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Abstract— Thermal comfort conditions are important for the
normal development of human tasks, and as such they have
been analyzed in the context of several areas including human
physiology, ergonomics, heating and cooling systems, architec-
tural design, etc. In this work, we analyze the estimation of
the thermal comfort perception by human subjects using a
neurocomputational model based on the C-Mantec constructive
neural network architecture, comparing it with two standard
methods for modeling thermal comfort: Fanger and COMFA
models. The results indicate a significative advantage of C-Mantec
in terms of the predictive accuracy obtained, consider also that
the flexibility of the neural model would permit the introduction
of extra variables that can increase further the thermal comfort
estimation.

Keywords: Thermal Comfort, Supervised learning, Con-
structive Neural Networks.

I. INTRODUCTION

Thermal comfort can be defined as the condition regarding
temperature, humidity and wind speed in which an individual
feels comfortable for developing its activities (work, relax,
sports activities, etc.). Thermal comfort is a subjective sen-
sation and then it is a magnitude difficult to evaluate as its
depend on subjects and the experiments’ conditions. Issues
regarding thermal comfort have been addressed by building
scientists, urban planners, social scientists, anthropologists
and HVAC design engineers, among other professions, also
attracting more recently the attention of climate researchers in
relationship to climate change issues [1].

Analysis done around heat balance models provided the
basis for the experiments used for defining the standards of
thermal comfort during most of the XX century. Around 1970
Povl Ole Fanger, a Danish physiologist, made a great advance
in the field of comfort theory focusing on the relationship
between the physical parameters of the environment and the
physiological parameters of people, and the perception of
wellbeing expressed by the people themselves. Fanger de-
veloped a “comfort equation” combining ambient parameters
(i.e. air temperature, mean radiant temperature, relative air
velocity and humidity level) in which the highest proportion
of people are likely to be comfortable, for any specified level

J. Rodríguez-Alabarce, J.M. Jerez and L. Franco are within the Departa-
mento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,
K. Ghoreishi is with the Mechanical Eng. Dept., Universidad de Málaga,
Spain, and F. Ortega-Zamorano is with Yachay Tech University, Ecuador.
Corresponding author: L. Franco, e-mail: lfranco@lcc.uma.es, Tel.: +34-952-
133304, Fax: +34-952-131397. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
978-1-5090-5105-2/16/ $31.00 c©2016 IEEE.

of activity and clothing [2]. He proposed a quantity named
Predicted Mean Vote (PMV) in order to measure the quality
of indoor environments assessing the degree of discomfort of
the occupants.

Knowing the thermal comfort in outdoor spaces has become
very important in recent years due to its implications on urban
and architectural planning. The Fanger method does not take
into account the solar radiation, an important factor afecting
thermal comfort in outdoor spaces, and thus a model named
COMFA has been proposed by Brown and Gillespie [3] in
1986 to take into account this factor.

The application of the two previous mentioned models are
usually carried out by a simple computer programme that given
a set of determined conditions outputs the predicted subjective
estimation of thermal comfort, hoping to get on average good
estimates of the PMV.

Artificial Neural Networks (ANN) are mathematical models
inspired by the functioning of the brain of living beings that
have shown to have interesting application in several practical
domains, in particular to a wide range of problem in pattern
recognition, clustering and classification problems in the last
three decades [4], [5], [6]. They are flexible models that can be
trained on recorded data and then used for making predictions
for novel data. For supervised problems, for which a set of
data containing input-output samples the multilayer perceptron
trained by back-propagation has been the standard solution
for many years [7], but several other alternative models exist.
Among them, constructive neural network algorithms [8] offer
the advantage of avoiding the complex problem of selecting
an adequate architecture, as this is selected simultaneously as
the training of the data occurs. Neural Network models have
been applied in recent years to the problem of estimation of
thermal comfort in relationship to an efficient implementation
of heating and ventilation control systems (HVAC) [9], [10].

