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Abstract—The efficient implementation of artificial neural
networks in FPGA boards requires tackling several issues
that strongly affect the final result. One of these issues is
the computation of the neuron’s activation function. In this
work, a detailed analysis of the FPGA implementations of the
Sigmoid and Exponential functions is carried out, in a approach
combining a lookup table with a linear interpolation procedure.
Further, to optimize board resources utilization, a time division
multiplexing of the multiplier attached to the neurons was used.
The results are evaluated in terms of the absolute and relative
errors obtained and also through measuring a quality factor
and the resource utilization, showing a clear improvement in
relationship to previously published works.

I. INTRODUCTION

FPGAs [1] are reprogrammable silicon chips, using pre-
built logic blocks and programmable routing resources.

They can be configured to implement custom hardware
functionality, and in this sense, FPGAs are completely re-
configurable and can almost instantly change its behavior by
recompiling a new circuitry configuration. In recent years,
the advance in technology made possible to construct FPGAs
with considerable large amounts of processing power and
memory storage, permitting their application in several areas
such as Telecommunications, Robotics, Pattern recognition
tasks, Infrastructure monitoring, etc. [2]. As FPGAs are
intrinsically parallel devices, they are quite suitable for
Neural Network implementations, and so several studies have
analyzed their application [3], [4], [5]. A broad classification
of FPGA neural network applications can be done according
to whether they include the learning process (“on-chip imple-
mentations”) [6], [5] or if the training of the neural network
model is performed externally in a Personal Computer (PC)
where the FPGA acts as a hardware accelerator (“off-chip
implementations”) [7], [8]. Programming a FPGA is not a
trivial task as they are predominantly codified using hardware
description languages such as VHDL or Verilog, languages
that are complex making the programming process very
time consuming in most cases. An important aspect at the
time of the implementation of an algorithm in a FPGA
regards the data type representation. The nature of the FPGAs
encourages the use of a fixed point representation because
this type of representation is more efficient. A floating
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point representation might be used but this would require
the utilization of specific cores [9], [10]. Regarding this
issue, the work of Savich et al. (2007) [11] describes an
interesting analysis of the implementation of floating point
neural algorithms in fixed point arithmetic.
In the present work, we analyze the implementation in

a FPGA board of Sigmoid and Exponential functions, two
functions related to artificial neural network implementa-
tions. The Sigmoid function (σ) is one of the most used
activation function in neural networks [12] , and as such
its implementation in FPGA has been analyzed by several
authors in the past [13], [14], [4]. The Exponential function
is less commonly used in neural network models but it
is considered in this work as it is related to the Upstart
and C-Mantec constructive neural network algorithms that
constitute a valid alternative to traditional backpropagation
trained neural networks [16].
In the present work, we develop a method based on using

a lookup table approach combined with a linear interpolation
scheme. Similar approaches have not been used much in the
past due to the memory requirements for the storage of table
values, but given the actual specifications of FPGA boards
it is a very interesting possibility [13], that may lead to fast
and accurate results.

II. METHODS

We analyze in this work the implementation on a FPGA
board of two mathematical functions involved in the im-
plementation of neural network models: the Sigmoid and
Exponential functions. The board used for the current im-
plementation is the Virtex-5 OpenSPARC Evaluation Plat-
form (ML509). This device includes a Xilinx Virtex-5
XC5VLX110T FPGA that provides different connector de-
vices that includes 2 USB ports, 2 PS/2 ports, RJ-45
(10/100/1000 Networking) and RS-232 connectors. The VIR-
TEX 5 board used has 69120 programmable LUTs (Look-
Up Tables), 148 RAM/FIFO available blocks of memory
and 64 DSP48 modules. Each DSP48 slice contains a 25
x 18 multiplier, an adder, and an accumulator, containing
extensive cascade capabilities to efficiently implement high-
speed DSP algorithms.
The Sigmoid function (σ) is one of the most commonly

used activation function in neural networks [12] and is
defined as:

σ(x) =
1

1 + exp(−x)
. (1)

The Exponential function is a basic matematical function
usually used to model a quantity that grows or decays at
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Fig. 1. Hardware representation of the interpolation block used for the computation of the functions.

a rate proportional to its current value, and it is used in
several neural network algorithms like the Upstart [15]), and
C-Mantec Constructive Neural Network algorithm [16].
The implementation of the Exponential and Sigmoid func-

tions was carried out using a lookup table approach combined
with a linear interpolation procedure. The lookup table
contains equispaced values of the function in a range of input
values of interest and the linear interpolation procedure uses
two adjacent tabulated values (lower and larger) with respect
to the input in order to compute the approximation, according
to the following equation:

