
Deep Neural Network Architecture
Implementation on FPGAs Using
a Layer Multiplexing Scheme

Francisco Ortega-Zamorano, José M. Jerez, Iván Gómez and Leonardo
Franco

Abstract In recent years predictive models based on Deep Learning strategies have
achieved enormous success in several domains including pattern recognition tasks,
language translation, software design, etc. Deep learning uses a combination of tech-
niques to achieve its prediction accuracy, but essentially all existing approaches are
based on multi-layer neural networks with deep architectures, i.e., several layers of
processing units containing a large number of neurons. As the simulation of large
networks requires heavy computational power, GPUs and cluster based computation
strategies have been successfully used. In this work, a layer multiplexing scheme is
presented in order to permit the simulation of deep neural networks in FPGA boards.
As a demonstration of the usefulness of the scheme deep architectures trained by the
classical Back-Propagation algorithm are simulated on FPGA boards and compared
to standard implementations, showing the advantages in computation speed of the
proposed scheme.

Keywords Hardware implementation · FPGA · Supervised learning · Deep neural
networks · Layer multiplexing

1 Introduction

Neural Networks models have been successfully applied to a wide range of domains
in clustering and classification problems in the last three decades [1, 2]. In particu-
lar, regarding supervised problems included in the broad area of pattern recognition,

F. Ortega-Zamorano(B) · J.M. Jerez · I. Gómez · L. Franco
Department of Computer Science, ETSI Informática, Universidad de Málaga, Malaga, Spain
e-mail: {fortega,jja,ivan,lfranco}@lcc.uma.es

F. Ortega-Zamorano
School of Mathematics and Computer Science, University of Yachay Tech,
San Miguel de Urcuquí, Ecuador

© Springer International Publishing Switzerland 2016
S. Omatu et al. (eds.), DCAI, 13th International Conference,
Advances in Intelligent Systems and Computing 474,
DOI: 10.1007/978-3-319-40162-1_9

79

80 F. Ortega-Zamorano et al.

most of the strategies have been based on the utilization of feed forward neural net-
work architectures (FFNN) trained by versions of the well known Back-Propagation
algorithm (BP) [3, 4]. One important issue at the time of the implementation of
FFNN models is the choice of an adequate architecture [5], that essentially consists
of deciding howmany hidden layers and neurons to include. It has been observed that
the performance of the BP algorithm decreases when a large number of hidden layers
are used and so the standard strategy before the irruption of Deep Learning strategies
[6] have been to use single hidden layer architectures. Deep Learning is a relatively
new technique belonging to the artificial intelligence and machine learning areas
that have achieved state-of-the-art results in several recent competitions [7]. There
are several approaches for their implementation, as training is a complex process,
but in all cases the new characteristic in relationship to previous FFNN approaches
is the fact that large (deep and wide) neural network architectures are used. Just to
give some numbers, a typical deep learning architecture might include from 5 to
15 hidden layer of neurons with a number of neurons in each hidden layer in the
order of the several hundreds or thousands [8]. Training these large networks using
standard BP is computationally intensive but also faces the problem of the vanishing
gradient problem [9] that makes the training process even slower. To improve the
training performance under Deep Learning schemes several strategies have been de-
veloped, most of them based on some pre-training phase used to find good starting
point synaptic weights from which apply the final supervised phase.

Current implementations of Deep Learning models require the use of parallel
strategies to speed up the training process. In this sense alternatives based on cluster
computing, GPUs and FPGAs are sensible strategies, each of them having their
benefits and drawbacks [10, 11]. Field Programmable Gate Arrays (FPGA) [12] are
reprogrammable silicon chips, using prebuilt logic blocks and programmable routing
resources that can be configured to implement custom hardware functionality. The
main advantage of FPGAs in comparison to PC implementations lies on their intrinsic
parallelism but with the disadvantage over PCs and GPUs that they are programmed
using VHDL that usually is harder and time consuming. FPGA implementations of
neural networks have been analyzed in several studies [13, 14, 15]. Even if recent
advances in the computational power of these boards have permitted an increase in the
size of the architectures that can be implemented, they are still limited, and in general,
the number of layers in the architecture should be prefixed before its application. For
this reason, we introduce in this work a layer multiplexing scheme for the on-chip
training of deep feedforward neural architectures using the BP algorithm, in which
only a single layer of neurons is physically implemented , but this layer can be reused
any number of times in order to simulate architectures with several hidden layers,
the on-chip learning implementations includes both training and execution phases of
the algorithm [15, 16]. Regarding this type of approach, Himavathi et al. [17] have
used it previously for neural network training but under an off-chip learning scheme,
in which only the synaptic weights of the final model are transmitted to the FPGA
that acts as a hardware accelerator.

