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Abstract—The well-known backpropagation learning algo-
rithm is implemented in a field-programmable gate array (FPGA)
board and a microcontroller, focusing in obtaining efficient
implementations in terms of a resource usage and computational
speed. The algorithm was implemented in both cases using a
training/validation/testing scheme in order to avoid overfitting
problems. For the case of the FPGA implementation, a new
neuron representation that reduces drastically the resource usage
was introduced by combining the input and first hidden layer
units in a single module. Further, a time-division multiplexing
scheme was implemented for carrying out product computa-
tions taking advantage of the built-in digital signal processor
cores. In both implementations, the floating-point data type
representation normally used in a personal computer (PC) has
been changed to a more efficient one based on a fixed-point
scheme, reducing system memory variable usage and leading
to an increase in computation speed. The results show that the
modifications proposed produced a clear increase in computation
speed in comparison with the standard PC-based implementation,
demonstrating the usefulness of the intrinsic parallelism of
FPGAs in neurocomputational tasks and the suitability of both
implementations of the algorithm for its application to the real
world problems.

Index Terms—Embedded systems, field-programmable gate
array (FPGA), hardware implementation, microcontrollers,
supervised learning.

I. INTRODUCTION

HE backpropagation (BP) algorithm is the most used

learning procedure for training multilayer neural net-
works architectures. Even if the algorithm was originally
proposed by Werbos in 1974 [1], it was not until 1986 that it
become popularized through the work of Rumelhart et al. [2].
The BP algorithm is a gradient descent-based method that
minimizes the error between target and actual network outputs,
computing the derivatives of the error in an efficient
way [3]-[5]. As a gradient descent algorithm, the search for
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a solution can get stuck in a local minima but in practice the
algorithm is quite efficient, and as so it has been applied to
a wide range of areas from pattern recognition [6], medical
diagnosis [7], stock market prediction [8], and so on. Real-
time applications require extra computational resources [9],
involving in some cases also energy consumption restrictions,
and thus the use of embedded (dedicated) systems [10] or low
power consumption devices are needed, as in those cases a PC
might not be the most adequate device for executing neural
network models.

Field-programmable gate arrays (FPGAs) are reconfigurable
hardware devices that can be reprogrammed to implement
different combinational and sequential logic created with the
aim of prototyping digital circuits, as they offer flexibility
and speed. In recent years, the advance in technology have
permitted to construct FPGAs with considerable the large
amounts of processing power and memory storage, and as
so they have been applied in several domains (telecommu-
nications, robotics, pattern recognition tasks, infrastructure
monitoring, and so on) [11]-[13]. In particular, FPGAs seem
quite suitable for neural network implementations, as they are
intrinsically parallel devices as is the processing of information
in neural network models. Several studies have analyzed the
implementation of neural networks models in FPGAs
[14]-[19], but it is worth noting the difference between
off and on chip implementations. In off-chip learning imple-
mentations [20], [21], the training of the neural network model
is usually performed externally in a personal computer (PC),
and only the synaptic weights are transmitted to the FPGA
that acts as a hardware accelerator, while on-chip learning
implementations includes both training and execution phases
of the algorithm [18], [22], [23]. Existing specific imple-
mentations of the artificial neural network BP algorithm in
FPGA boards include [24]-[26], noting that despite recent
advances on the computational power of these boards, still
the size of the neural architectures that can be implemented
is quite limited. FPGA boards are predominantly programmed
using hardware description languages, such as VHDL (VHSIC
hardware description language) or Verilog and programming
them is usually very time consuming.

Apart from FPGAs, other devices very much used in the
neural network applications are microcontrollers, which are
small and low-cost computers built on a single integrated
circuit containing a processor core, memory, and program-
mable input/output peripherals built for dealing with specific
tasks. These devices are commonly used in sensor nodes
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(widely used in wireless sensor network [27]) usually under
the environmental changing conditions, because they are an
economic, small, and flexible solutions to interpret signals
from the various sensors and take a decision according to
the inputs received [19], [28]-[32]. An advantage of micro-
controllers is that they can be easily programmed using
standard programming languages, such as C, C++, and Java,
while their main limitations are memory size and computing
speed.

In this paper, we have implemented the BP algorithm
in a VIRTEX-5 XC5VLX110T FPGA and an Arduino Due
microcontroller. Our aim was twofold: 1) to obtain efficient
implementations on both types of devices that permit its
practical application in real-life problems and 2) to compare
the efficiency between them and to a standard PC-based
implementation. The organization of this paper is as follows.
Section II includes details about the BP algorithm. The FPGA
implementation is described in Section III, which contains
four parts: the first three subsections describe each one of the
three blocks used for the algorithm implementation, while the
fourth subsection deals with specific implementation details.
Section IV contains the microcontroller implementation of the
algorithm. Section V presents the results of both implementa-
tions on a set of benchmark functions, together with a detailed
analysis of the computational costs involved (number of cycles
and execution times) and of the general functioning of the
algorithm. Finally, the discussion and conclusions are drawn
in Section VI.