Y = Ya + (X −Xa)
(Yb − Ya)

(Xb −Xa)
, (2)

where Xa and Xb are the closest lower and upper values in
relationship to the input one (X) that are stored in a lookup
table, while Ya and Yb are the corresponding values of the
function being computed.
The implementation has been carried out using fixed point

arithmetic, as this type of representation is most suitable
when using FPGAs [17].
Figure 1 shows hardware representation of the interpola-

tion block. The inputs for the computation of the function are
indicated on the upper left corner of the diagram: From top
to bottom we have first a Reset signal that initialize the finite
state machine (FSM), the multiplier output (Out Mul), a
signal (Ready H) to indicate that the value of H is the correct
one to be used, H the argument of the Sigmoid function (also
known as the synaptic potential of the neuron), and two clock
signals, Clk A the system frequency and Clk B the double
of Clk A. Within the figure, the upper part shows the finite
state machine that controls the timing of the process, while
in the lower part of the figure it is shown the procedure in
charge of computing the approximation of the function, first

by checking the closest values stored in the lookup table,
and secondly by the computation of the linear interpolation
(Eq. 2). On the right side of the diagram the outputs of
the procedure are shown: Ready S is a signal to indicate
that the value of the function S is available, and near the
bottom left part Inp1 Mul and Inp2 Mul are the inputs to a
multiplier that will return Out Mul. When the FSM is in the
state A = 1 Inp1 Mul contains the value of m = (Yb−Ya)

(Xb−Xa)
while Inp2 Mul is equal to X −XA. These two values are
sent to a multiplier and the result is returned to the block as
Out Mul, so the value of S can be returned when the FSM is
in state A=2 according to Eq. 2. As it can be appreciated in
the FSM the whole procedure can be executed in two system
clock cycles (from A=0 to A=2), because in this last state S
is ready to be used in further computations.
The resources employed for the implementation of the

interpolation process are shown in Table I as a function of the
length of the representation used, formed by the integer part
(Na ) and the decimal part (Nb). (Note that the values shown
in the table do not take into account resources involved in
the construction of the lookup table that are considered sep-
arately). Regarding the operation frequency of the block, in
the worst case (Na=Nb=16) the interpolation block generates
a delay of 1.152 ns that implies a frequency of 868.056 MHz,
higher than the maximum allowed frequency, so the system
operating frequency will be determined by the rest of the
hardware resources.

A. Multiplier

The strategy for the implementation of both functions was
to use a time-division multiplexing strategy for the multiplier
module permitting to compute sequentially the values and
saving board resources. Figure 2 shows a schematic repre-
sentation of a neuron in the FPGA in which the time-division



TABLE I

EMPLOYED RESOURCES IN THE IMPLEMENTATION OF THE

INTERPOLATION PROCESS USED FOR THE COMPUTATION OF THE

SIGMOID AND EXPONENTIAL FUNCTIONS.

Na Nb LUTs Registers
8 8 43 26
8 12 55 30
8 16 72 34
12 12 60 30
12 16 75 34
16 16 78 34

Neuron module

S_Error

Error

S_Train

Pattern

Data setting set

DSP48a

b

c=a*b

0

N

1

0

N

1

Reset

Neuron block
- LUTs
- Registers
- BRAM

Interpolation
block

ClkA (f MHz)

ClkB (2f MHz) H
S

R
ea
dy
_H

R
eady_S

Sel

Out_Mul

Inp1_Mul

Inp2_Mul

Fig. 2. Scheme of an implemented neuron that uses a time-division multi-
plexed strategy to execute several multiplications without adding complexity
to the interpolation process.

multiplexing of the DSP multiplier has been implemented.
For an optimal utilization of the resources, the multiplier of
each neuron has been performed with a synchronous DSP48
with an operation frequency two times faster than the one of
the finite state machine, in order to perform the multiplication
operation in one clock cycle.

B. Lookup Table

The computation of the sigmoid function utilizes a lookup
table for storing tabulated values to be used in the interpo-
lation procedure. The size of the table (NL) is determined
by the precision (number of bits) of the inputs. These values
(Xa and Xb in Eq. 2) have been represented using a fixed
point scheme with N1 bits for the integer part and N2 for
the decimal part. In this way the total number of values in
the table is defined by NL = 2N1+N2 for functions with
only positive inputs or NL = 21+N1+N2 for the case of
functions with negative and positive inputs like the sigmoid
function. To determine adequate values of N1 and N2,
first, the value of N2 is increased until the absolute error
of the output function is lower than the desired value, to
then apply the same process for N1. To finish, the number
of bits for representing the tabulated values (NT ) has to
be determined. Table II shows the number of used LUTs
for the different representation for the implementation of a
lookup table, depending on NT = {8, 12, 16}, and NL =
{16, 32, 64, 128, 256, 512, 1024}. A lookup table with any
configuration of NT and NL can also be implemented by
one block RAM instead of using LUTs, thus allowing for

TABLE II

FPGA MEMORY REQUIREMENTS IN LUTS FOR DIFFERENT VALUES OF

NL AND NT .