Deep Neural Network Architecture Implementation on FPGAs Using 81

2 FPGA Layer Multiplexing Scheme Implementation
of the BP Algorithm

We describe in this section the layer multiplexing scheme for the Back-Propagation
algorithm, which will be divided in 3 different sequential processes: the computation
of the neuron output values (S), the calculation of the deltas of each neuron (δ), and
the update of synaptic weights. Given the logic of the Back-Propagation algorithm,
in which the S values are obtained in a forward manner (from the input towards
the output) while the deltas are computed backwards, and that finally the weights
updating is executed with the values previously obtained, the three processes are
sequentially implemented.

The S values of every layer are obtained as a function of the S values of the
previous layer neurons except for those from thefirst hidden layerwhich processes the
information of the current input pattern. On the contrary, the δ values are computed
backwardly, i.e., the δ values associated to a neuron belonging to a hidden layer
are computed as a function of the δ values of the a deeper hidden layer, except
for the last hidden layer which computes its δ values as a function of the error
committed on the current input pattern. The updating process is carried out with the
S and δ values of every layer, so it is necessary to store these values when they are
computed to be used for the system when they are required. Thus, the structure of
the Back-Propagation algorithm allows the whole process to be implemented using
a layer multiplexing scheme but nothing that forward and backward phases should
be considered separately, as S and δ values cannot be computed in a single forward
phase.

The deep design of the Back-Propagation algorithm is based on a layer multiplex-
ing scheme in which only one layer is physically implemented, being reused 3× N
times in order to simulate a whole neural network architecture containing N hidden
layers. Fig. 1 shows as in a layer multiplexing scheme the same whole process is
carried out but by reusing the structure of the single implemented layer.

The implementation of the layer multiplexing scheme requires a precise control
of the layer that is simulated in every moment, and, for this reason, a register called
“Current Layer” is used. For each pattern, the process starts with the forward phase
in which the outputs of the neurons are computed in response to the input pattern.
This first phase starts by introducing an input pattern in the single multiplexing layer
and by setting the variable “Current Layer” set to 1. Then the neurons’ outputs
are computed, stored in the distributed RAM memory and transmitted back to the
input to calculate the following layer outputs, and thus the variable “Current Layer”
is increased. The same process is repeated sequentially until the “Current Layer”
value is equal to the maximum number of layers, previously defined by the user
and stored in the “MaxLayer” register. When the last layer is reached the neurons
output is computed together with the error committed in the pattern target estimation
and these error values are stored in a register for its use in the second phase. The
second phase involves the backward computation of the delta values, and the first
computation involves the calculation of the delta values of the last layer. Once these

82 F. Ortega-Zamorano et al.

Multiplexing Layer

Inputs

Outputs

Yes

NoIf
CurrentLayer

=
MaxLayer ?

Fig. 1 Layer multiplexing scheme for the simulation of deep feed-forward neural network archi-
tectures.

Fig. 2 Schematic representation of the layer multiplexing procedure used for the implementation
of the BP algorithm.

values are obtained, they are backwardly transmitted to the previous layer in order to
compute the delta values for these set of neurons. With these delta values a recurrent
process is used to obtain the delta values of the rest of the layers until the input layer
values are obtained (“Current Layer = 1”). At this point the third phase is carried
out in order to update the synaptic weights, and finishing one pattern iteration of the
process.

Deep Neural Network Architecture Implementation on FPGAs Using 83

Table 1 Main specifications of the Xilinx Virtex-5 XC5VLX110T FPGA board.

Device
Slice Slice Bonded Block

Registers LUTs IOBs RAM
Virtex-5

69,120 69,120 34 148
XC5VLX110T

The Fig. 2 shows a scheme of the architecture block that performs the layer
multiplexing procedure for physically implementing a single layer of neurons. This
single layer is composed of A neurons blocks implemented in order to compute
the neuron‘s output (S) and the δ values, that will later be used for the update of
the synaptic weights. The value of A (limited by the board resources) will be the
maximum number of neurons for any hidden layer. The neuron blocks manage their
own synaptic weights independently of the rest of the architecture, and thus they
require a RAM block attached to them. The architecture block also includes memory
blocks to store the S and δ values computed for every layer and also for the different
input and output signals that are described below.

