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Abstract. Recent advances in FPGA technology have permitted the
implementation of neurocomputational models, making them an inter-
esting alternative to standard PCs in order to speed up the compu-
tations involved taking advantage of the intrinsic FPGA parallelism.
In this work, we analyse and compare the FPGA implementation of
two neural network learning algorithms: the standard Back-Propagation
algorithm and C-Mantec, a constructive neural network algorithm that
generates compact one hidden layer architectures. One of the main differ-
ences between both algorithms is the fact that while Back-Propagation
needs a predefined architecture, C-Mantec constructs its network while
learning the input patterns. Several aspects of the FPGA implemen-
tation of both algorithms are analysed, focusing in features like logic
and memory resources needed, transfer function implementation, com-
putation time, etc. Advantages and disadvantages of both methods are
discussed in the context of their application to benchmark problems.

Keywords: Constructive neural networks - FPGA - Hardware
implementation

1 Introduction

Artificial Neural Networks (ANN) [1] are mathematical models inspired in the
functioning of the brain that can be utilized in clustering and classification prob-
lems, and that have been successfully applied in several fields, including pattern
recognition, stock market prediction, control tasks, medical diagnosis and prog-
nosis, etc. The implementation of ANN in digital circuits (standard PCs, embed-
ded systems, etc.) has been limited by the computational power needed, mainly
given its intrinsic parallelism. In this sense, the capacity and performance of cur-
rent FPGAs are a realistic alternative for the real time implementation of ANN.
FPGAs [2] are reprogrammable silicon chips, using prebuilt logic blocks and
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programmable routing resources, that can be configured to implement custom
hardware functionality, being able also to change almost instantly its behaviour
by recompiling a new circuitry configuration. Recent advances in technology
have permitted to construct FPGAs with considerable large amounts of pro-
cessing power and memory storage, and as so they have been applied in several
domains (Telecommunications, Robotics, Pattern recognition tasks, Infrastruc-
ture monitoring, etc.) [3-5]. In particular FPGAs seem quite suitable for Neural
Network implementations as they can be programmed to operate in a parallel
way [6-8].

Within the area of supervised pattern recognition, the efficient implemen-
tation of neurocomputational models into hardware can be done in principle
following two different strategies: Modifying and adapting the traditional Back-
Propagation algorithm or developing new algorithms that are better suited to the
hardware constraints. In this work these two different possibilities are explored,
first by doing a hardware optimization of the standard Back-Propagation algo-
rithm [9], and secondly through the implementation of an alternative algorithm
(C-Mantec) based on an incremental constructive architecture [10]. The over-
all idea of the work is to do a comparative analysis of the two approaches in
order to identify the pros and cons for each case, and with this information
take a decision depending on the specific application and the resources avail-
able. The Back-Propagation algorithm (BP) is the standard learning procedure
for training multilayer neural networks architectures [11] [12] but one of the
main problems associated to its implementation is the lack of a clear methodol-
ogy for determining the network topology before training starts. On the other
hand, C-Mantec [13] is a novel neural network constructive algorithm that uti-
lizes competition between the neurons and a modified perceptron learning rule
(thermal perceptron [14]) to build single hidden layer compact architectures with
good prediction capabilities for the supervised classification problems. The orga-
nization of the present work is as follows: Section 2 includes the hardware imple-
mentation details and description about the Back-propagation and C-Mantec
algorithms. Results from several comparison features are presented in Section 3,
to finally present the discussion of the results and the conclusions obtained.

2 Algorithms Description and Implementation Details

We describe in this section the main functioning aspects of both algorithms,
including also specific details of the FPGA implementation. An important issue
and a big difference in relationship to standard PC implementations regards the
number representation used in the FPGA. While for standard PCs floating point
number representation is the standard choice, this type is not usually the most
efficient for FPGAs and a fixed point number representation is preferred [15].

2.1 The Back-Propagation Algorithm

The Back-Propagation algorithm is a supervised learning method for training
multilayer artificial neural networks based on the gradient descent strategy.
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The network architecture for the implementation of the algorithm has to be
decided previously and there is no standard methodology for this step, being the
trial-and-error method one of the most used strategies. In the most general case
the neural architecture comprises an input layer with a number of inputs deter-
mined by the problem at hand, several hidden layers, and one or many output
neurons depending whether a binary or multi-output problem is analysed (for
simplicity the first case is considered in this work).