NL 16 32 64 128 256 512 1024
NT

8 8 12 16 30 32 210 388
12 12 18 24 46 52 434 796
16 20 26 32 62 84 490 924
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Fig. 3. Results obtained for the implementation of the Sigmoid functions
for different values of N2.

two different implementation possibilities that can be chosen
according to the resource needs of the entire system.

III. RESULTS

A. Sigmoid function approximation

The approximation results obtained for the Sigmoid func-
tion are shown in Figs. 3, 4, and 5 where the absolute
errors are shown as a function of the input value. Fig. 3
shows the result for three different values of N2 = {0, 1, 2},
while Fig. 4 shows the result for three different values of
N1 = {1, 2, 3}. Fig. 5 shows the final approximation results
as a function of NT = {8, 12, 16}.
From an analysis of the results shown in Figs. 3, 4, and 5,

our choice for the implementation of the Sigmoid function
is N1 = 3, N2 = 2, and NT = 16, as this choice permits to
obtain absolute errors below 10−3 that guarantees a correct
operation of most artificial neural networks algorithm. Table
III shows maximum error (Max) and Root Mean Square Error
(RMSE) for different values of N1 and N2. The first row of
the table shows the results obtained for the chosen set of
values (N1 = 3, N2 = 2) while for the rest of the rows
larger values of N1 and N2 are used for comparison.

B. Comparison with previous approaches

We compare below the results obtained in the the current
approach with two previous works where different aspects
are taken into account in the analysis. Comparisons with
other existing approaches can not be performed because the
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Fig. 4. Results obtained for the implementation of the Sigmoid functions
for different values of N1.
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Fig. 5. Results obtained for the implementation of the Sigmoid functions
for different values of NT .

implementation details necessary for a reliable comparison
were not given.
1) Comparison using a quality factor: In the work by

Tommiska et al., 2003 [13] a quality factor Q has been
introduced to analyze the accuracy and usability of a function
implemented in a FPGA board:

Q =
fmax

LEs · Eave · Emax
, (3)

where fmax = clock rate, LEs = number of logic elements,
Eave = average error in per cent, and Emax = maximum
error in per cent.
The quality factor (Q) for the Sigmoid approximation has

been computed in two different cases, first by using the
lookup table approximation alone (Q1) and second when the
interpolation scheme is used in combination with the lookup
table (Q2). The values of Q1 and Q2 are reported in Table IV
together with previous published results [13]. For computing

TABLE III

MAXIMUM ERROR (MAX) AND ROOT MEAN SQUARE ERROR (RMSE)

FOR DIFFERENT VALUES OF N1 AND N2 IN THE IMPLEMENTATION OF

THE SIGMOID FUNCTION.

N1 N2 Max RMSE
3 2 7.548 · 10−4 2.447 · 10−4

3 3 3.353 · 10−4 9.477 · 10−5

4 3 1.982 · 10−4 4.428 · 10−5

4 4 6.091 · 10−5 1.394 · 10−5

4 5 2.669 · 10−5 8.783 · 10−6

4 6 1.755 · 10−5 8.362 · 10−6

TABLE IV

QUALITY FACTOR FOR THE SIGMOID FUNCTION APPROXIMATIONS

Approximation Q

Lookup table + interpolation Q2= 491.46
sig337p [13] 25.61
sig236p [13] 12.30
PLAN approximation [18] 1.743
Approximation of Alippi and StortiGajani[14] 1.085
Lookup table Q1 = 0.644
Approximation of Zhang [19]. 0.227
A-law based approximation[20] 0.134

Q1 the following values were used fmax = 100MHz, LEs=
32, Eave = 6.22, Emax = 0.78, while for Q2 the arguments
were: fmax = 100MHz, LEs= 32 + 78 = 110 (32 LEs for
representing the table values, and 78 LEs for the interpolation
procedure), Eave = 0.0755, and Emax = 0.0245.
2) Comparsion based on resource utilization: A scheme

of the Sigmoid function based on Taylor’s theorem and
Lagrange forms was proposed in [21], where a maximum
allowable error(ε) of 0.01 was permitted in the hardware
implementation. The necessary resources were one DSP and
11 LUTs, with the circuit performing the computation in 7
clock cycles at a maximum frequency of 373.5 MHz. The
present work leads to a maximum allowable error of 0.001,
using a DSP but in a multiplexing scheme involving no
extra resources. Regarding the number of LUTS, the current
implementation needs a larger resource utilization (up to 78
LUTs) because the circuit performs the computation in only 2
clock cycles with a maximum operation frequency of 868.056
MHz.