II. BACKPROPAGATION ALGORITHM

The BP algorithm is a supervised learning method for
training multilayer artificial neural networks, and even if the
algorithm is very well known, we summarize in this section
the main equations in relationship to the implementation of the
BP algorithm, as they are important in order to understand
the current work.

Let us consider a neural network architecture comprising
several hidden layers. If we consider the neurons belonging to
a hidden or output layer, the activation of these units, denoted
by yi, can be written as

L
vi=g D wij-s;i | =gh) (1

j=1

where w;; are the synaptic weights between neuron i in
the current layer and the neurons of the previous layer with
activation s;. In (1), we have introduced i as the synaptic
potential of a neuron. g is a sigmoid activation function
given by

1
g(x) = 1—oPr (2
The objective of the BP supervised learning algorithm is to
minimize the difference between given outputs (targets) for a
set of input data and the output of the network. This error
depends on the values of the synaptic weights, and so these
should be adjusted in order to minimize the error. The error
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function computed for all output neurons can be defined as

p M
E=3 > 3@l -y )
k=1 i=1
where the first sum is on the p patterns of the data set and
the second sum is on the M output neurons. z;(k) is the
target value for output neuron i for pattern k and y;(k) is
the corresponding response output of the network. Using the
method of gradient descent, the BP attempts to minimize this
error in an iterative process by updating the synaptic weights
upon the presentation of a given pattern. The synaptic weights
between two last layers of neurons are updated as
OE ,
Awij (k) = —n = nlzi(k) — yi(k)1g;(hi)s; (k) (4)
dwij (k)
where 7 is the learning rate that has to be set in advance
(a parameter of the algorithm), g’ is the derivative of the
sigmoid function, and % is the synaptic potential previously
defined, while the rest of the weights are modified according
to similar equations by the introduction of a set of values called
the deltas (), that propagate the error form the last layer into
the inner ones.

Training and Validation Processes: The training procedure
is executed a certain number of times (epochs) using the
training patterns. In one epoch, the training patterns are all
presented once in random ordering, adjusting the synaptic
weights in an on-line manner. A well known and severe
problem affecting all predictive algorithms is the problem of
overfitting, caused by an overspecialization of the training
procedure on the training set of patterns [33]. In order to
alleviate this effect, one straightforward alternative is to split
the set of available training patterns in training, validation,
and test sets. The training set will then be used to adjust
the synaptic weights according to (4), while the validation
set is used to control overfitting effects, storing in memory
the values of the synaptic weights that have so far led to the
lowest validation error, so when the training procedure ends,
the algorithm returns the stored set of weights. The test set is
used to estimate the performance of the algorithm in unseen
data patterns.

III. FPGA IMPLEMENTATION OF THE BP ALGORITHM

FPGAs [34] are reprogrammable silicon circuits, using
prebuilt logic blocks and modifiable routing resources that
can be configured to implement custom hardware. Besides the
fact that FPGAs can be completely reconfigured allowing to
change its behavior almost instantaneously by loading a new
circuitry configuration, they can also be used as hardware
accelerators, in particular for the neural-based applications
given their intrinsic parallel computational capabilities. FPGAs
are usually programmed using a hardware description lan-
guage (VHDL). For the current implementation, we used
the Virtex-5 OpenSPARC Evaluation Platform (ML509) that
includes a Xilinx Virtex-5 XC5VLX110T FPGA. The board
was programmed using the Xilinx ISE Design Suite 12.4
environment within the ISim M.81d simulator. Fig. 1 shows a
picture of a Virtex-5 OpenSPARC board, and Table I shows
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Fig. 1. Picture of a Virtex-5 OpenSPARC Platform used for the implemen-
tation of the C-Mantec algorithm.

TABLE I
MAIN SPECIFICATIONS OF THE VIRTEX-5 XC5VLX110T FPGA
RELATED TO ITS AVAILABLE SLICE LOGIC

. Slice Slice Bonded
Device Registers | LUTs 10Bs BR | DSP48
Virtex-5
XCSVLX110T 69,120 69,120 34 148 64

some characteristics of the Virtex-5 XC5VLX110T FPGA,
indicating its main logic resources. The table indicates for
the mentioned board the number of slice registers, lookup
tables (LUTs), bonded input—output banks, block RAM (BR),
and DSP48 cores. Given that every computation in the FPGA
has to be defined from the first principles, they usually contain
digital signal processors (DSPs) for helping to perform certain
operations. A DSP is a specialized microprocessor that has an
architecture optimized for the fast operational needs of digital
signal processing. A DSP process data in real time, making it
ideal for applications that cannot tolerate delays [35], [36].