The objective of the BP supervised learning algorithm is to minimize the
difference between given outputs (targets) for a set of input data and the output
of the network. This error depends on the values of the synaptic weights, and
so these should be adjusted in order to minimize the error. The error function
computed for the case of a single output neuron can be defined as:

M

E= 3 (i w), M

i=1

where the sum is over all training patterns, and z; and y; refers to target and
network outputs for a given pattern i.

If we consider the neurons belonging to a hidden or output layer, the activa-
tion of these units, denoted by y;, can be written as:

L
Yi=4g Zwij'sj =g(h), (2)
j=1

where w;; are the synaptic weights between neuron 4 in the current layer and the
neurons of the previous layer with activation s;. In the previous equation, we
have introduced h as the synaptic potential of a neuron. g is a sigmoid activation

function given by:
1
g9(x) = 1_ Bz 3)

By using the method of gradient descent, the BP algorithm attempts to
minimize the error Eq. 1 in an iterative process by updating the synaptic weights
upon the presentation of a given pattern. The synaptic weights between two last
layers of neurons are updated as:

oE

Awij(k) = *UW

= nlzi(k) — yi(k)]gi(hi)s;(k), (4)
where 7 is the learning rate that has to be set in advance (a parameter of
the algorithm), ¢’ is the derivative of the sigmoid function and h is the synaptic
potential previously defined, while the rest of the weights are modified according
to similar equations by the introduction of a set of values called the “deltas” (¢),
that propagate the error form the last layer into the inner ones.

The BP neural networks have been trained under a training / validation /
testing strategy to avoid overfitting effects, caused mainly by excessive training
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Fig. 1. Scheme of the FPGA architecture design for the implementation of the BP
algorithm

iterations in the learning process, and thus a validation set is used to check the
evolution of the mean square error between target and output values.

Regarding the FPGA implementation of the BP algorithm three main aspects
have been carefully analyzed for increasing the efficiency of resource utilization:
a) The introduction of a new input-hidden neurons block, b) A new scheme for
computing the sigmoid transfer function, and ¢) A strategy of time division for
using only a single multiplier block for each neuron.

Fig. 1 shows a scheme of the neural architecture, where three types of blocks
are used for the implementation of the different parts of the neural architec-
ture. The proposed implementation do not consider the input layer of neurons
separately as this is included together with the first hidden layer neurons in
a module named input-hidden neurons (“inp-hid”). The definition of this new
type of module is possible because the input layer neurons do not process the
information as they simple act as input to the network.

Another important FPGA design aspect regarding the hardware implemen-
tation of a neural network algorithm is the way of computing the activation
function of the neurons, usually a sigmoid-type function. An scheme based on
a lookup table approach plus linear interpolation scheme permits to obtain an
efficient representation in terms of the resources needed together with low abso-
lute and relative errors. In the previous work [16] a complete study about size
of the table, employed resources and precision results has been presented. As
conclusion the more efficient dimension of the table for a sigmoid is 2 bits for
the decimal part, 3 bits for the integer part and one more bit foe the sign of
the function. This parameters produce a table of 26 = 64 inputs with 16 bits of
word length as size of each input. The total resources necessary to implement
this table are 32 bits or 1 block memory. Plus, Fig. 2 shows the approximation
obtained for the sigmoid function (top graph) and the errors committed in its
approximation (bottom graph).

Furthermore, a third important aspect considered during the FPGA imple-
mentation regards a time division scheme for performing the multiplications
involved in the algorithm [16]. The multiplier blocks can be implemented both
as a combination of logic cells or using specific DSP blocks. We have selected
the first choice in this work for a fair comparison with the C-Mantec algorithm
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Fig.2. FPGA sigmoid function approximation based on a lookup table plus linear
interpolation scheme (top graph). Absolute (middle graph ) and relative errors (bottom
graph) committed in the approximation of the function.

implementation, as this was done without DSPs. Further the implementation
using DSP is specific to each board and thus the present choice gives more gen-
erality to the results. The strategy consists in using a single multiplier for each
neuron (built using logic blocks [17]) and then through using a time division
multiplexing scheme compute all the multiplications related to the neuron.