The input signals are the pattern to be learned, the signal that indicates a new
pattern is introduced (New_pattern), the configuration and control data sets, in-
cluding also the S and δ values. The configuration data set includes the parameters
set by the user to specify the neural network architecture, including the number of
hidden layers, the number of neurons in each of these layers, learning parameters,
etc. The control data set are signals that the control block needs for managing the
process of the algorithm to activate the right procedure in every moment. The output
signals comprise the output (S) and the δ values for every layer, the training error
of the current pattern, and the ready signals for the validation and training processes
which are integrated in the control data set.

3 Results

We present in this section results from the implementation of both algorithms (BP
and C-Mantec) in a Xilinx Virtex-5 board. Table 1 shows some characteristics of the
Virtex-5 XC5VLX110T FPGA, indicating its main logic resources.

Several test cases were analyzed to verify the correct FPGA implementation of
the model, comparing the results with those obtained from a PC and with previously
published results. These tests were carried out using a 50-20-30 splitting for the
training, validation and generalization sets respectively, with a learning rate (η) value
fixed to 0.2 in all experiments, and using data from the well-known Iris set.

Table 2 shows the generalization ability obtained for several architectureswith dif-
ferent numbers of hidden layers for PC and FPGA implementations. The first column
indicates the number of hidden layer present in the architecture, the second column
shows the generalization obtained using the PC implementation (mean computed
over 100 independent runs), while third and fourth columns shows the results for

84 F. Ortega-Zamorano et al.

Table 2 Generalization ability for the Iris data set for neural network architectures with different
numbers of hidden layers for PC and FPGA implementations.

Layers
Type Implementation

PC
FPGA

Layer Multiplexing Fixed Layers
1 0.9376 0.9391 0.9406
2 0.9516 0.9442 0.9471
3 0.9518 0.9493 –
5 0.9333 0.9371 –
7 0.8702 0.8842 –
10 0.5273 0.5998 –
15 0.3064 0.3120 –

Table 3 Computation times expressed as a function of the number of hidden layers (X) in the neural
architectures for the PC and layer multiplexing FPGA implementations for the cases of including
5 and 20 neurons in each of the layers.

Device
Neurons

5 20
PC 1.11 · X + 6.25 1.26 · X + 5.75

FPGA 0.044 · X + 0.028 0.134 · X + 0.029

two different FPGA implementations: the layer multiplexing scheme proposed in
this work and the fixed layer scheme utilized in Ref. [18] (only available for archi-
tectures with one and two hidden layers). The number of neurons in each of the
hidden layers was fixed to five and the number of epochs set to 1000. The maximum
number of layers shown in the table is 15 because from this number of hidden layers
on the obtained generalization is approximately one third, that is the expected value
for random choices for a problem with three classes.

From the results shown in Table 2 it can be seen that the obtained values for
generalization are approximately similar for the three implementations considered,
and that regarding the number of hidden layers present in the neural architectures the
performance of the BP algorithm is relatively stable for architectures with up to 5
hidden neuron layers point from which the generalization accuracy start to decrease
to reach the level expected for random choices for a number of layers equal to 15.

Fig. 3 shows the whole learning procedure execution time (in seconds and in
logarithmic scale (right Y-axis)) for PC and FPGA implementations a function of
the number of hidden layers present in the architecture with five (a) and twenty (b)
neurons per layer. The graph also shows a third curve that indicates the number of
times (#Times, in linear scale) that the FPGA implementation is faster than the PC
one. The number of epochs used was of 1000.

Table 3 shows the results of a linear fitting for the computation time for a variable
number of hidden layers, indicated by X in the equations shown. The fitted values
were obtained from the cases shown in Fig. 3 for the FPGA and PC implementation
in which the number of neurons in each of the hidden layers are fixed to five and
twenty.

Deep Neural Network Architecture Implementation on FPGAs Using 85

1 2 3 4 5 6 7 8 9 10
0.01

0.05

0.1

0.5

1

5

10

50
Ti

m
e

(s
)

1 2 3 4 5 6 7 8 9 10
10

30

50

70

90

110

Number of hidden layer

N
um

be
r o

f t
im

es
 F

PG
A

is
 fa

st
er

 th
an

 P
C

PC
FPGA
#Times

(a)

1 2 3 4 5 6 7 8 9 10
0.01

0.05

0.1

0.5

1

5

10

50

Ti
m

e
(s

)

1 2 3 4 5 6 7 8 9 10
10

30

50

70

90

110

Number of hidden layer

N
um

be
r o

f t
im

es
 F

PG
A

is
 fa

st
er

 th
an

 P
C

PC
FPGA
#Times

(b)

Fig. 3 Time and number of times that the FPGA is faster than the PC as a function of the number
of hidden layers of the architecture (a) 5 neurons and (b) 20 neurons.

