
Solving Scheduling Problems with Genetic
Algorithms Using a Priority Encoding Scheme

José L. Subirats1, Héctor Mesa1, Francisco Ortega-Zamorano2,
Gustavo E. Juárez3, José M. Jerez1, Ignacio Turias4,

and Leonardo Franco1(B)

1 Department of Computer Science, University of Málaga, Málaga, Spain
lfranco@lcc.uma.es

2 School of Mathematics and Computer Science, Yachay Tech,
San Miguel de Urcuqúı, Ecuador

3 Facultad de Ciencias Exactas y Tecnoloǵıa,
Universidad Nacional de Tucumán, Tucumán, Argentina

4 Department of Computer Science, University of Cádiz, Cádiz, Spain

Abstract. Scheduling problems are very hard computational tasks with
several applications in multitude of domains. In this work we solve a
practical problem motivated by a real industry situation, in which we
apply a genetic algorithm for finding an acceptable solution in a very
short time interval. The main novelty introduced in this work is the use of
a priority based chromosome codification that determines the precedence
of a task with respect to other ones, permitting to introduce in a very
simple way all problem constraints, including setup costs and workforce
availability. Results show the suitability of the approach, obtaining real
time solutions for tasks with up to 50 products.

Keywords: Evolutionary and genetic algorithms · Job shop problems ·
Priority encoding scheme

1 Introduction

Manufacturing companies usually work against clients orders, and unfortunately
several times they cannot afford a client order because they had no enough
resources to attend it timely. In this sense, a good scheduling plan could be
enough to resolve the situation for delivering the orders at the expected time.
Thus, an optimized Job planning is essential for manufacturing companies in
order to optimize resources, minimize inefficiencies and maximize productivity
that usually translates in greater benefits and increased competitiveness [1,10].

There are several levels of organization and planning according to the time
horizon of the decisions involved. Flow shop systems are known in the field of
production logistics which is called scheduling theory. This theory includes com-
plicated schedules, e.g., production schedules and school schedules, transporta-
tion, personal and many others [2]. Even if planning or scheduling are problems

c© Springer International Publishing AG 2017
I. Rojas et al. (Eds.): IWANN 2017, Part I, LNCS 10305, pp. 52–61, 2017.
DOI: 10.1007/978-3-319-59153-7 5

Solving Scheduling Problems with Genetic Algorithms 53

affecting most companies there is no systematic solution given the large number
of specific variables for each particular case that makes hard to automatize the
whole process [3,4,7].

Even on simple production scheduling projects, there are multiple inputs,
multiple steps, several constraints and limited resources. In general, a resource
constrained scheduling problem consists of:

– A set of jobs that must be executed.
– A finite set of resources that can be used to complete each job.
– A set of constraints that must be satisfied.

• Temporal Constraints: The time window in which the task should be
completed.

• Procedural Constraints: The precedence order in which each task must
be executed.

• Resource Constraints: Are enough resources available when they will be
needed?

– A set of objectives to evaluate the scheduling performance.

A typical factory floor setting is a good example of this type of problems where
scheduling which jobs need to be completed on which machines, by which employ-
ees in what order and at what time. In very complex problems (NP-Hard) such
as scheduling, there are no known algorithms for finding an optimal solution
in polynomial time, so in the present work we resort to searching for a “good”
suboptimal answer. Scheduling problems most often use heuristic algorithms to
search for the optimal solution. Heuristic search methods suffer as the inputs
become more complex and varied.

Genetic algorithms are well suited for solving production scheduling prob-
lems, because unlike several other heuristic methods genetic algorithms operate
on a population of solutions rather than on a single solution [6,8,11]. In produc-
tion scheduling this population of solutions consists of several answers that may
have different sometimes conflicting objectives. For example, in one solution we
may be optimizing a production process to be completed in a minimal amount of
time. In another solution we may be optimizing for a minimal amount of defects.
By cranking up the speed at which we produce we may run into an increase in
defects in our final product.

As the number of jobs are increased, this produces also an increase on the
number of constraints and as a consequence an increase on the complexity of
the problem. Genetic algorithms are ideal for these types of problems where the
search space is large and the number of feasible solutions is small.

To apply a genetic algorithm to a scheduling problem we must first represent
it as a chromosome, an ordered set of individual genes. Usually, one way to
represent a scheduling genome is to define a sequence of tasks and the start
times of those tasks relative to one another. Each task and its corresponding
start time represents a chromosome. Nevertheless this kind of approach involves
defining the existing constraints as extra conditions, that requires checking for
new solutions, slowing down the whole process. A new approach is taken in this

54 J.L. Subirats et al.

work regarding the encoding of the solutions in a chromosome, that contain
genes coding the priorities set for each job, permitting from these priorities to
construct potential solutions. These type of approach has been applied before
on similar type of tasks [5,9] but as far as we know it is the first time to be
applied to a scheduling problem with the complexity described in the present
work, involving the use of different routes and operations for executing a given
job as specified by a real world situation, taking also into account workforce
availability and production line setup costs.