The FPGA implementation of the BP algorithm was carried
out using three blocks: 1) control; 2) pattern; and 3) architec-
ture blocks. The control block organizes the whole information
process by sending and processing the information from the
architecture and pattern blocks. The pattern block manages the
exchange of information between the PC and the FPGA for
reading the set of patterns to be stored in BRs, and also is
used to send a given pattern to the architecture block, that it
will be in charge of the training process. Circuit computations
have been programmed using fixed-point arithmetic, which is
the standard way to work with FPGA boards. Floating-point
operations can be codified in an FPGA but they tend to be
inefficient in comparison with fixed-point representation [25].
We describe below the organization of each one of the three
blocks in Sections III-A—III-C. Section III-D comments on the
specific implementation details. Fig. 2 shows a diagram of the
FPGA design, where the three blocks used are shown together
with the information that is exchanged between them.

A. Pattern Block

The pattern block manages the data exchange between the
PC and the FPGA board through the serial communication
RS-232 port of the device. This port has been used because
it can be easily implemented in VHDL and ported to other
architectures.
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Fig. 2. Scheme of the FPGA design, where control, pattern, and architecture
blocks are shown together with the information exchanged between them.

To start the process, the user sends the set of parameters of
the algorithm and the training patterns. The set of parameters
specifies the number of training (#Train) and validation pat-
terns (#Valid), the number of neurons in each layer (#N;), the
number of epochs (#Epoch), and the learning rate value #. The
training and validation data sets are stored in the distributed-
RAM block of the FPGA, storing the training set in the first
positions and the validation in the following ones. Two bytes
(1 byte = 8 bits) of memory are used for representing each
attribute and each class of a pattern, and thus the total occupied
memory of the data set is defined by the equation

#bytes =2 - (N; + No) - (#Valid + #Train) &)

where Nj is the number of inputs (attributes) and Ny is the
number of output classes.

During the execution of the algorithm, the pattern block
might receive two different signals from the control block in
order to send a random training or validation pattern. To avoid
training several times a given pattern, the memory position of
the last sent pattern is switched with the one corresponding
to the final eligible memory position, while the number of
eligible memory positions is reduced by 1. This action is
repeated until the eligible memory is null, finishing the epoch
at this moment and starting a following one. The same process
is applied for both training and validation sets independently.

B. Control Block

The control block organizes the whole information flow
process within the FPGA board by sending and processing
the information from the architecture and pattern blocks. The
structure of this block is organized into two main processes.

1) The main function of this block is to control two
activation signals that indicate whether a training or
a validation pattern should be sent to the architecture
block. In order to perform this action, the control
block receives a signal value from the pattern block
that indicates the total number of training (#train) and
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Fig. 3. Flowchart of the FPGA control block operations. The region inside
the dashed line corresponds to the validation procedure implemented.

validation (#val) patterns sets for the whole learning
procedure.

2) The secondary process of this block is to execute the
validation process, included with the aim of avoiding
overfitting effects.

In essence, this process computes an error value using the
validation set of patterns to store the synaptic weight values
that have led to the smallest validation error thus far as
the training of the network proceeds. The implementation of
the whole validation process in the FPGA is detailed
in Section III-B.

When the computations starts, the set of patterns are loaded
into the pattern block that sends a signal to the control block
in order to start the execution of the algorithm. Fig. 3 shows a
flowchart of the control block operations. At the beginning
of the process, a set of counters related to the number of
training patterns, the number of validation patterns, and the
number of epochs are initialized to zero. If the number of
actual training patterns has not reached the value #Train
(set by the user), the training procedure starts by sending a
signal to the pattern block indicating that a random chosen
training pattern should be sent to the architecture block. The
architecture block will then train the network, sending back a
signal (S_Train) to the control block when the training of this
pattern finishes, increasing the trained pattern counter Countl.
When this value gets equal to the total number of training
patterns, then the validation process start (this step is described
in detail below). After the validation process, an epoch counter
is used for checking whether the whole training-validation
procedure should continue or not, as the previous steps are
repeated until the maximum number of epochs (#Epoch) is
reached.

Validation Process: The validation process, included to
prevent overfitting problems, is executed after finishing a
training epoch. This process requires the storing of the lowest
validation error obtained so far (as the training procedure
advances) together with the synaptic weights that led to this
error. When this procedure is activated at the end of a training
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TABLE 11
NUMBER OF EMPLOYED RESOURCES FOR THE REALIZATION OF
EACH TYPE OF POSSIBLE NEURON

Resource for type of Neuron

Resource Input | InpHid | Hidden | Output
LUTs 524 1126 923 502
Register 254 396 391 255
DSP48 1 1 1 1
Block RAM 1 1 1 1

epoch, it computes the mean square error (MSE) for the
validation set, and if this value is lower than the stored one,
then it is saved together with all synaptic weights in a BR using
a first-in first-out (FIFO) procedure. As the neurons included
in the network architecture are indexed, the control block
demands sequentially the set of synaptic weights associated
with each neuron so they can be stored in a single FIFO RAM
while preventing memory collision problems. The flowchart of
the validation process is included in Fig. 3.