2.2 The Constructive Neural Network Algorithm C-Mantec

C-Mantec as a constructive neural network algorithm generates the network
topology in an on-line manner during the learning phase, avoiding the com-
plex problem of selecting an adequate neural architecture [13]. The novelty of
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C-Mantec in comparison to previous proposed constructive algorithms is that
the neurons in the single hidden layer compete for learning the incoming data,
and this process permits the creation of very compact neural architectures. The
binary activation state (5;) of each of the neurons in the hidden layer depends
on N input signals, ¢;, and on the actual value of the N synaptic weights (wj;)

and bias (b;) as follows:
Sj:{l if hj >0 (5)

0 otherwise

where h is the synaptic potential of the neuron defined as:

N
hj = wjith — b (6)
=1

The weight updating in the C-Mantec algorithm at the single neuron level
is done using the thermal perceptron rule [14], in which the modification of the
synaptic weights, Aw;, is done on-line (after the presentation of a single input
pattern) according to the following equation:

iji = (t - SJ) 'l/)z Tfam (7)

where ¢ is the target value (desired output of the whole network for the presented
input), and v represents the value of input unit ¢ connected to the hidden neuron
S; by synaptic weight wj;. The difference to the standard perceptron learning
rule is that the thermal perceptron incorporates the 74, factor. This factor,
whose value is computed as shown in Eq. 8, depends on the value of the synaptic
potential and on an artificially introduced temperature (T):

h
Ty = e . 0
The computation of the T, factor involves the FPGA implementation of
the exponential function, task that was done using the same approach applied for
the computation of the sigmoid function needed for the BP algorithm. Section 3
includes Table 2 that shows a comparison between the approximation results
obtained for both functions (the sigmoid and exponential functions).
Following with the description of the C-Mantec algorithm, the value of the
temperature T decreases as the learning process advances according to Eq. 9,
similarly to a simulated annealing process.

1

T:TO'(I_ )7 (9)

max
where [ is a cycle counter that defines an iteration of the algorithm on one
learning cycle, and I,,,4; is the maximum number of iterations allowed. One
learning cycle of the algorithm is the process that starts when a chosen pattern
is presented to the network and finishes after checking that all neurons respond
correctly to the input or when the synaptic weights of the neuron chosen to
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Fig. 3. Example of network architecture constructed by the C-Mantec algorithm
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Fig. 4. Hardware implementation of the majority function that corresponds to the
output neuron activation function of a network trained by the C-Mantec algorithm

learn the actual pattern (whether an existing or a new neuron) modifies its
synaptic weights. The C-Mantec algorithm has three parameters to be set at the
time of starting the learning procedure, and several experiments have shown the
robustness of the algorithm that operates fairly well in a wide range of parameter
values.

The output of a C-Mantec network consists in a single output that computes
the majority function (see Eq.10) of the neuron activation of the hidden layer
units, like in a voting process. The network output is active (1) if more than half
of the Ny hidden neurons are active:

L if Z;VHSJ'Z%

10
0 otherwise (10)

Output = {

Fig. 3 shows a network architecture of the type built by the C-Mantec algo-
rithm. The network contains a single hidden layer of threshold neurons (S;) with
output values {0,1}.

The FPGA implementation of the majority function is shown in Fig. 4. On
the left part of the figure the activation value of all Ny hidden layer neu-
rons S; are shown, followed by the computation of the sum of their activa-
tion. In the module indicated by ”comparator” the obtained value is compared



204 F. Ortega-Zamorano et al.

with the value of NQ—H and the whole network output is computed following Eq. 10.
The whole process can be executed in less than one clock cycle of the FPGA
because all operations involved are implemented with logic cells that introduce

only minor delays.

3 Results

We present in this section results from the implementation of both algorithms
(BP and C-Mantec) in a Xilinx Virtex-5 board. Table 1 shows some character-
istics of the Virtex-5 XC5VLX110T FPGA, indicating its main logic resources.
VHDL [17,18] (VHSIC Hardware Description Language) language was used for
programming the FPGA, under the “Xilinx ISE Design Suite 12.4” environment
using the “ISim M.81d” simulator.

Table 1. Main specifications of the Xilinx Virtex-5 XC5VLX110T FPGA board

Device Slice Slice |Bonded|Block
Registers| LUTs | I0Bs |RAM

Virtex-5

XC5VLX110T

69,120 |69,120| 34 148

Table 2 shows the Maximum and Root Mean Square errors for different val-
ues of the integer N, and decimal parts IV, obtained for the implementation
of the exponential and sigmoidal functions used in the C-Mantec and Back-
Propagation algorithms respectively through a lookup table plus linear interpo-
lation scheme. As it can be appreciated from the the table both errors are quite
low for both functions for almost all values of N, and N, being lower for the
Sigmoidal function.