2 Problem Description

A production order (J) is issued within a factory. The order comprises the pro-
duction of a number of different products (jobs) (ji), which can be obtained by
using one or more production lines (L). Usually, each job (ji) has a deadline
and a priority value defined. In order to produce the final product ji, a produc-
tion line is divided into one or more sequential operations (O), each of them
needing several kinds of resources (tools, operators, etc.). Moreover, each job ji
can be executed following different production routes Ri,k containing different
operations.

2.1 Factory Description

A factory is modeled as a set of heterogeneous resources:

Operators (W). The factory workforce is composed of different specialised oper-
ators. The availability of an operator is given by a calendar which reflects
shifts and holidays. The operators availability is checked at the time of build-
ing a solution from a chromosome.

Machines or production lines (L). A set of tools and machines to perform
different tasks. The speed of the machine is dependent on the task. Addition-
ally, a machine may be off duty for scheduled periods of time, or unavailable
due to being reserved by a previous production order.

L = {l1, l2, . . . , ll} (1)

2.2 Workflow

Production order (J): Consists of a set of jobs that have to be scheduled
efficiently.

J = {j1, j2, . . . , jn} (2)

Jobs (ji): A job specifies the quantity of a product i that has to be manufactured
according to the production order.
Due to production constraints, customer orders, etc., some jobs have a higher
priority than others. A numerical value p(ji) ∈ [0, . . . , 100] is set for each job,
and this considered as part of the definition of the problem. Additionally, a

Solving Scheduling Problems with Genetic Algorithms 55

job can be constrained by a fixed release date and/or a deadline. In some
situations, the completion of certain jobs is required before other jobs can
start their task. We define the boolean Jobs Dependency Matrix (JDM)
such that the element JDMi,j define if the job Ji must conclude before jj
begins.

Routes (Ri): A job can be done by using a combination of several production
lines, and this is specified according to defined routes, that consists in a set
of sequential operations needed to complete the job.

Ri =
{
ri1, r

i
2, . . . , r

i
m

}
(3)

As said before, each possible route rim defines a series of operations (Or,i
k):

rir =
{

Or,i
1 , Or,i

2 , . . . , Or,i
k

}
(4)

Operation (Or,i
k): The operation Or,i

k is the kth non-preemptive action in which
a job jt is divided following a route rir.
An operation is characterized by a series of attributes:

– A priority, initially given as the job priority pi.
– A production speed.
– A production line l ∈ L where the operation will be performed.
– A subset of the available operators W :

opsr,ik =
{

wr,i,k
1 , . . . , wr,i,k

o |wr,i,k
m ≤ wm, wm ∈ W

}
(5)

– A setup time, as the time spent on the preparation of a production line
before performing a different type of operation (essentially, specifies the
costs of changing the actual operation of a line.

Table 1 shows an example of an order including three jobs, different possible
routes in some cases and the operations included in each route.

In conclusion, when a production order arrives at the factory, routes should
be chosen for each job, and schedule each operation taking into account the
following factors:

– The priority of the operation.
– If all the previous tasks in (JDM) has been finished.
– The set of machines that can execute the operation.
– The needed setup time to prepare the machine.
– The needed time to execute the operation in this machine.
– The operators available that can use this machine in this moment.

The main goal of the scheduling problem is to minimize the production time
of the order, finishing each job by its deadline.

56 J.L. Subirats et al.

Table 1. Example of possible routes that can be executed in a hypothetical planning.
The production order is composed by three tasks J = {j1, j2, j3}. The job j1 can
be implemented on two routes R1 =

{
r11, r

1
2

}
, job j2 can be implemented on two

different routes too R2 =
{
r21, r

2
2

}
, however the task j3 should follow just the route

r31 (R3 =
{
r31
}
). The ‘Operations’ column shows the sequential order of operations

stipulated by the route, necessary to execute the job.

Task Routes Id Operations

j1 r11 1 O1,1
1 , O1,1

2 , O1,1
3

r12 2 O1,2
1 , O1,2

2

j2 r21 3 O2,1
1 , O2,1

2

r22 4 O2,2
1 , O2,2

2

j3 r31 5 O3,3
1

3 Genetic Algorithm Description

In the field of artificial intelligence, a genetic algorithm (GA) generates solutions
to optimization problems using operators inspired by natural evolution, such
as inheritance, mutation, selection, and crossover. Candidate solutions to the
optimization problem play the role of individuals in a population, while a fitness
function determines the quality of the solutions. Evolution of the population then
takes place after the repeated application of the above operators. Algorithm1
shows the general scheme of a standard genetic algorithm.