C. Architecture Block

The architecture block is in charge of the physical imple-
mentation of the neural network architecture. The number of
layers and the maximum number of neurons in each layer
has to be predefined by the user before the execution of the
algorithm.

Previous works [23], [37], [38] use three different types of
neurons, corresponding to input, hidden and output layer neu-
rons, as they all have different functionalities. Nevertheless, we
decide to use a different approach in order to optimize further
the FPGA resources, and thus the proposed implementation
eliminate input layer neurons as they are included together
with the first hidden layer neurons in a new module that
we name input-hidden neurons. The definition of this new
type of module is possible, mainly because the input layer
neurons do not process the information as they simple act
as input to the network. The implementation of the neurons
consists of a group of LUTs with a specific functionality
of the BP algorithm. The input-hidden neurons manage the
input data, the synaptic weights between the input and the
first hidden layer, the output computation of the first hidden
neuron and also the synaptic weights connecting to the output
or to a further hidden layer. The hidden layer modules (in case
they are included) compute the neuron activation and store the
values of the synaptic weights connecting to further neurons.
Finally, the output modules evaluate the value of the output
units in order to compute the error of the presented pattern.
A scheme of a two hidden layer neural network is shown in
Fig. 2 where the three different types of modules are indicated.
Table II shows the number of employed resources by each type
of neuron with a word size of 32 b, 16 for the integer part (N1),
and 16 to the decimal part (V). The election of the word size
is described in Section III-D1.

To specify a given architecture the number of active neurons
in each layer should be sent to the FPGA as part of the
setting data set. However, the system is composed of a deter-
mined number of neurons and layers, so that the architecture
of the network and the maximum number of neurons are
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TABLE III
BOARD RESOURCES NEEDED FOR DIFFERENT SIZE
NEURAL ARCHITECTURES FOR THE PROPOSED
AND ALTERNATIVE METHODS

. Resource
Architecture Type LUTSs Regis. BR DSP
Conv. | 11044 6676 719 5
10-3-1 Gomp. | 8043 2243 - 70
Prop. 6413 4151 69 5
Conv. | 17084 9277 86 b7
10-6-3-2 | Gomp. | 20021 5342 - 169
Prop. | 13062 6767 76 12
Conv. | 54425 25055 126 )
10-50—1 Prop. | 59335 22763 116 52
Conv. | 56177 26478 137 73
30=30—10=2 | b0 | 46547 19008 107 £
Conv. | 49703 24505 140 76
S0—10—10=5 | p 0" | 25533 11853 90 26
Conv. | 59558 28998 153 o1
60—15—-10=5 " poo | 33163 13833 95 31
[ Reduction mean [ 258% 352% 235% 50.1% |

predetermined and delimited by the resources of the device.
The novel layer (the first layer blocks), that is employed in
this implementation, reduces the required resources for any
architecture. Table III shows the board resources needed by the
proposed method (Prop.) for different size neural architectures
in comparison with a conventional implementation (Conv.),
and also to the published results in [38] (Gomp.).

D. Implementation Details

We describe below details related to the choice of synaptic
weights precision, for carrying out the implementation of
products, and about the computation of the sigmoid function
used as the transfer function of the neurons.

1) Synaptic Weights Precision: The representation of the
synaptic weights can be chosen according to the available
resources, considering that requiring higher accuracy may
need a larger representation, leading also to an increase in
the number of LUTs per neuron (consequently reducing the
maximum number of available neurons), and a decrease in
the maximum operation frequency of the board. On the other
hand, synaptic weights accuracy cannot be much reduced, as
a proper operation of the BP algorithm requires a certain level
of precision [25], [39]. A synaptic weight is represented by
a bit array with integer and fractional parts of length
N; and N>. N; determines the minimum and maximum values
that can be represented —2M1=1 to 2M1=1) while N, defines
the accuracy 2(-™2), The number of bits needed to represent
all possible discrete values within a certain range of positive
values depends on the difference between the maximum and
minimum of the interval, and can be obtained from the
following equation:

#bits = log, ((1 + max(w;;))/(min(w;;))). 6)

Table IV shows the number of LUTs needed to represent
each type of neuron modules as a function of the number of
bits used for representing the synaptic weights. Ny and N>
indicate the integer and fractional parts of the synaptic
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TABLE IV
NUMBER OF LUTs PER EACH TYPE OF POSSIBLE NEURON MODULE
ACCORDING TO THE NUMBER OF BITS USED FOR
REPRESENTING THE SYNAPTIC WEIGHTS

N N LUTSs per type of Neuron fmaz
1 2 | Input | InpHid | Hidden | Output | (MHz)
8 8 347 723 592 343 191.2
8 12 390 871 671 409 186.7
8 16 433 1028 763 448 183.7
12 12 430 913 740 425 183.7
12 16 476 1031 859 475 180.6
16 16 524 1126 923 502 177.3
Neuron module
LT » S_Error
Pattern —E—
»  Error
Data setting set 44— Neuron block 1 »| S Train
-LUTs Di o DSP48
- Registers _’{\]_)
-BR —~——
NN,
€ c=a%b
CLK a(fMHz) —» —>

CLK_b ( 2f MHz)

Fig. 4. Scheme of an implemented neuron that uses a time-division
multiplexed strategy to execute several multiplications. Neuron and DSP
blocks are synchronous but the DSP uses a frequency two times larger than the
one used by the neuron block, so that a product operation could be completed
in one operation cycle of the FPGA.

weight representation. The last column shows the maximum
whole system operation frequency allowed for the chosen
representation.

