and also a small degradation in the generaliza-
tion accuracy is observed. These effects can be related to the limited numerical
precision of the synaptic weights. The rounding effects should not in principle
degrade the functioning of the algorithm, but affects the number of iterations
needed to achieve convergence. Thus, we have also analyzed an important factor
as it is the execution time of the algorithm. The results (cf. Figure 2) shows an
exponential execution time increase as a function of the number of neurons in
the constructed algorithms, and so for networks of approximately 15 neurons the
execution time is around 20 minutes, while for 30 neurons this time increases up
to two hours.

As a conclusion, and despite the previously mentioned limitations, we believe
that the current implementation can be used in several practical applications,
and we are planning to incorporate the C-Mantec algorithm in WSN in a near
future.

Acknowledgements. The authors acknowledge support from Junta de An-
dalucia through grants P10-TIC-5770 and P08-TIC-04026, and from CICYT
(Spain) through grant TIN2010-16556 (all including FEDER funds).

References

1. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput.
Netw. 52(12), 2292-2330 (2008)

2. Marwedel, P.: Embedded System Design. Springer-Verlag New York, Inc., Secaucus
(2006)

3. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications, 1st edn. Kluwer Academic Publishers, Norwell (1997)

C-Mantec Implementation in a Microcontroller 87

. Andersson, A.: An Extensible Microcontroller and Programming Environment. Mas-
sachusetts Institute of Technology, Department of Electrical Engineering and Com-
puter Science (2003)

. Haykin, S.: Neural networks: a comprehensive foundation. Prentice Hall (1994)

. Subirats, J.L., Franco, L., Jerez, J.M.: C-mantec: A novel constructive neural
network algorithm incorporating competition between neurons. Neural Netw. 26,
130-140 (2012)

. Oxer, J., Blemings, H.: Practical Arduino: Cool Projects for Open Source Hardware.
Apress, Berkely (2009)

. Atmel: Datasheet 328, http://www.atmel.com/Images/doc8161.pdf

http://www.atmel.com/Images/doc8161.pdf

	Implementation of the C-Mantec Neural Network Constructive Algorithm in an Arduino Uno�Microcontroller
	1 Introduction
	2 C-Mantec, Constructive Neural Network Algorithm
	3 The Arduino UNO Board
	4 Implementation of the C-Mantec Algorithm
	4.1 Loading of Patterns
	4.2 Neural Network Learning

	5 Results
	6 Conclusion
	References