Initialize algorithm;
Evaluate population;
while (not condition end) do

Generate new solutions (Elitism, Crossover and Mutation);
Evaluate new solutions;

end
return leader;

Algorithm 1. General scheme of a genetic algorithm

Initialization: The initial population is generated randomly. This population is
made up of a set of chromosomes from which is possible to create solutions
to the problem.

Evaluation: A fitness function is set in order to evaluate the goodness of each
candidate solution. In the present work, the aim is to minimize the fitness
function.

End condition: The GA should stop when the optimal solution is reached,
but as this is usually unknown, alternative stopping criteria are set. Two
criteria are used in this work: (a) setting a maximum number of iterations
(generations) related to the maximum amount of time permitted, (b) stopping
the evolution of the system when no change in the fitness value is observed
for a certain number of generations.

Solving Scheduling Problems with Genetic Algorithms 57

Selection: Chromosomes with lower fitness are more likely to be selected, and
form part of the next generation.

Crossover: Crossover is the main genetic operator. This operator represents
sexual recombination, and through its application a new individual is obtained
from two parent chromosomes chosen with higher probability for those with
lower fitness value.

Mutation: The mutation operator, applied to individuals to be included in a
new generation, modifies randomly some genes of the chromosome, avoiding
the solutions to get caught in local minima.

3.1 Chromosome Definition

In a GA, a population of candidate solutions, called chromosomes, is evolved
toward better solutions. In the present scheme, each chromosome does not rep-
resents directly a solution but contains the necessary information to generate a
valid scheduling solution. Each chromosome ci is composed by a integer vector of
genes with length T + M . The length of T is the cardinality of the set J (Eq. 2)
and M is the number of all the possible operations that can be scheduled. So, the
first T genes indicate the route assigned to each planning task using Ri (Eq. 3)
for each ji task. Figure 1 shows the structure of a chromosome for the example
task described in Table 1. The first part contains a random chosen route from
the possible ones for each scheduled job, and the second part the priorities set
for each of the operations needed in order to complete the jobs according to the
chosen route. Priorities values in the chromosome are obtained from the priori-
ties assigned to each job (all operations from a route belonging to the same job

Fig. 1. Structure of the chromosome used in the GA, composed by two main parts:
the first one containing the information about which route is chosen for each job, and
the second one containing the priorities related to the operations.

58 J.L. Subirats et al.

have the same value) plus a random number in the range [0, 25] that introduce
variability in the possible solutions to the problem.

As each chromosome should be a potential solution, we explain now how
to build a solution from a given chromosome. The first part of the chromosome
indicates for each job which is the chosen route. Now, in order to build a solution,
only the priorities of the operations including in these chosen routes are taken
into account. Two container sets are created from the priorities, one containing
the operations that can be executed at present time, and second container with
the rest of operations (those that need to wait for other operations to finish
in order to be executed, as stated in the dependence matrix JDM). From the
first container, the operation with the largest priority is chosen and assigned to
the line that will make that operation to finish earlier, and the same procedure
is done with the rest of operations included in the first container (this process
is done in a greedy manner, as not all possibilities are analyzed but an order
shortcut is taken). In the next step, the operations that can be executed after
the one already scheduled are moved from container 2 to container one and the
whole cycle is repeated until no operations are left in either container.

3.2 Fitness Function Definition

The fitness function computes how ‘good’ is a potential solution, and thus a
proper definition is essential for the success of the GA. Two main aspects should
be taken into account for the definition of the fitness function: first, a high cor-
relation between low fitness values and good problem solution, and second that
the evaluation of the fitness functions would not be too costly computationally
as the algorithm needs to compute it several times during its execution.

In the analyzed case the fitness function is defined as the whole time needed
to execute all jobs plus a penalty term that adds the delays of each job weighted
by its priority related value:

fitness = Total execution time + Σ p(ji) × Delay(ji),

where the sum consider only terms for which the delay is a positive value (i.e., tasks
finishing ahead of its set finish time are not beneficial regarding the penalty term).

Delay (ji): time delay obtained for a specific job (ji) in a solution respect to
the set deadline.

4 Results

In order to study the performance of the proposed algorithm, seven synthetic
production orders have been generated, composed by sets from 5 to 50 jobs. A
20% of an order’s jobs is dependent on other jobs, i.e., they cannot start until
other jobs have finished. Each job can be executed following an average of 3
routes, each of one comprising an average of 3 operations, where each operation
requires a workforce between 1 and 10 operators.

Each production order has been scheduled 10 times analyzing performance
values for the following combination of parameters:

Solving Scheduling Problems with Genetic Algorithms 59

– Population size: {25, 50, 100} (individuals)
– Elitism (selection): [0, 10] %
– Cross-over rate: 20%, 50%, 80%
– Mutation rate: [0, 20]%
– Stagnation at 10000 epochs.