C. Exponential function approximation

The results for the exponential function approximation are
shown in Figs. 6,7, and 8. Fig. 6 shows the result for three
different values of N2 = {0, 1, 2, 3}, while Fig. 7 shows the
result for three different values of N1 = {1, 2, 3}. Fig. 8
shows the final approximation results as a function of NT =
{8, 12, 16}.
From the observed results presented in Figs. 6,7, and 8 the

choice made for the implementation of the Sigmoid function
is N1 = 3, N2 = 3, and NT = 16, as these values are
the lowest ones permitting to obtain absolute errors below
2× 10−3.
Table V shows maximum error (Max) and Root Mean

Square Error (RMSE) for different values of N1 and N2.
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Fig. 6. Results obtained for the implementation of the exponential functions
for different values of N2.

TABLE V

MAXIMUM ERROR (MAX) AND ROOT MEAN SQUARE ERROR (RMSE)

FOR DIFFERENT VALUES OF N1 ANDN2 IN THE IMPLEMENTATION OF

THE EXPONENTIAL FUNCTION.

N1 N2 Max RMSE
3 3 1.833 · 10−3 3.249 · 10−4

3 4 4.704 · 10−4 7.632 · 10−5

4 4 4.704 · 10−4 5.501 · 10−5

4 5 1.151 · 10−4 1.358 · 10−5

4 6 2.530 · 10−5 6.493 · 10−6

The first row of the table shows the results obtained for the
chosen set of values (N1 = 3, N2 = 3) while for the rest of
the rows larger values of N1 and N2 are used for comparison.
In order to analyze the efficiency of the approximation

done we have computed absolute and relative errors for
the Exponential function in an arbitrarily selected interval
between two tabulated values. Table VI displays the results
for input values in the interval [2.000 2.125] showing in
the columns the input values, the value of the exponential
function with 6 significant digits, the value obtained with
the approximation made and the absolute and relative errors.
The extreme values of the interval considered corresponds
to tabulated values used to compute the interpolation and so
they appear in the table in boldface font.

IV. CONCLUSIONS

We have analyzed in this work the FPGA implementation
of two basic functions related to the functioning of neural
network algorithms by using a time division multiplexing
strategy for carrying the multiplication operations in com-
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Fig. 7. Results obtained for the implementation of the exponential functions
for different values of N1.
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Fig. 8. Results obtained for the implementation of the exponential functions
for different values of NT .

bination with a lookup table and interpolation scheme. A
quality comparison done with respect to previously published
results [13] for the Sigmoid function shows that the current
implementation is very efficient, as we obtained a quality
factor 40 times larger than the best previous published
value, noting that this value is obtained without a significant
increase of resource utilization. Regarding the lookup table
plus interpolation scheme, it is also possible to conclude
that the interpolation procedure helps very much to improve
the approximation results, as the quality factor without the
interpolation scheme reduces from 491 to 0.64. A further
comparison to the results published in [21] shows that
the current implementation is much faster, performing the
computation of the Sigmoid function in only 2 clock cycles
instead of the 7 used in the mentioned work.
Regarding the approximation of the Exponential function,

the results can be considered of similar quality to those



TABLE VI

ABSOLUTE AND RELATIVE ERRORS FOR THE EXPONENTIAL FUNCTION

FOR INPUT VALUES IN THE INTERVAL [2.000 2.125] FOR THE

APPROXIMATION MADE USING A LOOKUP TABLE COMBINED WITH A

LINEAR INTERPOLATION.

x exp(−x) Approximation Absolute error Relative error

2.000 0.135335 0.135330 5 · 10−6 4 · 10−5

2.025 0.131994 0.132150 1 · 10−4 1 · 10−3

2.050 0.128735 0.128970 2 · 10−4 2 · 10−3

2.075 0.125556 0.125790 2 · 10−4 2 · 10−3

2.100 0.122456 0.122610 1 · 10−4 1 · 10−3

2.125 0.119433 0.119430 3 · 10−6 3 · 10−5

obtained for the Sigmoidal function, even if the quality factor
has not been compared as there were no previous published
results. The results shown in table VI confirm the accuracy
of the approximation, as very low error values were obtained.
It is worth noting that the proposed techniques used for
the functions approximation were obtained maximizing the
utilization of FPGA resources, so that they can be replicated
several times in the same board allowing for the construction
of larger networks of neurons.
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