In this work, using new data collected from 49 volunteers
artificial neural networks implemented through the C-Mantec
algorithm [11] have been utilized for the estimation of the
subjective thermal comfort, comparing the predicted values
with those perceived by the subjects and from the values
obtained from Fanger and COMFA models.

II. METHODOLOGY

A. The Fanger Model

The Fanger model of thermal comfort is based on the
mechanisms that utilizes the human body to regulate its
temperature, taking into account physiological and ambient
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Fig. 1. Percentage of non-satisfied people from a group in relationship to
the PMV value in the range [-3,3]

conditions for which thermal equilibrium is obtained, as in
such state body thermoregulated activity would be at its
minimum. In this context, Fanger observed that the two
physiological mechanisms relevant for thermal equilibrium are
sudoration (sweating) and skin mean temperature, both also
depending on the physical activity, and so he tried to find a
relationship between them. For sudoration, he found a linear
relationship with the physical activity, and experimentally this
situation can be verified whenever the subject feels inmerse in
a confortable situation. For the skin mean temperature a similar
relationship exists but noting that skin temperature decreases
as the physical activity increases. From these two relationships,
Fanger writes a heat balance equation from which a thermal
neutrality condition can be obtained, taking into account
factors as methabolic rate, clothing insulation, air temperature
and speed, mean radiation temperature and relative humidity.
Further, the equation was modified to permit the estimation
of the thermal sensation for a group of people in a scale
known as Predicted Mean Vote (PMV). PMV values are widely
used for setting international ergonomic ambient standards
in indoor spaces (ANSI/AHSRAE 55 and ISO 7730) and
have been also used for tuning self-regulated cooling-heating
systems HVAC4. Figure 1 show the relationship between the
percentage of non-satisfied people from a group in relationship
to PMV values ranging from -3 to 3.

B. The COMFA Model

The Fanger method does not take into account surrounding
and solar radiation and then it cannot be applied for outdoor
environments. In order to model these situations, Robert
Brown and Terry Gillespie introduced in 1986 an equation
for the estimation of thermal comfort known as COMFA
method [3]. It is based on the energy balance of a person
in relationship to the ambient, permitting its use in outdoor
spaces, as the model takes into account absorbed surrounding
and solar radiation. According to the COMFA method the
energy balance can be computed as:

balance = M +R− E − C − L

.
In the previous equation, M is the metabolic heat, R is the

absorbed surrounding and solar radiation, E is the evaporation
energy, C refers to convective energy and L is the emitted
radiation. All sources of heat are expressed in W /m2, and so
is the final balance relationship. The energetic balance can then
be related to thermal comfort using the relationship shown in
table I.

Balance (B) Sensation
150 < B Very Hot

50 < B < 150 < Hot
−50 < B < 50 < Comfort
−150 < B < −50 < Cold

B < −150 < Very Cold

TABLE I
THERMAL COMFORT IN RELATIONSHIP TO THE ENERGY BALANCE

OBTAINED FROM THE COMFA SCALE.

Estimating outdoor comfort sensation is a complex task
given the several factors that can influence it, and the COMFA
model is one of the simplest one for which good results can
be obtained. Several alternative models have been developed
using the COMFA model as a reference, mainly by adjusting
the parameters that relates the factors with the estimated value
[12].

C. The C-Mantec Constructive Neural Network Model

C-Mantec is a constructive neural network algorithm for
supervised problems that generates the network topology in
an on-line manner during the learning phase, avoiding the
complex problem of selecting an adequate neural architecture
[11]. The novelty of C-Mantec in comparison to previous
proposed constructive algorithms is that the neurons in the
single hidden layer compete for learning the incoming data,
and this process permits the creation of very compact neural
architectures with good predictive capabilities.