Table 2. Maximum error (Max) and Root Mean Square Error (RMSE) for different
values of N, and N, in the implementation of the Exponential and Sigmoidal functions

Exponential Sigmoidal
Max RMSE Max RMSE
1.833-1073 ] 3.249-10°%] 3.353-10"1] 9.477-10°°
4.704-107* | 7.632-107° | 1.982-107* | 4.428 - 107°
4.704-107* | 5.501-107° | 6.091-107° | 1.394-107°
1.151-107* | 1.358-107° | 2.669-107° | 8.783-107°
2.530-107° | 6.493-107¢ | 1.755-107° | 8.362-10°

Z

Ny

o s W W
DU W

One of the most interesting results of this work is the comparison done for
the maximum number of neurons that can be implemented with the board used,
and also the resources associated with the implementation of a single neuron in
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Fig. 5. Execution cycles needed to learn and compute the output for a single input
pattern for the case of a 5-50-1 neural network architecture

relationship to both algorithms. Table 3 shows the values obtained for BP and
C-Mantec for different values for the integer N7 and decimal part Ny of the fixed
point representations tested.

Table 3. Number of LUTSs and maximum number of neurons that can be implemented
in a Virtex-5 board for the two algorithms and as a function of different fixed-point
representations

Ny Ny LUTs/Neuron | # Neurons
BP | C-M BP C-M
8 8 787 689 82 94
8 12 967 757 67 85
8 16 1124 943 57 68
12 12 1057 826 61 78
12 16 1223 | 1033 53 62
16 16 1382 | 1299 47 50

We have also analysed the number of FPGA clock cycles involved in the
computations related to training a network with one input pattern. The total
number of cycles is divided in two parts related to the number cycles related to
compute the output of the network for a given input and for the modification
of the synaptic weights (cf. Egs. 4 and 7). The results displayed in the table
correspond to two neural networks with 50 neurons in the single hidden layer of
the architecture.

Using a set of benchmark functions from the UCI repository, we have com-
puted the generalization ability and computation time (ms) for both algorithms.
Table 4 shows these results together with the number of neurons used in each
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Table 4. Generalization ability (%) obtained and number of neurons used in the
architectures for the implementation of seven classic benchmark problems

Function C-Mantec Back-Propagation
Gen. | # Neu. | time (ms) | Gen. |# Neu. [time (ms)

Diabetes 76.6 5 97 79.3 5 227
Cancer 96.9 2 52 95.7 5 210
Heart 82.6 3 71 78.2 5 104
Tonosphere | 87.4 2 56 87.5 5 210
Heart-c 82.5 2 55 80.1 5 190
Card 85.2 3 72 83.1 5 195
Sonar 75.0 1 43 75.2 5 223
Average 83.7 3 63 82.7 5 194

case, noting that C-Mantec sets this number automatically while a constant size
architecture comprising 5 neurons was used for Back-Propagation.

4 Conclusion

We have presented and analysed the implementation in a FPGA board of two
neural network learning algorithms: Back-Propagation and C-Mantec. The algo-
rithms operates from different principles as BP is a gradient based algorithm
minimizing an error function for pre-determined architecture that has to be
defined in advance, while C-Mantec is an error correcting method that con-
structs the network architecture automatically as it learns the input patterns. In
terms of the FPGA implementation, both methods require the implementation
of continues functions (the sigmoid and the exponential functions), process that
is very simple for standard computers (PCs) but much more complex for hard-
ware devices using a fixed point representation like FPGAs. An analysis of the
resources needed to implement both functions efficiently indicate that similar
error levels are obtained for both cases when using a lookup table plus linear
interpolation scheme, with slightly lower error values for the case of the sig-
moid function used in the BP algorithm. Nevertheless, it is worth noting that as
C-Mantec is an error correcting algorithm the precision needed for the arithmetic
representation is lower that for BP that might require high precision levels as it
involves the accurate computation of the derivatives of the activation functions
for its correct operation.

Another very important issue regarding the comparison of both algorithms
is the amount of hardware resources needed for the implementation of single
neurons in both algorithms, and in this aspect the advantage is on the C-Mantec
side as a lower number of LUTSs is required, permitting for a given board the
construction of larger neural network architectures, that in our case resulted in
approximately a 18.7% increase in the maximum number of neurons that can be
included (cf. Table 3). Further, we have also estimated the average computation
time needed for training both algorithms using a set of benchmark functions,
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finding that C-Mantec operates faster than BP, needing in average a third of the
computational time (cf. Table 4).

As an overall conclusion the present work shows a comparison regarding the
possibilities of the application of neurocomputational algorithms using FPGA
boards. The comparison of both algorithms is a little bit in favour of C-Mantec
as first it does not need the a priori specification of the neural architecture to be
used, and second as it is less demanding in terms of hardware resource utilization.
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