4 Discussion and Conclusions

We have introduced in this work an FPGA implementation for deep neural network
architectures using a layer multiplexing scheme. The layer multiplexing scheme used
permits to simulate a neural networkwith several hidden layers by only implementing
physically a single hidden layer of neurons.Main advantages of this approach are that
very deep neural network architectures can be analyzed through a simple and flexible
framework with a very efficient FPGA resource utilization. The implementation has
been tested and compared to an existing PC one, obtaining that for a large number of
hidden layers the FPGA implementation is approximately 20 to 30 times faster than
the PC one. The layer multiplexing scheme used permits in principle the simulation
of very deep networks with any number of hidden layers, but memory resource
constraints limit the current implementation to approximately hundred hidden layers,
that from the point of view of existing Deep Learning models is quite large. The on-
chip implementation carried out includes also a validation phase to avoid overfitting
effects. Using the Back-Propagation algorithm for training the several hidden layers
architectures shown that the performance of the standard BP algorithm starts to
degrade when 10 or more hidden layers are present in the architectures, so additional
strategies are needed in order to improve the training. In this sense, we believe that
the present implementation will facilitate the study of this and related issues, helping
to understand very deep neural networks.

Acknowledgements The authors acknowledge support from Junta de Andalucia through grants
P10-TIC-5770, from CICYT (Spain) through grant TIN2014-58516-C2-1-R, and from the Uni-
versidad de Málaga, Campus de Excelencia Internacional Andalucía Tech (all including FEDER
funds). And thanks Yachay Tech for financial support for science research.

86 F. Ortega-Zamorano et al.

References

1. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR,
Upper Saddle River (1998)

2. Reed, R.D., Marks, R.J.: Neural Smithing: Supervised Learning in Feedforward Artificial
Neural Networks. MIT Press, Cambridge (1998)

3. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences. PhD thesis, Harvard University (1974)

4. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors.
Nature 323(6088), 533–536 (1986)

5. Gómez, I., Franco, L.: Neural network architecture selection: Can function complexity help?
Neural Processing Letters 30, 71–87 (2009)

6. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural
Comput. 18(7), 1527–1554 (2006)

7. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks 61, 85–117
(2015)

8. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple neural nets
for handwritten digit recognition. Neural Computation 22(12), 3207–3220 (2010)

9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural net-
works. In: Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS 2010). Society for Artificial Intelligence and Statistics, pp. 249–256 (2010)

10. Suresh, S., Omkar, S.N., Mani, V.: Parallel implementation of back-propagation algorithm in
networks of workstations. IEEE Trans. Parallel Distrib. Syst. 16(1), 24–34 (2005)

11. Huqqani, A.A., Schikuta, E., Ye, S., Chen, P.: Multicore and {GPU} parallelization of neural
networks for face recognition. Procedia Computer Science 18, 349–358 (2013). 2013 Interna-
tional Conference on Computational Science

12. Kilts, S.: Advanced FPGA Design: Architecture, Implementation, and Optimization.
Wiley-IEEE Press (2007)

13. Le Ly, D., Chow, P.: High-performance reconfigurable hardware architecture for restricted
boltzmann machines. IEEE Transactions on Neural Networks 21(11), 1780–1792 (2010)

14. Kim, L.W., Asaad, S., Linsker, R.: A fully pipelined fpga architecture of a factored restricted
boltzmann machine artificial neural network. ACM Trans. Reconfigurable Technol. Syst. 7(1),
5–23 (2014)

15. Ortega-Zamorano, F., Jerez, J., Franco, L.: Fpga implementation of the c-mantec neural network
constructive algorithm. IEEE Transactions on Industrial Informatics 10(2), 1154–1161 (2014)

16. Dinu, A., Cirstea, M., Cirstea, S.: Direct neural-network hardware-implementation algorithm.
IEEE Transactions on Industrial Electronics 57(5), 1845–1848 (2010)

17. Himavathi, S., Anitha, D.,Muthuramalingam, A.: Feedforward neural network implementation
in fpga using layer multiplexing for effective resource utilization. IEEE Transactions on Neural
Networks 18(3), 880–888 (2007)

18. Ortega-Zamorano, F., Jerez, J., Urda Munoz, D., Luque-Baena, R., Franco, L.: Efficient imple-
mentation of the backpropagation algorithm in fpgas and microcontrollers. IEEE Transactions
on Neural Networks and Learning Systems PP(99), 1–11 (2015)

	Deep Neural Network Architecture Implementation on FPGAs Using a Layer Multiplexing Scheme
	1 Introduction
	2 FPGA Layer Multiplexing Scheme Implementation of the BP Algorithm
	3 Results
	4 Discussion and Conclusions
	References