The binary activation state (Sj) of each of the neurons in
the hidden layer depends on N input signals, ψi, and on the
actual value of the N synaptic weights (ωji) and bias (bj) as
follows:

Sj =

{
1 if hj ≥ 0
0 otherwise (1)

where h is the synaptic potential of the neuron defined as:

hj =

N∑
i=1

ωji ψi − bj (2)

The weight updating in the C-Mantec algorithm at the single
neuron level is done using the thermal perceptron rule [13],
in which the modification of the synaptic weights, ∆ωi, is
done on-line (after the presentation of a single input pattern)
according to the following equation:

∆ωji = (t− Sj) ψi Tfac, (3)
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Fig. 2. Example of a neural network architecture constructed by the C-
Mantec algorithm.

where t is the target value (desired output of the whole network
for the presented input), and ψ represents the value of input
unit i connected to the hidden neuron Sj by synaptic weight
ωji. The difference to the standard perceptron learning rule is
that the thermal perceptron incorporates the Tfac factor. This
factor, whose value is computed as shown in Eq. 4, depends
on the value of the synaptic potential and on an artificially
introduced temperature (T):

Tfac =
T

T0
e−

|h|
T , (4)

The value of the temperature T decreases as the learning
process advances according to Eq. 5, similarly to a simulated
annealing process.

T = T0· (1−
I

Imax
), (5)

where I is a cycle counter that defines an iteration of the algo-
rithm on one learning cycle, and Imax is the maximum number
of iterations allowed. One learning cycle of the algorithm is
the process that starts when a chosen pattern is presented to the
network and finishes after checking that all neurons respond
correctly to the input or when the synaptic weights of the
neuron chosen to learn the actual pattern (whether an existing
or a new neuron) modifies its synaptic weights. The C-Mantec
algorithm has three parameters (gfac, Imax and φ) to be set
at the time of starting the learning procedure, and several
experiments have shown the robustness of the algorithm that
operates fairly well in a wide range of parameter values.

The output of a C-Mantec network consists in a single
output that computes the majority function (see Eq.6) of the
neuron activation of the hidden layer units, like in a voting
process. The network output is active (1) if more than half of
the NH hidden neurons are active:

Output =

{
1 if

∑NH

j Sj ≥ NH

2

0 otherwise
(6)

Fig. 2 shows a network architecture of the type built by the
C-Mantec algorithm. The network contains a single hidden
layer of threshold neurons (Sj) with output values {0, 1}.

III. RESULTS

Data from 49 volunteers of both sexes and with ages
between 18 and 50 have been recorded in a series of controlled
experiments under variations of solar radiation, humidity,

Fig. 3. Data used as input variables for obtaining the thermal confort
estimation from the three models used, as a function of the temperature, that
is one of the several factors considered.

temperature, wind, clothing and activity as indicated in II. The
subjects have to indicate after a minimum of 120 seconds its
comfort sensations in range of continuum values according to
the ASHRAE scale.

Variable Range/Categories
Solar Radiation {15, 250, 550, 850}

Humidity % [33− 45]
Temperature [18− 32]

Wind [0− 4]
Clothing [Winter, Spring, Summer]
Activity [None, office type]

TABLE II
MAIN VARIABLES AND THEIR RANGE OR CATEGORY USED FOR THE

ESTIMATION OF THE THERMAL COMFORT IN DIFFERENT EXPERIMENTS.

Fig. 3 display the data recorded from the different ex-
periments, showing the comfort sensation expressed by the
subjects as a function of the temperature, one of the many
controlled variables used later to adjust the estimation models.

Figs. 4 top and bottom shows two examples of the esti-
mation of the thermal comfort subjective sensation obtained
from the different models used in experiments with standard
indoor lighting. In a second set of experiments extra controlled
radiation was used in order to simulate different outdoor
conditions, using a solar lamp at different distances while
the radiation was measured with a luxometer. Note that for
this second set of tests the Fanger model cannot be used
as this model cannot incorporate external radiation sources.
With the data grouped in two sets of experiments (indoor and
outdoor simulated conditions) the Fanger and COMFA model
were used to obtained a comfort sensation estimation that is
later compared to the reported values from the subjects. A
further offset adjustement was done in order to recalibrate
Fanger and COMFA models, using a constant value that was
added to all outputs. This modification permits to increase
the generalization ability of both Fanger and COMFA models
without altering the results from the neural network generated
by the C-Mantec algorithm. The neural network C-Mantec
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Fig. 4. Thermal comfort sensation as a function of the temperature obtained
from subjects with standard office activity and Fanger and COMFA models
under conditions of wind, radiation and humidity indicated on top of the
graph.