Also as mentioned before, an important aspect for the success of a GA is
the correct definition of a fitness function. In order to evaluate the choice fol-
lowed in this work, we have first computed the correlation (Pearson Correlation
value) between the fitness values obtained for problems with different number
of products and the total execution time, the total delay and the float times.
Total execution time has been defined before, total delay is the sum of all delays
produced on individual jobs with respect to the set deadline, and float time is
the margin (or flexibility) that every operation has to be delayed without affect-
ing the project completion deadline. The results are shown in Table 2, where
high values are obtained in almost all cases, noting that the negative values for
the correlation between fitness and float times is expected as for worse solutions
(largest fitness value) lower values of float times are expected.

Table 2. Correlation between the fitness defined function and the whole problem
execution time, delay and float times.

of products Exec. times Float times Delay

5 1.0000 −0.9999 0.8936

10 1.0000 −0.9998 0.9272

15 0.8897 −0.8702 0.8943

20 0.9973 −0.9972 0.9990

30 0.9907 −0.9837 0.9917

40 0.9997 −0.9945 0.9929

50 0.9956 −0.9831 0.9767

Figure 2 shows the values obtained for the fitness as a function of the size of
the GA population for different values of products from 5 to 50 in computer sim-
ulations allowed to take a maximum of two minutes for best parameter choices.
Fitness values grows approximately linear as a function of the number of prod-
ucts as revealed by analyzing the results across all subplots in Fig. 2, indicating
an efficient behavior of the proposal. Further, an increase of the size of the pop-
ulation produces a decrease in fitness values, indicating that it will be possible
to improve the current results by increasing further the population size.

60 J.L. Subirats et al.

Fig. 2. Fitness value as a function of the population size for different number of prod-
ucts.

5 Conclusions

A solution for a real world scheduling problem has been proposed using genetic
algorithms with a priority encoding scheme. The main novelty in the proposal is
the type of chromosome used in the GA that permits to define possible solutions
to the problem in a very simple way, taking into account all specified problem
variables and restrictions. A fitness function that includes a penalty term related
to job production delays seems to be effective, based on the results obtained
so far and on a correlation analysis performed. As an overall conclusion, the
present proposal has permitted to find acceptable solutions in real time (two
minutes time were allowed for obtaining a solution) and further improvements
are underway, mainly by introducing an incremental approach that will permit
the application of the present proposal to orders with more than 50 products.

Acknowledgements. The authors acknowledge support through grants TIN2014-
58516-C2-1-R and TIN2014-58516-C2-2-R from MICINN-SPAIN which include
FEDER funds.

References

1. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y.: A survey of scheduling problems
with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)

Solving Scheduling Problems with Genetic Algorithms 61

2. Cičková, Z., Števo, S.: Flow shop scheduling using differential evolution. Manag.
Inf. Syst. 5(2), 8–13 (2010)

3. Gonzalez, T., Sahni, S.: Flowshop and jobshop schedules: complexity and approx-
imation. Oper. Res. 26(1), 36–52 (1978)

4. Ham, M., Lee, Y.H., Fowler, J.W.: Integer programming-based real-time scheduler
in semiconductor manufacturing. In: Proceedings of the 2009 Winter Simulation
Conference (WSC), pp. 1657–1666 (2009)

5. Huang, I., Li, B.: A genetic algorithm using priority-based encoding for routing
and spectrum assignment in elastic optical network, pp. 5–11 (2015)

6. Koblasa, F., Sahni, F.M., Vavruška, J.: Evolution algorithm for job shop scheduling
problem constrained by the optimization timespan. Appl. Mech. Mater. 309, 36–52
(2013)

7. Levner, E., Kats, V., Alcaide López De Pablo, D., Cheng, T.: Complexity of cyclic
scheduling problems: a state-of-the-art survey. Comput. Ind. Eng. 59(2), 352–361
(2010)

8. Mesghouni, K., Hammadi, S., Borne, P.: Evolutionary algorithms for job-shop
scheduling. Appl. Math. Comput. Sci. 14(1), 91–103 (2004)

9. Nowling, R., Mauch, H.: Priority encoding scheme for solving permutation and
constraint problems with genetic algorithms and simulated annealing, pp. 810–815
(2010)

10. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer
Publishing Company Incorporated, Heidelberg (2008)

11. Ribeiro, F., De Souza, S., Souza, M., Gomes, R.: An adaptive genetic algorithm to
solve the single machine scheduling problem with earliness and tardiness penalties
(2010)

	Solving Scheduling Problems with Genetic Algorithms Using a Priority Encoding Scheme
	1 Introduction
	2 Problem Description
	2.1 Factory Description
	2.2 Workflow

	3 Genetic Algorithm Description
	3.1 Chromosome Definition
	3.2 Fitness Function Definition

	4 Results
	5 Conclusions
	References