2) Product Implementation: The execution of the BP algo-
rithm requires the computation of several products, mainly
between neuron activations and synaptic weights values
[see (1)—(4)], and so an efficient implementation of this oper-
ation is crucial in order to optimize board resources (affecting
the number of LUTs per neuron required and the operation
frequency of the FPGA). Multipliers can be implemented by
shifters and adders, following the approach presented in [40]
or by available specific DSP cores in the FPGA. The number
of required LUTs for the first type of implementation is
proportional to the bit size of the input data, as for example,
for two vectors with N, and N, bits length, respectively, the
product requires N, x N, LUTs while for the second type of
implementation, one DSP for each neuron is needed (clearly
this puts a limitation in the maximum number of neurons in
the system). We decided to use the DSP-based strategy as the
board frequency operation can be up to four times faster, as we
measured the operation of the board without using the DSPs.

For an efficient use of the DSP resources, we implemented a
time-division multiplexing scheme, using only one multiplier
block per neuron and thus performing sequentially the com-
putation of several products. This time-division multiplexing
scheme is shown in Fig. 4. The neuron module comprises a
first block (we named it neuron block) that includes several
LUTs, registers and one BR, while a second block consists
just of a DSP. Both blocks are synchronous but the DSP
uses a frequency two times larger than the one used by the
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Fig. 5. Computation of the exponential function and its approximation
based on an LUT plus a linear interpolation scheme (top graph). Absolute
(middle graph) and relative errors (bottom graph) committed in the approxi-
mation of the function (see text for more details).

neuron block, so that a product operation could be completed
in one operation cycle of the FPGA.

3) Implementation of the Sigmoid Function: The operation
of the neurons involves the computation of sigmoid functions
for obtaining the output value of the neurons. As we are
using a fixed-point representation (as it is more efficient
than the floating-point one), then the computation of the
sigmoid function needs the use of an approximation. An LUT
containing equispaced values of the function has been created
to obtain certain number of output values. Neverthless, as
high precision values are needed for the correct execution of
the algorithm, the computation of the function approximation
was further complemented by a linear interpolation procedure
using the two adjacent tabulated values (lower and larger)
with respect to the input. Storing table values requires large
amounts of memory, and as one table per neuron is needed,
this number should be optimized. The 64 tabulated values
were used, as this ensures the obtention of absolute errors
lower than 1073, These values start from —8 to 8 with
0.25 increasing steps (values lower than —8 and higher than 8
were set to O and 1, respectively). Fig. 5 (top) plots real,
tabulated, and interpolated values for the sigmoid function,
with the inset plot showing an enlargement of a portion of the
curve. Fig. 5 (middle and bottom graphs) shows the absolute
and relative errors involved in the computation of the sigmoid
function in the range from —10 to 10.
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Fig. 6. Picture of an Arduino DUE board used for the implementation of
the C-Mantec algorithm.

IV. MICROCONTROLLER (uC) IMPLEMENTATION

We have further implemented the BP algorithm in an
Arduino DUE microcontroller. We describe below in several
sections all the details of the implementation process, high-
lighting the results of a comparison carried out between using
a fixed-point representation or a floating-point one.

A. Arduino Board

Arduino is a single-board microcontroller designed to make
the process of using electronics in multidisciplinary projects
more accessible [41]. The hardware consists of a simple open
source board designed around a 32-b Atmel ARM core micro-
controller, and the software includes a standard programming
language compiler that runs in a standard PC and a boot
loader for loading the compiled code on the microcontroller.
Arduino is a descendant of the open-source Wiring platform
and is programmed using a Wiring-based language (syntax and
libraries), similar to C++ with some slight simplifications and
modifications, and a processing-based integrated development
environment.

The Arduino DUE is based on the SAM3X8E ARM
Cortex-M3 CPU [42], and it has 54 digital input/output pins
(of which 12 can be used as PWM outputs), 12 analog inputs,
4 UARTSs (hardware serial ports), an 84 MHz clock, an USB
OTG capable connection, 2 DAC (digital to analog), and a
reset and erase buttons. The SAM3X has 512 kB (2 blocks
of 256 kB) of flash memory for storing code, it also comes
with a preburned bootloader that is stored in a dedicated
ROM memory. The available SRAM amounts to 96 kB in two
contiguous banks of 64 and 32 kB. A picture of the Arduino
DUE board is shown in Fig. 6.