Fig. 5. Five categories in which data have been clustered to analyze the
predictive accuracy of the models.

model was trained with the same data using a ten fold cross-
validation procedure from which the generalization ability
can be computed. Standard parameter values were used for
testing the C-Mantec neural network model, using 2000 for
the maximum number of iterations, gfac = 0.05, and φ = 3.
The output data even if registered in a continuum scale, was
clustered in 5 categories according to the scale shown in Fig.
5.

Table III shows the generalization ability obtained COMFA
and C-Mantec neural network model for a set of controlled
experiments in indoor conditions, while Table IV shows the
generalization ability obtained for a set of controlled experi-
ments that includes an extra light sources to simulate different
outdoor conditions.

Interval FANGER COMFA C-Mantec
[−3, 1.5) 49.2 48.7 73.2

[−1.5,−0.5) 46.3 47.2 72.5
[−0.5, 0.5] 48.9 48.3 73.7
(0.5, 1.5] 45.1 47.4 71.9
(1.5, 3] 47.8 48.1 73.3

TABLE III
GENERALIZATION ABILITY FOR COMFA AND C-MANTEC NEURAL

NETWORK MODEL FOR A SET OF CONTROLLED EXPERIMENTS IN INDOOR

CONDITIONS.

Interval COMFA C-Mantec
[−3, 1.5) 52.7 71.2

[−1.5,−0.5) 51.2 69.5
[−0.5, 0.5] 52.1 71.1
(0.5, 1.5] 51.5 70.1
(1.5, 3] 51.9 70.8

TABLE IV
GENERALIZATION ABILITY FOR COMFA AND C-MANTEC NEURAL

NETWORK MODEL FOR A SET OF CONTROLLED EXPERIMENTS THAT

INCLUDES EXTRA LIGHTS SOURCES TO SIMULATE DIFFERENT OUTDOOR

CONDITIONS.

IV. DISCUSSION AND CONCLUSIONS

A series of controlled experiments under different ambient
conditions were carried out while the comfort sensation of the
human subjects was recorded. Fanger and COMFA models
were then used for testing the prediction accuracy between the
output model and the subjects reported sensation, obtaining a
measure of the generalization ability. With the same data and
using a cross-validated procedure, a neural network trained by
the C-Mantec constructive algorithm was also analyzed, mea-
suring the accuracy of their predictions. The results obtained
and displayed in tables III and IV as they are divided in two
groups according to whether indoor or outdoord conditions.
For the first group of indoor conditions experiments similar
results for the predictions of Fanger and COMFA models were
obtained, with values a bit below 50%, while the generalization
ability obtained from C-Mantec is clearly superior with values
above 71%. For the simulated outdoor conditions for which
only the COMFA model can be used and compared to the
neural network model, the results are similar, showing a clear
advantage of using C-Mantec as a predictive model.

As an overall conclusion the results presented in this work
show that it seems very adequate to use neurocomputational
models for the estimation of indoor and outdoor subjective
comfort sensation by human subjects, as prediction values
much larger than those obtained from standard energy balance
models can be observed. Given the present results, and con-
sidering that C-Mantec generates very compact architectures
that can be easily applied in microcontrollers, we are working
towards the implementation of a sensor-actuator device that
may be suitable for controlling HVAC systems. We further
note that we have registered the body mass index of the
subjects, and that this value can be incorporated into the neural
network model as an extra parameter, expecting even better
predictions.
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