B. Learning and Execution Phases of the Algorithm

The implementation of the BP neural network learning
model comprises two phases: 1) the learning phase where
the synaptic weights of the chosen architecture are adjusted
according to the set of patterns presented to the network and
2) the execution phase in which the microcontroller outputs a
signal in response to sensed input data according to the model
previously adjusted.

The learning phase has been divided into two different
processes: 1) loading of input patterns and 2) neural network
training. Data can be loaded into the microcontroller memory
on-line by I/O pins or by a serial communication USB port
(this last option was the used one in the current implementation
for simplicity reasons), but in both cases, the patterns have
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to be stored into the memory board because the learning
process works in cycles in which patterns are repeatedly used.
The microcontroller memory has been further divided in two
parts, one of 64 kB for the loading process, which is used
for storing the inputs patterns, and the second part comprising
32 kB of the memory to be used for the system variables.
This second part of memory is used for storing the value of
the synaptic weights, and all other variables of the algorithm,
like the activation value of the neurons, the deltas, the learning
rate, and so on. The neural network training phase consists of
the BP algorithm itself that was implemented with a validation
phase to avoid overfitting effects. Once the training phase
finishes the synaptic are stored in the memory block of 64 kB.

The execution phase is programmed to be carried out from
external data, as usually the microprocessor will be used as
an independent sensor. In this mode, a pattern would be read
from a sensor connected to one of the ports of the board, and
the previously trained model will be executed to obtain the
neural network output.

C. Pattern Storage

The number of bits used for representing each of the
inputs of a pattern has to be decided in advance of the
implementation. In the present case, 8 b have been used to
represent each variable, considering that these input values
have to be previously normalized between O and 255. Using
this representation for the patterns, the maximum number of
samples that can be stored in a 64-kB memory is given by the
following equation:

Np-(N; + No) < 65536 (7)

where Np is the number of patterns, N; is the number of
input variables (the dimension of the patterns), and No is the
number of outputs of the patterns that determines the number
of output of the neural architecture.

D. Data Type Representation

The microcontrollers are devices with limited computing
power, so in order to speed up the learning process, we
decided to utilize a fixed-point data representation. We note
that floating point is the usual data type representation used
in this kind of device but this representation is not always
the most efficiency. This paradigm shift involves important
changes in the way the BP algorithm is programmed but
in return offers a faster learning process and a smaller size
representation of variables. The following list gives the details
of the type of representation used for variables related to the
implementation of the neurons:

1) Deltas (9): 2 byte integers;

2) Synaptic Weights (w): 2 byte integers;

3) Outputs (y): 2 byte integers.

The previous choice for the representation of the neural
network-related variables affects the maximum network size
that can be utilized. The total number of neurons (Ny) in the
whole architecture can be expressed as the sum of the number
of neurons in each layer (Ny = Nyi + Ny2 + -+ +), so the
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maximum number of neurons used in each layer should verify
the following constraint:

2-(Ny1+Ny2+-++)
+2-(N;-Nn1+ Nyt -Nyv2+Nyo - Nyz +--+)
£2-(Ny1 + Nya +---) < 32768 (8)

where the first term relates to the variable storage space for
the Js, the second term account for the synaptic weights
between all the layers of neurons, and the last term is related to
the output value of the neurons in each layer. (Ny; represents
the number of neurons in the first layer, Ny2 of the second
layer and so on, while Nj is used for the number of inputs).
From the 2 bytes used for representing the variables of
the system, 10 b were used for the decimal part, and the
remaining 6 for the integer part, and thus the value of the
system variables ranges between 32 and —32. A special case
was the representation used for the variable computing the
summation of the synaptic potential, because in order to avoid
saturation effects a 4 bytes representation was used.

E. Computation of the Sigmoid Function

The computation of the sigmoid function can be imple-
mented using the specific arithmetic and logic unit for
resolving the exponential function. The previous computation
involves two different variable conversions, the first related
to the input values of the sigmoid (casting from integer to
a floating-point representation) and the second conversion is
done to the output value in a reverse casting. The compu-
tational cost of implementing the previous method is high,
with an approximate time of operation of 62 us, and thus an
alternative method based on an LUT plus linear interpolation
of adjacent values, similar to the one used in the FPGA
implementation, was chosen. The method is explained in detail
in Section III-D3, and in this case the computation time
employed is reduced to 2 us (97% reduction in comparison
with the first mentioned method).

F. Fixed-Point Versus Floating-Point
Representation Comparison

In Fig. 7, top, middle, and bottom show the number of
times that the implementation based on integer data type is
faster in comparison with the floating-point representation as
a function of the number of neurons in the different layers of
the neural architecture. An architecture with only one hidden
layer has been used to compute the values represented in the
figure, where Ny represents the number of neurons, N; the
number of inputs, and Ny is used for the number of outputs.
Fig. 7 top shows the comparison for variable values of
Ny and Ny (keeping fixed Np equal to 1), Fig. 7 middle is
computed for different values of Ny and No with N; equals
to 10, and finally Fig. 7 bottom represents the values obtained
as a function of Ny and No for Ny equals to 5.

V. RESULTS

We analyze in this section several aspects in relationship
to the two implementations of the BP algorithm carried out
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Fig. 7. Number of times that the fixed-point representation used in the
microcontroller is faster than the floating point one for different number of
neurons in the layers of a one hidden layer architecture (see text for more
details).

in an FPGA board and in an Arduino DUE microcontroller,
considering also a third implementation of the algorithm in
PC for comparison purposes. The PC implementation of the
algorithm has been executed under MATLAB code and run
in an Intel(R) core (TM) i5-3330 CPU at 3 GHz with 16 GB
of RAM memory. All three implementations of the algorithm
follow the same operation steps and the only evident differ-
ences between them are the random number generator used
for the initialization of the synaptic weights, the type of data
representation used in each case, and the computation of the
sigmoid function. The FPGA implementation uses an LFSR
random number generation routine, while the microcontroller
and the MATLAB code use the built-in random and randn
functions, respectively.

Fig. 8 shows the estimated number of clock cycles that each
implementation employs for the learning of an input pattern
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Fig. 8. Number of clock cycles involved in the learning process of a

single pattern according to the type of implementation used for the case of a
4-5-3 neural network architecture.

for a single hidden layer neural network architecture with
a 4-5-3 structure. Each bar in the graph is further divided
in two parts: 1) computation of the output of the network
in response to the input pattern (clear part of the bar) and
2) cycles involved in the modification of the synaptic weights
including the backward phase of the BP algorithm (dark part
of the bar) (note the logarithmic scale of the graph). The
number of clock cycles in the FPGA implementation has been
measured straightforwardly using the ISIM simulator. The
estimation of the number of cycles for the microcontroller has
been done by computing the time that takes the computation
of each instruction of the algorithm, multiplying this value
by the clock frequency of the microcontroller (80 MHz)
and then summing over all the instructions involved in the
algorithm. The number of cycles used in the PC-MATLAB
implementation cannot be computed directly and has been
estimated by measuring the total computation time and mul-
tiplying this value by the CPU frequency (3 GHz), even if a
strict evaluation of the number of cycles should involve taking
into account other factors like instructions of the operative
system, libraries, and so on. The method used in the FPGA
and microcontroller implementations permits to estimate the
number of operation cycles as a function of the number of
neurons in one hidden layer architecture (Ny, Ny, and No)
and is represented inside the bars in Fig. 8. It is worth noting
that even if in principle microcontroller and computer codes
used are quite similar, there are differences regarding the
implementations as the data representation used is different
(fixed and floating point, respectively), and the computation
of the sigmoid function values is done in a different way
(tabulated values plus interpolation for the microcontroller
versus ALU in the case of a computer). To test the cor-
rect implementation of the BP algorithm in the FPGA and
microcontroller devices, we tested the training, validation,
and test errors on a set of benchmark problems from the
UCI database [43] frequently used in the literature. Table V
shows the accuracy (generalization ability) values obtained
for the three implementations of the algorithm for eleven
benchmark problems. The first three columns indicate the data
set name, number of inputs and outputs, respectively, while the
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TABLE V
ACCURACY

Function #1 | #0 PC FPGA nC
Diabetes 8 2 78.31 79.35 79.13
Cancer 9 2 95.63 95.73 | 95.60
Statlog (Heart) | 13 2 78.52 | 7827 | 78.26
Climate 18 2 93.27 | 94.14 | 94.51
ITonosphere 34 2 88.21 87.57 87.14
HeartC 35 2 78.80 | 80.11 80.22
Iris 4 3 9222 | 9277 | 90.89
Balance Scale 4 3 87.93 | 87.82 | 87.61
Seeds 7 3 97.62 | 96.51 96.66
Wine 13 3 88.89 | 87.04 | 86.67

Glass 10 6 93.85 91.54 | 92.31

[ Average [ 88.48 [ 8826 [ 88.09 |
Execution times for a set of benchmark functions
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Fig. 9. Execution times (in seconds) for the whole learning process (training
and validation) for the set of benchmark functions used for verifying the
correct implementation of the algorithm in the FPGA and microcontroller
using neural network architectures with a single hidden layer (see text for
more details).

last three columns shows the accuracy obtained using neural
network architectures with five neurons in the single hidden
layer, as the number of inputs and outputs is determined by
the problems themselves. We have not optimized the neural
architecture for each problem, as our aim is to demonstrate
the correct implementation of the algorithm and not to obtain
optimal values of prediction accuracy. For carrying out the
simulations, a training, validation, and test sets splitting was
used in a 50%—-20%—-30% scheme; in which the validation set
was used to find the number of epochs for evaluating the test
error, the maximum number of epochs was set to 1000, and
the learning rate was equal to 0.2.

We further computed execution times for the whole learning
process (training and validation) for the same set of benchmark
functions mentioned above, and the results are shown in
Fig. 9 for the FPGA, microcontroller and PC versions of the
BP algorithm (note the logarithmic scale used in the y-axis
of the figure). We also perform an analysis to see how FPGA
and microcontroller performance behaves in comparison with
the PC implementation as the complexity of the functions
grow. We have used the execution time needed in the PC
implementation timepc as an estimation for the complexity
of the benchmark functions, to obtain that the number of
times that the FPGA implementation is faster than the PC
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Fig. 10. RMSE for the training and validation process when learning the
Iris data set using a 4-5-3 architecture for the three different implementations
used.

(#timesppga) grows as #timesppga = 94 4+ 2 - timespc
(Pearson correlation coefficient equals to 0.753), while the
analysis for the microcontroller shows not significant perfor-
mance increase: #times,c = 1.6 + 0.0083 - timespc (Pearson
correlation coefficient equals to 0.25).

Fig. 10 shows the root MSE (RMSE) obtained for the
training and validation processes when the BP algorithm
is implemented in the FPGA, uC, and PC as a func-
tion of the number of epochs for the Iris data set using
a 4-5-3 architecture (similar results were observed for all data
sets). It can be seen that the training error always decreases as
training advances being lower for the PC implementation than
for other two, indicating that a more precise representation
(32-b floating point) helps to adjust the synaptic weights
during training. However, for the validation RMSE, the three
curves are quite similar noting also that the values increase
at certain point of the process (approximately at 200 epochs),
indicating overfitting effects and justifying the use of a val-
idation set. As in general the interest on the application of
supervised neural networks to practical problems is related to
prediction, validation, and test errors are the important features
and thus the results confirm that the representation used for
the FPGA and uC (16-b fixed point) is adequate.

VI. DISCUSSION AND CONCLUSION

The BP algorithm has been successfully implemented in
an FPGA board and Arduino microcontroller, in a learning
paradigm that includes a validation scheme in order to prevent
overfitting effects. The implementation of the algorithm in
the FPGA board involved several challenges as hardware
programming is a totally different paradigm approach in com-
parison with standard software programming, and as such, we
have first introduced a new neuron representation that permits
to increase the efficiency of the traditional implementation,
obtaining an average reduction of 25.8% in the total number of
LUTs needed to implement different architectures, as shown in
Table III. Further improvements are related to a time-division
multiplexing scheme for carrying out product computations
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taking advantage of the FPGA DSP built-in cores, and an LUT
plus linear interpolation scheme for computing the transfer
function of the neurons (the sigmoid function). At the time of
a real implementation, the limitation in terms of the size of
the neural network architectures that can be simulated would
come from the specific FPGA board used, and this analysis
can be done from the results shown in Table II. In our case in
which we are using a Xilinx Virtex V XC5VLX110T board
the main limitation comes from the number of available DSP
cores, as the mentioned board includes 64 DSP cores, and
thus this factor limits the maximum number of neurons in the
architecture to 63, as an extra core is needed in the validation
process. If we compare these new results with the previous
published works, for example those appearing in [38], we see a
significant efficiency increase that will permit the utilization of
much larger neural architectures. Nevertheless, the efficiency
increase for a particular case would depend on the values of
the combination of neural network architecture parameters and
resources of the FPGA board used.

Considering the microcontroller implementation, the stan-
dard floating-point data type representation has been changed
to a more efficient one based on a fixed-point scheme, reducing
system memory variable usage and an increase in compu-
tation speed, obtaining that the fixed-point representation is
~10 times faster than the floating point one (see Fig. 7).

The results shown in Fig. 10 indicate that the representation
used for the FPGA and microcontroller was adequate as
validation and test errors were similar to the PC imple-
mentation of the algorithm. The use of a lower precision
representation affects the learning error (it is lower for the
PC implementation), but it is not relevant regarding prediction
accuracy. We hypotethize that this fact might be related to
the effect observed when noise is added both to input and
synaptic weight values [44], that instead of having negative
effects, it can help to improve generalization by preventing
the overfitting effects.

An estimation of the computation time (Fig. 9 involved in
relationship with the three implementations of the BP algo-
rithm (FPGA, uC, and PC) shows the potential advantages
of using an FPGA board as a hardware accelerator device for
neurocomputing applications, obtaining a speedup of hundred
of times with an improvement increasing with the complexity
of the problem, highlighting the intrinsic parallelism of the
device.

As an overall conclusion, this paper shows the potential
advantages of using FPGA boards as hardware accelerator
devices for neurocomputing applications giving their intrinsic
parallel capabilities, while in relationship to the use of neural
networks in microcontrollers, we highlight the on-chip char-
acteristic of the presented implementation that will permit its
use in remote sensors using a standalone operation mode.
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